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p=0,5. If it is confirmed by further experimental work,
the presence of electric quadrupole may acct the
analysis of the data at lower energies and the limits of
virtual ~' lifetime as determined in reference 7. More-
over, it will help to understand the asymmetry in the
angular distribution of w+ photoproduction at high
energy.

In a recent paper Minami, "by describing the proton
Compton eGect in terms of shadow scattering due to
photoproduction of pions, predicts a strong and broad
peak in the cross section corresponding to the second
photopion resonance. Although the dispersion relations
of (10) contain many theoretical uncertainties at these
energies, we have applied them at 760 Mev. For p=0
and p=0.25 the differential cross-section in units of
10 "cm'/sterad is

do
(90')= 12.75, 14.95,

dQ,

correspondingly. This estimation agrees qualitatively
with the predictions of reference 21 as well as with
the value (do./dO, ) (90')= (13.0~6.0) &(10 " cm'/sr re-

s~ Shigeo Minami (to be published).

ported from Frascati. " Since the resonant behavior
seems to be clearly reRected on the proton Compton
eGect, further experimental work in that region will
add very useful information regarding the character and
the details of the second resonance.

In the present calculation the effect of the third
photopion resonance has been entirely neglected; it is
not dificult, however, to include it in the calculation
of Sec. 2. This effect, as well as that of the T=1, 7= 1
pion-pion resonance (which enters through double pion
photoproduction) is certainly negligible in the region
of the first resonance, but could be very significant in
that of the second. Even more significant might be the
two-pion exchange contribution in a Low-type process.
A practical form of this contribution is now under
investigation.
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We assume that the neutron-neutron potential is well-behaved and velocity-dependent. We can then
apply perturbation theory to 6nd the energy per particle of a neutron gas, in the range of Fermi wave
numbers 0.5&ky&2 f '. The energy through 6rst order is found in closed form, or by a single numerical
integration. We use two different velocity-dependent potentials adjusted to 6t observed nucleon-nucleon
~S and ~D phase shifts. In the range of densities 0.5&kf &1 f ', our two potentials give nearly the same
energy/particle (within 0.5 Mev); our values tend to run an Mev below values found by Brueckner et of.,
for the Gammel-Thaler potential. Wider divergences appear at higher densities. Our values, and Brueckner's
are higher than those found by Salpeter by a semiempirical approach. A crude estimate of the second-order
energy for our potentials indicates that perturbation theory converges rapidly in the density range considered.
Our results suggest that at moderately low densities the energy/particle in a many-body system is insensitive
to the shape or nonlocal character of the assumed two-body potential.

INTRODUCTION

~ 'HE neutron gas is a good proving ground for
many-body calculations for two reasons. First,

the neutron-neutron potentials are rather well known,
since they must fit the accurately determined proton-
proton phase shifts. ' (We assume charge independence,
and have not corrected for Coulomb effects. ) Second,
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120, Z227 (196O).

there is no experimental data on the neutron gas, to
prejudice us for or against any special calculation.

We are not comparing with experiment, but we have
two interesting comparisons to make. First, certain
terms are neglected in any calculational method for a
many-body problem. VVe need estimates to show that
the neglected terms are small in comparison with the
terms considered. Second, Beg' has discussed whether
two potentials (one static and the other velocity-
dependent) which give the same phase shifts in the

2 M. A. B. Beg) Ann. Phys. 13) 110 (I961).
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two-body problem will give identical results in the
many-body problem. This identity should hold if the
particles are well separated (i.e., separation distance
greater than range of the two-body force). We shall
use perturbation theory to calculate the energy of a
neutron gas for three different well-behaved velocity-
dependent potentials. ' Brueckner, Gammel, and Kubis4
have already given values of the energy calculated for
the static Gammel-Thaler potential with repulsive core.
Also, Sood and Moszkowski' have calculated the energy
of a neutron gas at low densities. Comparisons among
these different results should give a test of the equiva-
lence of static and velocity-dependent potentials. (Of
course, this comparison assumes that each calculation
method is satisfactory. We cannot prove bo/h the validity
of the calculational methods and of the equivalence of
different potentials by one comparison. )

