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The information content of a track is analyzed with respect to the prime track-variable g and to the
particle velocity on which g depends. Quantities are operationally defined that are applicable to emulsion,
bubble-chamber or cloud-chamber tracks inclined with arbitrary dip angles. The theory is developed of
the projected linear structure of such particle tracks. Previously derived connections between the true
value of g and measurable track features are reviewed. A new and independent estimate of g based on the
mean blob length is introduced. The two independent quantities, mean gap length and mean blob length,
each yield measurements of g. These are combined into an estimate of maximum likelihood. It is argued
that in a practical sense this exhausts the information content of the track. The statistical error of this
result is evaluated. It is found that correct utilization of the information in the measured bloh lengths
greatly reduces the error. Suggestions are made regarding technique for the reduction of error in g and in
particle masses estimated from grain-density measurements.

I. INTRODUCTION

N exact treatment of the statistical structure of
particle tracks in nuclear-research emulsions
recently was attempted.! Many of the proofs appear to
be valid also for bubble tracks and tracks in Wilson
chambers, and they have had considerable experimental
verification.2—8

In this paper we recapitulate these results and find
additional track quantities. Then we construct a
likelihood function of the grain (bubble, droplet) infor-
mation in the track. This function yields the expectation
value of the grain (bubble, droplet) density, and also
measures the statistical reliability of the result. By
means of it we learn what are the optimum conditions
for observation.

In the case of emulsion, the linear density, go, of
silver-halide crystals that develop is the primary track
variable. In a bubble chamber, g, represents the linear
density of sites on which bubbles grow, and in a cloud
chamber it is the linear density of points on which
liquid condenses. (By “grain’ hereafter we shall mean
the quantity whose density is go irrespective of which
of these instruments was used.)

It is assumed that the conditions of observation do
not change along the track. No variations of the
sensitivity, illumination, etc., are considered, and
possible distortions of the track not discussed. In this
paper, too, we limit the investigation to the linear
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track structure. Further information is contained in
the track width, in the delta rays, and in the scattering.
Moreover, it is sometimes possible to decrease the
effective track saturation by letting track elements
diffuse radially before counting them. These techniques
are left for other theoretical studies.

The connection between the grain density and the
particle velocity usually is an empirical one. The
dependence on velocity is strong. The grain density
over a wide range tends to be proportional to the
inverse square of the velocity.

The problem now posed is how best to determine go
from the measureable features of the track granularity.
Besides this immediate goal, we seek criteria for the
improvement of emulsion quality. We wish to know,
in general terms, how to alter the emulsion in manu-
facture to increase the information density attainable.
The parallel problem in bubble chambers is how to
adjust the temperature, the age of the tracks, the
amount of expansion, and the optics so as to obtain
the optimum bubble-image size as well as bubble
density. In a Wilson chamber, the gas pressure, the
expansion ratio, and the age of the tracks are among
the variables, the adjustment of which also can optimize
the information density existing in track photographs.

II. STATISTICAL GEOMETRY OF
PARTICLE TRACKS

In this section we review and supplement operational
definitions and mathematical results of reference 1
that are needed for this analysis.

A track is seen as a somewhat indefinite locus of
grain images distributed generally along the path of the
particle that produced it. The grain centers are dis-
placed by small random amounts from the most
probable particle trajectory. The images generally are
not all of the same size. Some grains occult others or
fuse with them. Owing also to imperfect optical reso-
lution, clusters of several unresolved grains may be
present in the image of a track segment. Such clotting
of the grain images always causes a loss of information
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about the grain density, but by analysis we can greatly
reduce the information loss in partially saturated tracks.

Let (7/2)—& be the angle between the direction of
motion of the particle and the line of sight. Then § is
the “dip angle” in unprocessed emulsion. (Since all
particle trajectories are inclined more or less, we shall
from the outset treat the general case of tracks with
arbitrary dip angles.) For the analysis, let the track
grain images be projected on a plane perpendicular to
the line of sight. All measurements are to be made in
this plane.

A “resolution distance” ¢ is defined as the minimum
distance between centers of two grain images at which
they can be resolved into two objects separated by a
gap. If ¢ is the distance, projected on the most probable
particle trajectory, between the centers of consecutive
track grains, and if this exceeds the resolution distance,
a gap of length ¢—a is said to exist in the track. The
grains are not all of the same size, but a mean value «
of the resolution distance exists. The quantity « is also
called the mean grain diameter, but it has more signifi-
cance than this name implies. When referred to emul-
sion, for example, the effects of several diverse quanti-
ties are lumped in this parameter. Among these are the
original halide crystal size, the amount of physical
development sustained by the silver grains, and the
optical resolution of the observer-microscope instru-
ment. When certain equipment is used, « is even
affected by the reaction time of the observer.

