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Mandelstam Representation for Dirac Potential Scattering
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The scattering amplitude for Dirac potential scattering is shown to have a Mandelstam representation
if the potential is a superposition of Yukawa potentials. This representation together with the unitarity
condition is used to obtain an integral equation for the weight functions. The subtraction in energy makes
it necessary to know the scattering amplitude's dependence on momentum transfer at zero energy in order
to solve for the weight functions. Dispersion relations for the partial wave amplitudes are obtained.

I. INTRODUCTION

~ 'HE purpose of this paper is to point out that the
work of Blankenbecler et al.' on the Mandelstam

representation for Schrodinger potential scattering can
readily be extended to the Dirac case. The amplitude
for the scattering of a Dirac particle by a scalar potential
that is a superposition of Yukawa potentials is shown

to be an analytic function of complex momentum
transfer outside of a cut along the real axis. The proof
consists of demonstrating that every successive Born
term has a cut which moves farther out in the mo-

mentum transfer plane while the exact remainder is

analytic in a Lehmann ellipse of arbitrarily large size.
It is shown that a knowledge of the potential along with

the Mandelstam representation and unitarity is not
sufhcient to determine the weight functions of the
representation, as the presence of a subtraction in the

energy requires in addition a knowledge of the scattering
amplitude as a function of momentum transfer at zero

energy.

T(fi) = U(kr —k,)

dq 1
+ V(kg —q) T (qi)

~ (2~)' E nq Pen—+—is
= V(ky —k;)

dq E+n q+P44s
U(kf —q) T(qi)—, (2.1)

(2m)' q' k' i e- —

where V(q) is the Fourier transform of the potential.
The formal solution to this equation is given by

T(fi) = V(kf —k')

+ "dq,dq, V(kf —qi)G(qi, qs, E) U(qs —k,), (2.2)

where G is the Fourier transform of the exact Green's
function:

d1
G(qi, qs, E)= I e—;qi.r

(2') s E H V(r)+i—e—
As in BGKT we shall assume that

co ST

P r
II. PROOF OF ANALYTICITY

The Dirac equation is (E H)/= VS, whe—re if is a
four-component spinor wave function and

This potential has the advantage that its Fourier
transform has a particularly useful form:

~(x)
V(kf —k;) = 4x dx

x'+f

where f= (kf—k,)'. We see that V(kf —k;) is analytic
in the t-plane cut from —~ to —p,'. What remains to
be proven is that u —V and b are analytic in the t-plane
cut along the real axis. Equation (2.2) for T has the
same form as the scattering amplitude for nonrela-
tivistic potential scattering. The fact that 6 now has
the form

H= in V+—pm

is the free-particle Hamiltonian. n and P are the usual

Dirac matrices. The solutions of the free-particle
equation (E H)/=0 are taken —to be plane waves so

that for a particle of momentum k, pr. =l(k)e'a', where

u(k) is a four-component spinor normalized to uts4= 1.
The matrix element which describes the scattering of a
particle from an initial state i to a final state f is given

by 3IIf,= (pf, VP,). If we define a T matrix by
Mf, =s4ytT(fi)s4;, then the Dirac equation can be used

to reduce T to the form T=a+Pb, where a and b ar
scalar functions of energy and momentum transfer an

(2.3)G=Gi+pmGs+n q&G&+n q&G4

*Now at Physics Dept. , State University of Iowa, Iowa City,
Iowa.

~ R. Slankenbecler, M. I.. Goldberger, N. N. Khuri, and S. B.
Treiman, Ann. Phys. 10, 62 (1960); hereafter referred to as
BGK.T.

produces no essential complications. The I.ehmann
coordinates are introduced and one of the azimuthal
angles is integrated over while the angle between ql
and q& is kept constant. The result is that T is analytic
in a I.ehmann ellipse in the complex cos0 plane of
semimajor axis 1+2@')O'. The absolute minimum for
t, 4p,', is just the maximum value of t for which the
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where
I. dq