We also wish to examine the question of the de-
pendence of the energy of the neutron gas on the as-
sumed shape of the well-behaved neutron-neutron
potential. Recently, de Swart and Dullemond' and
Levinger et ul. have found independently that there is
a shape-independent relation connecting the volume
integral of a two-body potential with the two effective
range parameters. Specifically, for a square-well poten-
tial of infinite scattering length, the volume integral
J v(r)d'r = (sr'/3) (A'/M)b, where b is the intrinsic range.
The coeflicient (n'/3) varies by only several percent
for the six diGerent well-behaved central potentials
considered: square, Gaussian, Yukawa, exponential,
Hulthen, and Jost. v Since the first-order potential
energy term is dominated by the ordinary integral,
which is just proportional to the volume integral of
the potential, we might suppose that the properties
of the neutron gas would be insensitive to the potential
shape. This supposition is supported by a comparison
at moderate densities of the neutron gas energy for
our two different shapes.

We would like to make it completely clear that we
are rot using a velocity-dependent potential as a device
to calculate the properties of the neutron gas for a
static potential with repulsive core. Instead, we take
the attitude that there is no firm evidence as to whether
the two-body potential is static, or velocity-dependent. '
We choose, arbitrarily, the velocity-dependent case,
and for this case calculate the energy of the neutron gas.
If Beg's and de Swart's arguments apply we will find
very nearly the same energy as others find assuming a

'R. E. Peierls, Proceedings of the international Conference on
Nuclear Structure (The University of Toronto Press, Toronto,
Canada, 1960), p. 7.

4 K. A. Brueckner, J. L. Gammel, and J. T. Kubis, Phys. Rev.
118, 1095 I'1960).

~P. C. Sood and S. A. Moszkowski, Nuclear Phys. 21, 582
(1960).' J. de Swart and C. Dullemond, Bull. Am. Phys. Soc. 6, 269
(1961),and private communication.

7 R. Jost and W. Kohn, Phys. Rev. 87, 977 (1952).' O. Rojo and J. S. Levinger, (to be published).

static potential. Otherwise, we will have a diGerent
energy; but our assumption and result may have as
much relation to physical reality as the calculations
with a static repulsive core.

We shall follow Salpeter's approach' in using di6erent
methods for the neutron gas for three diferent density
regions: k~b&&1; kgb=1; and kgb&&1. Here ky is the
wave number at the Fermi surface, and b is the intrinsic
range of the neutron-neutron force.

In the low density region, where kjt((1, the phase-
shift approximation should work well. That is, the
properties of the many-body system are determined
from the t matrix for an isolated pair. Salpeter has given
the energy/particle for this region in analtyical form:
there is no bound state.

At moderate densities (kgb=1) the Pauli principle
drastically changes the t matrix from its value for an
isolated pair. Several di6erent calculational methods
have been used in this region. Brueckner et a/. 4 calculate
the t matrix in the neutron gas, and give numerical
results for the energy/particle for 0.637&kt & 1.27 f '.
(They, and other authors, quote the radius parameter
ro 1.912——/kr, they treat 1.5 (ro(3.0 f.) Sood and Mosz-
kowski' treat the low-density edge of the moderate
density region (k~&0.5 f ') by correcting the free-pair
t matrix for the effects of the Pauli principle. (To facili-
tate the calculation, they assume a separable potential. )
They also include the collective pairing effect. Salpeter
treats the moderate density region (0.637(kt (1.91 f ')
by extrapolating the Weizsacker semiempirical mass
formula for nuclear matter to the case of a pure neutron
gas. His answers are sensitive to the assumed value of
the symmetry energy coeKcient, so he quotes four dif-
ferent results for di6erent assumptions. He believes his
case d (highest symmetry energy coefficient, and highest
energy for the neutron gas) is the most probable, so
we shall compare with this case.

In the high-density region (kgb))1) two new effects
are estimated by Salpeter. First, the high Fermi energy
favors the formation of hyperons. Second, the potential
energy is sensitive to the assumed behavior of the two-
body potential at small distances. In particular, for
Salpeter's assumption of a static repulsive core of
radius 0.45 f, the potential energy becomes infinite for
rp =0.25 f, or kg ——7.65 f '. Salpeter uses the "cell
method" to treat the region 3.2(.ky(7.65 f '.