A “cluster of class C;” is a segment of track bounded
by gaps with lengths exceeding /, and in which no gap
longer than [ exists. The density H(I) of such clusters
is also equal to the average number of gaps with lengths
exceeding / in unit track length. The cluster density
when /=0 has the special name “blob density” or
“gap density.” The blob density is symbolized by
B=H(0).

An important measureable track quantity is the
lacunarity L. This is the average fraction of the track
segment that consists of gaps. Thus

o dH
L-———f T, (1)
L dl

The quantity 1—L is known as the track opacity.
It was shown, as a fundamental result of reference 1,
that the density of clusters of class C; is

H(l):ge—ﬂ(a+l), (2)

where / is the projected gap length, g=gosecd, and go
is the value that would be found for g were the track
not inclined.

The original treatment was carried out for primary
emulsion grains that were traversed by the moving
particle. Because of the finite noninterpenetrating
volumes of the silver-halide crystals, this proof required
close analysis. The extension to secondary grains, the
positions of which are in effect unrestricted, was an
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obvious step. In bubble- and cloud-chamber tracks the
g sites are almost dimensionless, and have a Poisson
distribution. For them, Eq. (2) also applies.

Inclination of the track shortens most gaps and
closes some entirely. Typically, a grain center is
displaced from the particle trajectory. This makes it
possible for a gap to appear in an inclined track that,
in accord with the definitions above, would not have
been counted as a gap were the track not inclined.
The effect of the inclination on a track of grain density
go is to produce a grain structure pattern in its pro-
jection that is statistically equivalent to that in an
uninclined track having a grain density g. This exactness
of the correspondence between the structure of the
projection of the inclined track and a flat one of higher
grain density was not brought out in reference 1.

The same track with different optical resolution will
have an observed structure corresponding to a changed
value of @, but, of course, ¢ remains unaltered. The
theory of the track structure must contain this invari-
ance.

The gap density in the track projection is

B=ge 92, ©)
and the lacunarity is
L=e¢ e, 4)

Quantities like L and B that depend on g are often
referred to as ‘onization parameters. Several other track
quantities also have simple expectation values. For
example, that for the number of grains per blob is e?=.
The expression 1—e ¢ for the track opacity is also
the probability for no gap to be left between successive
developed grains. While these expectation values are
exact, the complete distribution function of L or B
can be derived only approximately by introducing a
blob model. (See Appendix.)

The product (a+)H(l) is a universal function of
(a+1)g. Any observation of H (1), therefore, is a measure
of g.

The expectation value, (), of the gap length is equal
to 1/g. If the measured mean gap length is designated
I, we are led to an important estimate of the grain

‘density which we shall call g;:

o= 1/Z (5)

A new result of this work is the utilization of the
mean blob length to estimate g. The expectation value,
(b), of the blob length is (e*¢—1)/g. A second important
estimate, g, therefore can be derived from the observed
mean blob length b:

(er2—1)/ga=b. (6)

The numerical relation between g and the mean blob
length is given in Table I.

For what follows it is essential that gs be independent
of g;. Their relationship, therefore, must be elaborated.
For g, and g, to be independent, it is necessary that no
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TasLE I. The important track quantities are tabulated as functions of the track lacunarity. The table also relates them to each
other. The quantity As,2/g gives: (a) the error for the maximum likelihood solution using model 1 for o, (b) the maximum likelihood
solution using model 2, and (c) the error when g, alone is measured. The corresponding values of w and p are also tabulated.