( )
(2zr)'

dq r 4zr&r(xr)dxr E+Pzzz+n qr
~ ~ ~

(2zr)' xr'+ (kf —q,)' qP —k' —ie

E+Pzzz+n q„r 4zr&r(x„)dx„
)

q. P —k' —ie x„'+(q„&—k,)'
and R„ is the exact remainder,

proof of ordinary dispersion relations given earlier by
Khuri and Treimans holds. If we iterate Eq. (2.1) zz —2
times and then use Eq. (2.2), we have

T= V+Tz+ +T„+R„, (2.4)

Ac(E h)
—A (0 h)+

E~(E+En)

E t
"dE' ImA. '(E', t) ImA(E', t)

l+ E' E' E i—e —E'+E

B (E,t)=—
I', 1 t." ImB (E',t)

+— dE'
E+EIz zr J E' E i—e—

ImB (E',t)

E&+E

where E& is the energy of the bound state and F&, I'&

are the residues of the amplitudes at this bound state.
The simplest form of ImA, etc. , that will display our
proven analyticity properties and satisfy the condition
that Sf —t&f 27'lz7&('Ef E;)Mt;—be unitary is

Using an inductive proof we can show that T„ is
analytic in the complex cos9 plane outside of a cut
running from cos8= 1+zzshz'/2k' to ~ . Then the
I.ehmann technique can be used again to show that E
is an analytic function of cos0 inside an ellipse centered
at the origin with semimajor axis ye= 1+ (zz+1)'hz'/2'.
Since this region is indefinitely enlarged as we iterate
farther, we conclude that a—V and b are analytic in
the cosg plane cut from 1+2hz'/k' to an, except for a
possible essential singularity at infinity which we
however suppose not to occur. The cut in the
t=2k'(1 —coso) plane then extends from t= —4hz' to

III. UNITARITY CONDITION

Having proved the analytic properties of T(E,t) as
a function of momentum transfer t, we now wish to
write dispersion relations which display this analy-
ticity. For these purposes we write T in the form

T=A(E, t)+n kfn k,B(L'",t). (3.1)

Similarly the T matrix for antiparticle scattering can be
written

T'=A'+n kfn k,B'

EFg
A(E, t) =A(0,t)+

E~(E—E~)
E t

"dE' ImA(E', t) ImA'(E' t)

E' E' E ze E'+E——
I'~ 1 t." ImB (E',t)

B(E,t) = +— dE'
J E'—E—i~

ImB'(E' t)

Then from KT' we see that if we include one bound
s state, then

dt' pr(L&', t')
ImA(E, t) = ~

— +gr(E),
J4«~ zr t +t

"dt' p, (L,t')
ImB(E, t) = — +gz(E),

h'+h

I
"Ch' ps(E, t')

ImA'(E, t) = — +gz(E),

t."Ch' p4(E, t')
ImB'(E, t) = — +g4(E).

t'+t

Then T may be written in the form

t."dt' O, (E,t')+y(h')(, )= ( )+ ()+ '

~ 4«' zr t+t
~" dt' m(E, t')-

+n ktn. k, Ls(E)+
L& 4«' zl t +t

EI'g E
I

"dE'
+—

E~(E—E~) zr J

t gr(E') gz(E')&
xl (E'—E—z. E'+E)

I
"ch'0(h')

A(o, h) = V(h)+
J4„~ zr t'+t

r~ t dE' ( gz(E') g4(E') )+ —l, +,E Eg J zr &E'—E——ze E'+EJ
E t'" dE' ( p, (E',t) pz(E', t) )

E' (F.' F ie E'+—B )—

(3.3)

(3.4)

I
"CE' ( pz(E', h) p4(E', t) )' N. N. Khnri and S. B. Treimsn, Phys. Rev. 109, 198 (1958); (E, h) = l +

hereafter referred to as KT. E' E i e E'+E )——
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The unitary requirement for 5 becomes the following condition for T:

k
i[T(fi) T—t(if)]=—~dQq Tt(qf)(E+Pm+n q)T(qi)

Sx ~
(3 3)