In this paper, we shall confine our calculations to the
moderate density region 0.5&k~&2.0 f '. We note that
in the low-density region where the phase shift approxi-
mation is valid, Beg s equivalence holds in a trivial
manner. In the high-density region Beg's equivalence
clearly fails: e.g. , compare the infinite potential energy
for a static repulsive core (for kr) 7.65 f ') with the
finite very high value for our well-behaved velocity-
dependent potential. We wish to find out how well Beg's
equivalence hoMs in the moderate-density region.

E. Salpeter, Ann, of Phys. 11, 393 (1960).



I. S. LEVINGER AND L. M. SIMMONS

TABLE I. Singlet-even phase shifts. '

~S «D
Energy 9~ Sp 9& Breit v~ 9p 9& Breit

20
100
180
260
340

0.87
0.22—0.08—0.19—0.20

0.85
0.45
0.17—0.03—0.19

0.90
0.40
0.14—0.04

—. 0.20

0.86
0.38
0.14—0.03—0.20

0.00
0.00
0.0.1
0.01—0.02

~ ~ o 0 01
0.05 0.09
0.13 0.11
0.18 0.10
0.27 0.08

0.02
0.07
0.12
0.16
0, 18

a Our potentials 9~, Sp, and e& are given in Eqs. (1) through {6).The S
and jD phase shifts, in, radians, calculated for these three potentials are
taken from references 12 and 13; Coulomb effects are neglected. The phase
shifts of Breit et al. , reference 1, are from their curves YLAM for proton-
proton scattering. The laboratory energy is given in Mev.

In this paper, we shall use the perturbation expansion
of the energy. We assume a well-behaved two-body
potential so that we can use perturbation theory. It is
assumed velocity-dependent for two reasons. First, for
a well-behaved potential, velocity-dependence is needed
to fit the 'S phase shifts of Breit et ul. ' Second, a static
potential J(r), chosen so that J'(r) &0, could cause the
same collapse in the neutron gas that is familiar in the
nuclear matter problem. The saturation conditions a,re
modified slightly, but in any case are not met by the
approximately Serber character of the empirical t.wo-

body potential.
The purpose of this pa,per is to calculate the first-order

term in the energy. It is known' " that for nuclear
forces the second. -order term E(" is significant at low
densities (that is, it. is comparable to the first-order
term). On the other hand, due to the effects of the Pauli
principle, E(" is expected to be relatively small at,
moderate densities. We shall later make a crude esti-
mate of E(", which confirms these conclusions. Ke
calculate the energy through first order for an arbitrary
exchange mixture, and later specialize to the particular
exchange mixture used by Brueckner et al. to facilitate
comparison with their results. Numerical results are
given for three different velocity-dependent pot.entials,
but it is trivial to calculate the energy for any other as-
sumptions concerning the shape or exchange character
of the velocity-dependent potential.

J,(r) =J,(r) =1,
=1

2p

=0)

U0=16.9 Mev; X= —0.21; b=

r&b,
r=b
r&b;

2.4 f.

(2)

'0 H. Euler, Z. Physik 105, 553 (1937)."W. J. Swiatecki, Phys. Rev. 1DB, 262 (1957).' M. Razavy, O. Rojo, and J. S. Levinger, Proceedings of the
International Conference on Nuclear Structure (University of
Toronto Press, Toronto, Canada, 1960),p. 128; M. Razavy, Ph.o.
dissertation, Louisiana State University, 1361 (unpublished);
M. Razavy, G. Field, and J. S. Levinger (to be published).

THE TWO-BODY POTENTIAL

AVe choose first a velocity-dependent potential i
developed by Razavy et al.12 with the form

v.= —VOJi(r) —(&/M)p J2(r)p.

Here p is the operator —i' grad.

This potential fits the accepted low-energy parameters:
effective range= 2.65 f and scattering length= —23.6 f.
Table I shows that 8„gives'5 phase shifts in rough agree-
ment with Breit's values; but the calculated 'D phase
shifts are unsatisfactory, being much too small.