Combined g; and g»

I
(a) Model 1 (b) Model 2 a0
L g oB (b)/« @ Aoi?/g b4 @ Aog/g 4 Aog?/g
0.00 » 0.0000 » 0000 = 000 0000 = 0000 w
0.05 2.9057 0.1498 6.342 0.143 286 0350 0139 277 0361 20
0.10 2.3026 0.2303 3.908 0212 212 0472 0202 202 0.495 10
0.15 1.8971 0.2846 2.087 0271 181 0553 0255 170  0.587 6.67
0.20 1.6094 0.3219 2.485 0326 163  0.614 0304 152 0.659 5.00
0.25 13863 0.3466 2.164 0376 151 0.664 0349 140  0.717 400
0.30 1.2040 0.3612 1.938 0425 142 0.706 0392 131 0.765 3.33
0.35 10498 0.3674 1769 0471 135 0.742 0435 124  0.805 286
0.40 0.9163 0.3665 1.637 0517 129 0.774 0476 119 0.840 2.50
0.45 0.7985 0.3593 1.531 0561 125  0.803 0517 115 0.870 222
0.50 0.6932 0.3466 1.440 0.604 121 0.828 0.558 112 0.896 2.00
0.55 0.5978 0.3288 1369 0.646 117 0.851 059 109 0918 1.82
0.60 0.5108 0.3065 1.305 0.688 115  0.873 0.640 107  0.937 1.67
0.65 0.4308 0.2800 1250 0.728 112 0.893 0.682 105  0.953 154
0.70 0.3567 0.2497 1.201 0769 110 0911 0724 103 0.966 1.43
0.75 0.2877 0.2158 1.158 0.808 108  0.928 0768 102 0.977 133
0.80 0.2231 0.1785 1120 0.848 106  0.044 0812 101 0.986 125
0.85 0.1625 0.1381 1079 088 104  0.960 0.857 101  0.992 118
0.90 0.1054 0.0949 1.054 0925  1.03  0.973 0903 100  0.997 111
0.95 0.0513 0.0487 1.027 0963 101  0.986 0951 100  0.999 105
1.00 0.0000 0.0000 1.000 1000 1.00  1.000 1000 100 1000 1.00

information about the blob lengths be obtainable from
the gap lengths, and that the blob lengths suffice for a
measure of g when no knowledge exists of the gap
lengths. These conditions are satisfied. When one
measures the gap lengths, he gains no information
about the blobs. A measured blob length, therefore, is
entirely new information. Moreover, the value g» can
be calculated from the mean blob length while making
no reference to the gap lengths or to the length of the
track segment (which contains both the gap and blob
lengths).

A peculiarity of the exponential gap distribution is
that, if all gaps are shortened by the same amount, the
mean gap length remains unaltered. It follows from
this circumstance that whatever the distribution of the
amounts by which gaps are shortened, the mean gap
length is unaffected. This is a very useful deduction.
It means, for example, that the growth of grains and
bubbles and displacements caused by their crowding
do not affect the mean gap length. This quantity
l=L/B, therefore, is an excellent measure of g when
there are many gaps in the track. Such a measurement
also does not require knowledge of a. On the other
hand, when the grain density is high, it is the mean
blob length that contains most of the grain-density
information. To use it, however, the quantity o must
also be known.

An estimate gp of the grain density is found from
the blob density:
gBe—gBa:B_

Another, g1, is obtained from the lacunarity :
gr=—(nL)/a.

The estimates gz and g1, are combinations of g, and gs.

Long blobs are distributed exponentially. Their
distribution is approximately ge~db in the interval of
blob length between & and b+db. The blob coefficient,
g, is related to an estimate, g,, of the grain density by

ngq/(eag“_ 1—ag,).

A measurement of g, contains part of the information
in g2.
The gap coefficient,b7 which we designate g, is

go=In[H()/H(s)]/ (ls—1). (7

Although this fact was not known at the time that it
was introduced, g, also is an estimate of the true grain
density. It contains part of the information in g;.

As g is varied, B passes through a maximum, Bpax,
when ag=1, so that

a=(eBmax) " 8)

A measurement of Bpax under normal observing
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conditions is a correct procedure for determining «, at
least for tracks with g=a~'. Another measure of « is
a=—(L/B) InL—an important formula.

The cluster lengths or blob lengths have a somewhat
more complex behavior than the gap lengths. The
probability that the next j developed grains that follow
a developed grain will leave no gap is (1—e~*¢)% The
mean length of a blob consisting of j+1 grains takes
the form a-jB3, where 3 is the average length added to
a blob by the addition of a grain. Then the expectation
value, (b, of b is!

(B)=a(e—1)8, ©)

B=(e**—1—ag)/g(ex—1) (10)

since (B)= (e**—1)/g.

Let the distance parallel to the particle path between
the centers of the first and last grains in a blob be «.
The frequency with which blobs of j+1 grains occur
relative to those with j grains is 1—e~*¢. Therefore,
the fraction of blobs having b—a greater than x varies
like e=2* for a>>a.