If we now substitute (3.4) in (3.5) and take the discontinuity across the cut in the t plane, we obtain
equations for the weight functions of the form

p, (E,») = —
I

—Is (k', t) ti, tg) U(ti) V(t~)X, (t)ti)t~)E)

Ay f
+ —

~

—E(k')t; t, )t,) V(ti) dE' Q A,, (E,E')t, tl)»2)p, (E')4)+y(t, ) I', (t)t,)4)E)
4' 2 "'m

+ ~l
—

i E:(lP—,»; t„t,) CE, P I3,,(E,E„»,t„t,)p, (E„»,)+y(t, )
~ 4))) K 4))) m

X dEg Q C,)(E)E2)t)ti)»2)p, (E2)4)+p(ti) Z, (t)ti)4)E)) (3.6)
m

where It is the same as in the Schrodinger case:

)r 0(t—ti tg (ti»2/2k') —(ti»2))[16k'+4k'(ti+»2)+ti»2])/2k'}
Is (k', t; ti, tg) =—

2 (k'[t —(t, '+t;:)'][t—(», —:—t, -'*) ]—tt, t,}*

The 0 function in E [e(x)=0 for g (0 and 0(x) = 1 for
x)0] determines the actual regions of integration for
each term. In order for 0 to be nonvanishing for small
k', t)ti»2/k2; for large k', t) (ti'*+»~')'. Thus the first
term is nonvanishing in a region of the k', t plane
bounded by t=ti'/k' for small k' and »=4&' for la, rge k';
the second term, 4»i'/k' and 9p,', the third term, 16)ti'/k'
and 16@ . This is best illustrated by Fig. 1. As shown in
the diagram there is a region of the k', t plane in which
the p's are given exactly by the first term. This first
term is determined entirely by the potential. If we now
substitute this exact value for the p's into the second
term we can generate a larger region over which the
p's are known exactly if we know )t)(t). By taking this
new expression for the p's and substituting it back into
the equation, we generate a still larger region over which

p; is known exactly. In this manner the entire k', t plane
can be obtained through simultaneous iteration of the
four weight functions. If the subtraction in energy was
not present, a knowledge of the potential would be

sufhcient to determine the weight functions p; exactly
as in the Schrodinger case.

IV. DISPERSION RELATIONS FOR PARTIAL
%'AVE AN:PLITUDES

The partial wave decomposition of the Dirac particle
scattering amplitude is essentially that of pion-nucleon
scattering. We follow the usual notation and introduce
the conventional scattering amplitude ft, (0), a two-
by-two matrix in Pauli spin space. The differential
cross section is given by

c t'/col= If»'(tt) I', (4 1)

ff, can be related to 3E»; by the fact that d)T», /dQ
=[E'/(2 )']~3II»; I', so that, if

ff)= f1+(1 kfP'k)f2) (4 2)
then

E+m
[A+(E—~)'a],

4x

ci yP.

e terms

second terms

only

FIG. 1. Regions in
which the Xfunction
is nonvanishing.

E—m
f2= [A+ (E+m)'B].

4m

fi= Pi(fbi+i' —fi-I'i-i'),
f2=Xi(fi fi+)I'i'-= (4.3)

where P& are the I,egendre polynomials, P&' dI'&(s)/Ch, ——
and fi~=k ' exp(ibi*) sinai+, 5i+ being the phase shift

The partial wave expansions for fi and f2 are given by
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for a state with total angular momentum j=l+i2and Application of Cauchy's theorem to f&* considered as
parity (—1) . Inverting the equations for f&+ we find a function of the variable s=k' produces the dispersion
that relation

(4.4) c, 1 t
" Imfi~(s')

fi+(s)=Z +- '

S—S; X' ~0 S —S—Z6

When we substitute our representation of A and 8 into
fi and f2 and substitute these into ft~, the resulting
integral is

1 p "t' —Im f,~(s')
ds' —, (4 6)

s +s
1 t-' Pi(s)

J)———
I dk

2 ~ i t'+2k'(1 —s)
(4.5) if it can be assumed that Imfi~(s) ~ 0 as s —+ ~.
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