The potential ip uses a combination" of square-well,
delta-function, and Yukawa shapes:

8a ———VOJi(r) —(A9/Mc) 8(r—c)—(X/M)p J'2(r)p, (3)

VOJi(r) =51 IIIev, r&b J'2(r) =1, r&c,
= —OPEP, r) b; =-'„r= c, (4)

=0, r&c;
OPEP = —10.83 exp( —0.708 r)/0. 708 r Mev,

b=1.6 f, c=0.5 f, A, = —1.64.

This potential has four adjustable parameters, and as
shown in the table gives a satisfactory fit to the '5, and
'D phase shifts from 20 to 340 Mev. )The one pion
exchange potential (OPEP) used for r) 1.6 f, does not
contain adjustable parameters. $ We have not deter-
mined the effective range parameters for this potential.

Other work fitting phase shifts with velocity-depend. —

ent two-body potentials has been done at Birmingham
by Green (private communication) and at Louisiana
Sta.te University by Rojo and Simmons. "Both groups
used a, form similar to Eq. (1):

av = VoJi(r)+ (—1/~) LP'~(r)+~( )Pr']. (3)

We choose, with energies in Mev and lengths in f,

VOJi(r) = L1+2co(r))f112 exp( —1.4r)
—(tti'/M)L~'(r)]'/L1+2~(r)]'-l, (6)

~(r) =5 exp( —3.6 r).

[It turns out, that this complicated choice of J i(r) gives
a simple form for an "eGective potential" that can be
used in a transformed Schrodinger equation. )

Table I shows that f ~ gives a good fit to Hreit's 'S
phase shifts, and a fair fit to his D phase shifts. This
potential fits the low-energy parameters: e6ective range
=2.65 f and scattering length= —23.6 f.

Each of these potentials is an example of a nonlocal
potential, expanded in powers of the operator y, with
terms beyond p' being omitted. This expansion would
be dubious at very high values of the relative mo-

mentum. However, for our present work with a neutron
gas at moderate densities, we are interested only in
moderate va, lues of the relative momentum. Vfe choose
an expansion up to p' terms that fits the two-body data
up to 340 Mev (lab system), and then use this expansion
only for energies appreciably less than this value.

In this preliminary work, we make a rough guess as
to the potential in (triplet) odd st:ates: na, mely, we fol-
low a simplifiecl form of the potential used by Hrueckner

"O. Rojo, Ph. D. dissertation, Louisiana State University, 1961
(unpublished); L. M. Simmons, M. S. thesis, Louisiana State Uni-
versity, 1961 (unpublished) .
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et a/. in which the attractive potent. ial is weakly attrac-
tive in odd states (one-tenth that in even states, if the
same range is chosen), and the repulsive core is the same
in all states. For our potentials, this suggests taking the
static term as weakly attractive in odd states, and taking
the velocity-dependent t.erms as the same in all states.
Of course, in a complete treatment. one should include
the tensor and spin-orbit forces in the odd states, and
adjust the exchange character of the static and velocity-
dependent terms in our central potentials to fit the
observed odd phase shifts.

AVe use perturbation theory ""with the unperturbed
Hamiltonian Bp——p'/2M, and the perturbation r) given
in the previous section. The energy through first order,
denoted by E, is

neu trons

The wave function g is proportional to exp (ik r).
Then, for i and ip,

&OI(
—)/M)p Jp(r)pie)

= —(47rko)/MO)k' ~Ji(r)r'dr (12)

We have used ~=5k& for the p following Jp(r). For
the y preceding J2, we have used the Hermitian prop-
erty of the operator in performing the integration. In
treating all pairs, we obtain the mean square average
of the relative wave number which is

(13)

Again considering 8 E' pairs, the ordinary term per
(7) particle for a Serber force becomes

4 is a determinant composed of plane-waves, so the
first term is the usual (p)ÃTf. , where iV is the total
member of particles, and 2f ——fi'kf'/2M is the kinetic
energy at the Fermi surface. I Note that for the neutron
gas kf —1.912/rp, where the volume 0= (', )pro'iV-
=3m'1V/kf. J

The second term is conveniently calculated in four
parts: the ordinary and the exchange integrals for t;he

static and the velocity-dependent terms in the pot.ential,
respectively.

The simplest, is pp(kf), the ordinary integral for the
static term. For each pair of neutrons, we have for
potential 8 of Eq. (1)

(4 (r)
I

—VoJi(r) I4 (r))= —(4~Vo/(I)) Ji(r)r'dr. (g)

For a Serber force, there are SX' pairs interacting in
even (spin-singlet) states. The ordinary static term
per particle for a Serber force becomes

vp(kf) = —(Vp/67r)kf' Ji(r)r'dr.

wp(kf) = —(X/20m) (k'/M)k&'~I J~(r)r'dr (14)

This equation holds also for a velocity-dependence of
the form 8~ of Eq. (5) Lreplace —XJ,(r) by 2po(r)].

For a different force mixture, we use c.wp(kf) where

co= 1+3K /X+=4.

The numerical value applies to a Wigner character for
the velocity-dependent term (X =X+=X).

If X(0 (as is needed to fit the 'S phase shifts) and
c&)0, c2)0, the ordinary terms and kinetic energy
combine to give:

i pk kf /M+c1 Vo(kf)+c2Wok'f Gpkf Gpkf +Spkf' (16)

with coeKcients a2, u3, and a5 each positive. Collapse
of the neutron gas will not occur. Quantitative calcu-
lations, including exchange integrals are needed to find
whether the system is bound.

The exchange term v, (kf) for the static part of the
potential is calculated for a given pair as follows,

For a different exchange mixture, the static ordinary (y(r) I
VpJ, (r) ly(

term contributes ciao where (Euler)

ci ——1+3V /V+ ——1.3.

Here V /V+ is the ratio of static forces (of the same
shape and range) in odd and even states. Following
Brueckner et aL, we give the numerical value in Eq. (10)
for V /V+=0. 1.

The ordinary term wp(kf) for the velocity-dependent
term is also very easy to calculate. We write the wave
function in terms of the relative coordinate r=r& —r&

and the relative wave number for a specified pair of

= —(4m Vp/0) Ji(r) (sin2kr/2kr)r'dr. (17)

The usual method of calculation" involves performing
the Fourier transform given by Eq. (17), and then
averaging over the distribution function for k. Because
of the complicated forms we shall use for Jp(r) we follow
the diGerent route of 6rst integrating over the distribu-
tion function for k, and then performing the integral
over r Using the same . factors as in Eq. (9), we have,

' J. S. Levinger, M. Razavy, 0. Rojo, and N. Webre, Phys.
Rev. 119, 230 (1960); 121, 1863(E) (1961).

' L. C. Gomes, J. D. Walecka, and V. F. Weisskopf, Ann. of
Phys. 3, 241 (1958).
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TmLE II. Some useful functions, '

0
0.0396
0.272
0.706
1.14
1.30
1.08
0.60
0.16

0
0.015
0.097
0.27
0.57
0.83
1,06
1 ~ 19
1.26

0
0.011
0.297
1.49
3.07
1,78—3.65—19.9—31.1

f4(y)

0
0.003
0.027
0.095
0.14
0.16
0.15
0.11
0.047

a The functions fI(y), f2(y), fa(y), and f4(y) are given in dosed form in
Eqs. (19), (21), (24), and (26), respectively.

where the function fi(y) is defined by

fi(y) = —(12/y')siny+ (3/y —12/y')cosy

+3/y+12/y'. (19)

For square-well or delta-function shapes, the integral
of Eq. (18) is easily given in closed form. For a square
well of range b, we have

(ky) = —(Vp/27r) fp(2kyb), (20)

f2(y) =4 cosy/y'+4 siny/y'+cosy/y

+»(y) —3/y —4/y' (21)

For a different exchange mixture, e, has a coefficient
c&' given by

ci' ——1—3V /V+ ——0.7, (22)

for V /V+=0. 1.
The exchange term w, (kr) for the velocity-dependent

part of 8 can also be calculated by two equivalent
methods. Following the method used above for v, (kr)
we have, for a Serber force of form i or 8p,

w. (ky) = (A9/8M~) Jp(r) fp(2k~)dr/r', (23)
J

where the function fp(y) is defined by

fp(y) = (—30+360/y') siny

+ (3y—144/y+360/y') cosy
—(36/y+ 360/y'). (24)

For 8 or 8e with a square-well form for J,(r) the
integral of Eq. (23) gives

for a Serber force,

v, (kr) = —(Vp/2m) ji(r) fi(2kyr)dr/r, (18)
cp' ——1—3X /X+= —2 (29)

for X /X+ ——1.
Combining, the energy per particle, through first

order, is given by

8/X= ,' (A'kq—'/2M)+ciao(kr)+ci'v, (kr)

+c,wp(kg)+co'w, (kg) (30)

ci——1.3, ci' ——0.7, cp ——4, cp' ———2. (31)

The function c,vo(k~) is proportional to kr' and is nega-
tive; cpwp(k~) is proportional to k~ and is positive. The
exchange integrals are equal in magnitude to the
corresponding ordinary integrals at low density
P.(ky) =&o(ky) and

I
nr, (ky) I

=
I wo(kr)

I ], but become
much smaller at high density:

L I'I«I»I
NUMERICAL RESULTS

The kinetic energy of the neutron gas has the simple
expression

P (A'k '/2M) =12.5k ' (32)

(Throughout this paper, the wave number kr at the
Fermi surface is given in f ', and the energy/particle
is given in Mev. )

The ordinary integral for the static term Lnp(ki) of
Eq. (9)] evaluated for the potentials 8, 8e, and 8~ of
Eqs. (1), (3), and (5) respectively, is given in Table III.
The ordinary integral for the velocity-dependent term
Lwp of Eq. (14)7 for these three potentials is also given in
Table III. Note the large spread in the values of wp(ky).

The exchange integrals I m, of Eqs. (18) and (20),
and w, of Eqs. (23) and (25)] were evaluated in closed
form for square-well and delta-function shapes, and by

TABLE III. Ordinary integrals for potential energy. '

change integral

w (kf) = (3ppvh'/47rM) f4(2k'/p), (27)

fp(y) =4y —tan 'y+ (1/y)L(1+2y ')ln(1+y') —-', ]. (28)

Note from Tables III and IV that w, (kr) of Eq. (23)
has a sign opposite to the ordinary term wp(ky) of
Eq. (14). This sign difference occurs because in the
operation (g(r) Ip. Jp(r)pI&(+r)), the gradient oper-
ator following J2 gives a different sign when operating
on p( —r) for the exchange term than when operating
on P(r) Ho. wever, for the form 8~, wp(kr) and w, (ki)
have the same sign, since p'g( —r) =pop(r).

For a diferent force mixture, iv, (k~) has a coefficient,

w, (kr) = (O'Xk~'/2s3I) f4(2krc), (25)

f4(y) =72/y'+12/y' —72 cosy/y' —72 siny/y'

+24 cosy/y'+3 siny/y'. (26)
Static v0(kf)
Vel. -dep. m 0(ky)

Potential 8„Potential 8p Potential 8~

—4.12 kf' —3.02 kf' —4.02 kf3
0.64 kfs 0.045 kf5 0.28 kg~

The four functions given above are tabulated in
Table II.

For the exponential form 4o(r) = ve ~" of 8~, the ex-

a The ordinary integra1 vo(kf) due to the static term is given in Eq. (9);
the ordinary integral mo(kf) due to the velocity-dependent term is given
in Eq. (14). The two-body potentials v, 9p, and 9-~ are given in Eqs. (1)
through (6).
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numerical integration on a desk computer for the other
shapes. The results are given in Table IV.

We substitute the numerical results of Eq. (32), and
Tables III and IV, in Eqs. (30) and (31) to find the
energy/particle of a neutron gas vs density. The re-
sults of 8/X for different values of kf are given in
Table V; we also include values taken from graphs of
Brueckner et at.' and of Salpeter. '

At the lowest density considered, kf =0.5 f ', we can
also compare with Sood and Moszkowski's' calculations.
Using the Gammel-Thaler potential, with an approxi-
mate correction for the effects of the Pauli principle,
they obtain 1.6 Mev/particle. They also give two dif-
ferent estimates of the gap due to the collective pairing
energy: this lowers E/X to either 1.0 or 1.3 Mev/
particle. At this density our three potentials each give
2.3 Mev/particle (within 0.1 Mev) which is about a
Mev higher than the Sood-Moszkowski value. All these
results are considerably higher than Salpeter's semi-
empirical value of 0.3 Mev. The difference between ours
and the Sood-Moszkowski value is in part due to the
second-order correction to our result, estimated in the
next section.

At kf of 0.637 or 0.75 f ', our results for three different
potentials continue to agree reasonably well with each
other, supporting the arguments for shape-independence
of the binding energy at moderate density (krb(2,
where b is the intrinsic range). The Salpeter value seems
definitely low, as compared to the others.

At kf around 1 f ', we see a definite divergence among
the results of our three different potentials. This di-
vergence is not unexpected, since, for example, the 'D
phase shift is becoming appreciable for k~b) 2, and our
potential 6 seriously underestimates the D phase shift
in the two-nucleon problem. We should disregard the
results for i, and take some sort of weighted mean of
the results for ip and i~. This weighted mean seems to be
below the values of Brueckner et at.

At the highest density considered, kf=2f ', we see a
divergence among our values for ip and i~: Shape-
independence is no longer valid. As discussed in the
Introduction, we would expect to see signi6cant differ-
ences also between calculations for a velocity-dependent
potential and calculations for a static repulsive core.

TABS,z IV. Exchange integrals. '

TAnLE V. Energy/particle for a neutron gas. '

Our results for potential
A P
&a Sp

Brueckner
et al. Salpeter

0.5
0.637
0.75
1.0
1.27
1.5
2.0

2.3
3.5
4.8
8.7

16.3
27.8
86.8

2.4
3.8
5.0
8.1

12.0
15.8
28.8

2.2
3.4
4.2
6.8

10.1
14.4
33.2

5
8

12,5

0.3
0.5
0.8
2

7

a The wave number at the Fermi surface, kf, is given in f 1. All energies
are given in Mev/particle. Our potentials ba, 8p, and 9~ are given in Eqs. (1)
through (6); the energies are through first order in perturbation theory.
The va, lues of Brueckner et at. are from their graph, reference 4; the values
of Salpeter are from his curve d in reference 9.

It is very easy to study other force mixtures. For
instance, at kf = 1 f ', if we use an exact Serber mixture
for the static term in 8p and keep a Wigner mixture for
the velocity-dependent term, we have c1——c1'=1, c2 ——4,
cp'= —2; then E//=8. 6 Mev (cf. 8.1 Mev in Table V).
The reason for the 0.5 Mev/particle increase is simple:
we are now considering zero static force in a relative
P-state rather than the weak attraction used in Table V
(ci ——1.3; ci' ——0.7).

Of course, E/E is independent of the exchange mix-
ture at very low kf. At kf =2 f ', the dependence on the
exchange mixtures is greater than that shown in the
above paragraph.

—VpJi (r) =—Vp exp (—r'/P') ' P = 1.74 f;
Vp=35 Mev. (33)

DISCUSSION

We shall make a cmde estimate of the second-order
energy E(2) for our potential i in order to consider the
convergence of the Rayleigh-Schrodinger perturbation
series as applied to the neutron gas problem. This calcu-
lation of E(') is crude in three respects. First, only the
central force, is considered. Noncentral L S and tensor
forces give zero contribution to the first-order energy
but may be important for 8"). Second, we calculate
only the ordinary term for 8").In this calculation, we
further neglect the velocity-dependent term and replace
the square-well by an equivalent Gaussian potential
Lsee reference 14, Table VIIIj

Wave
number

kf
Potential 8

p. (kr) ~.(kr)

Potential 8 p Potential 8~
p, (kr) rp, (kr)

With these approximations, we merely need to re-
calculate factors for a neutron gas, to use Euler's
calculation of E(2) for nuclear matter. For a neutron gas,
we find

0.5
0.75
1.0
1.5
2.0

—0.4—1.2—2.1—3.2—3.5

—0.02—0.12—0.21—0.31—0.06

—0.3—0.6—1.2—1.5
+2.7

—0.001—0.006—0.04—0.29—1.2

—0.4—1.0—1.7—2.8
317

+0.008
+0.06
+0.29
+1.3
+4.1

a kf is the wave-number at the Fermi surface, in f 1. The exchange
integral ue(kf) for the static term is given by Eqs. {18) through (21); the
exchange integral m&(ky) for the velocity-dependent term is given by Eqs.
(23) through (28). The two-body potentials 9a, 9p, and 97 are given in Eqs.
(1) through (6). Z &'&/N =—0.17g (1.74kr). (35)

E&"/E = —(cp/2'X Srr) (MP'/h') g (a).

The coeKcient cp is given for a Serber force by cp ——(Vp)'.
Here g =krp and the function g (x) is tabulated by Euler'
and I.evinger et al."

Substituting Vp and P from Eq. (33),
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TABLE VI. ESt:11TIRtc Of St".COIXC1-OI'ACE' CBClgg.

kgb&(1
0.5
1.0
2.0

Ei'&/vo(kf)

3.8 kg'/4. 2 ky'=900jp
0.17/0. 5 = 35%%u~

0.41/4. 2 = 107o
0.5/34= 2%

' ky, the wave number at the Fermi surface, is given in f 1; 5 is the in-
trinsic range. The second-order energy B&') is estimated crudely in Eq. (35).
eo(ky) is the ordinary integral for the potential energy, due to the static
term: see values in Table III. The absolute values of the energies are given
in Mev, /particle.

WVe follow Swiatecki" in using E'"/(v) as an estimate
of the convergence of the perturbation series. We take
the expectation value of the potential (i)=no(k f) floill
Table III. E&'&/iV is given by Eq. (35). Table VI con-
firms Swiatecki's result for the nuclear matter problem:
perturbation theory converges poorly at low density,
and well at high density.

The value E&'&= —0.3 Mev/particle gives a crude
estimate of the error of our first order calculation of E/iV
given in Table V. Since the kinetic energy is large,
((T)))

~
(v)

~ ) the percentage error in E/Ã is small. Note
that this situation for the neutron gas is much more
favorable for our perturbation-theory calculation than
in the nuclear matter problem. In the latter case
(T)=

~ (v) ~
so that L~/A is the result of near cancellation

of two large terms.
We further note that our use of a velocity-dependent

potential gives a more rapidly converging perturbation
theory expansion than does use of the Gammel-Thaler
potential. Levinger et al. i4 found that E~"/A consisted
of the sum of three diferent singlet terms, having value
at kr ——1.4 f ' of +10, —7, and j2 Mev/particle re-
spectively. These numbers (even when reduced by the

factor $ appropriate to the neutron gas ploblein) al c
much larger than L~&'&/X given in Table VI.

Table V shows that our two velocity-dependent po-
tentials ip and i~ give fair agreement for the value of the
energy of the neutron gas for the range 0.5(k~&1 f '.
This agreement at moderate densities supports the belief
that the properties of the many-body system are in-
sensitive to the shape' of the two-body potential, so
long as it reproduces the moderate energy phase shifts.
The results for ip and E~ seem below those of Srueckner
et al. , particularly when we consider that including the
second-order energy would lower our values further.
This difference may be due to the dependence of the
energy of the many-body system on the local vs non-
local character' of the two-body force. On the other
hand, the difference may be due to the different calcu-
lational methods used.

From the variation principle we know that if some
specified well-behaved potential is the "true" two-body
potential, then the energy calculated through first
order represents an upper limit on the true energy of
the many-body system. (Of course, we are neglecting
the possibility of many-body forces). It is generally be-
lieved that the energy calculated by the phase-shift
approximation represents a lower limit for the energy.
Ke might then be able to bracket the energy between
these two limits. The supposition as to the phase shift
approximation seems very reasonable on physical
grounds, but we do not know if it has been proved.
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