There are two kinds of linear structure elements,
blobs and gaps, that alternate in a track segment. The
elementary track cell is comprised of a blob and an
adjacent gap. The track is generated by a repetition of
this unit. The length of a cell is a random variable
equal to the sum of two random variables: the blob
length and the gap length. The distribution function
of each depends on g. Their observed distributions
provide all the information regarding g.

In the course of this work it was surprising to discover
that the whole information content of the gaps resided
in the mean gap length. Thus the mean gap length is an
example of a sufficient statistic in the terminology of
Sir Ronald Fisher, who in 1920 first found this most
efficient estimate.® A sufficient statistic contains all the
information in the observations from which it is de-
rived. The mean gap length is such a statistic because
the gap lengths have an exponential distribution (see
below). The estimate g; derived from the gaps, there-
fore, completely exhausts their information content
relative to g. The variance of g, based on V cells, has
the irreducible minimum of g%/V.

The situation with respect to the blob lengths, on the
other hand, has complicating elements. The blob-length
distribution function depends on the grain-size distri-
bution, and even for idealized models, an analytic
blob-length distribution is difficult to derive. One may
deduce, however, that the blob-length distribution falls
exponentially for long blobs, and when g is large, the
distribution is approximately exponential. The blob
lengths contain the bulk of the track information only
when g is high, but when it is high, the mean blob
length approaches a sufficient statistic. Now, in addi-
tion, if a large number of blobs are used to make the

and

9 R. A. Fisher, Monthly Notices Royal Astron. Soc. 80, 758
(1920).
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estimate of b, by the central limit theorem, b will
approach a Gaussian distribution. Its distribution
function then is written

(N (2m)hos) expl— N (b= (B))/ 2037,

where o2 is the variance of b, and NV is the number of
cells in the track segment. This expression describes
the distribution of b, given (), or the distribution of
(b), given a measurement, b. The distribution of
expectation values is assumed to be such that e prior:
every (b) is equally probable.

Since the distribution function of & is intractable for
any except artificial models, the calculated moments of
b beyond the first must be approximations. The variance
of b, however, is a readily observed quantity. Moreover,
op/a is a function of the lacunarity that may be meas-
ured on any tracks. We therefore can choose to consider
both @ and op/a as calibration data describing the
instrument.

The mean blob length and mean gap length provide
independent and efficient! estimates g» and g; of g.
We now wish to combine them so as to obtain the best
estimate of g.

III. MAXIMUM LIKELIHOOD ESTIMATE OF
GRAIN DENSITY

We have distribution functions for the gap lengths,
and for the mean blob length. Then the likelikood
functiont of the configuration of gaps and blobs
observed in V cells can be constructed as follows:

1f N v — N (B—(B))
P=——[—] el exp[—gz li] exp[———h-*—
Op 2 1 20'1,2

where /; is the length of the ith gap. The sufficiency of
the mean gap length as a statistic now is easy to prove.
We have merely to replace Y1~ I; by Nl. The only gap
information that appears in the likelihood function
then is I.

A particular value of g in Eq. (11) maximizes P.
When N is sufficiently large (see Appendix B), this
value, g, is the one of maximum likelihood. The function
P also estimates the probability that a value of g
other than the mode could be the true value. Any
desired confidence intervals can be quoted with a
knowledge of this function.

Let W=InP. Then the condition of maximum
likelihood is 4W/dg=0, or

1 b—(b)d®)
I+

], (11)

=0, (12)

2

g ot dg
since

(Oy=(e*—1)/g, d(b)/dg= (1—e*+age*)/g"
10 H, Cramer, Mathematical Methods of Statistics (Princeton

University Press, Princeton, New Jersey, 1946).
R.A. Flsher Proc. Cambrldge Phil. Soc. 22, 700 (1925).
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Also ) )
l=1/g1, and b=/(e*2—1)/g,.

The two estimates g; and g, are supposed to differ
little from each other, so that a solution g’ of Eq. (12),
valid through the first order in gs—gi=¢, will suffice.
The solution is the linear combination

g=wgit(1—w)ge=go—we, (13)
w L2(InL)?

)
1—w (I—L+nLp\o/’

with

The weighting of g; and g, is not critical, and any
reasonably good measurement of L may be used in the
expression for w.

When an empirical value of o has not been obtained,
a theoretical estimate must be used. In the Appendix,
limits between which o3 lies have been estimated for
any physical tracks. One estimate based on a completely
random grain spacing in the blob has been made by
Stapp.’? This model we shall designate model 1. In
reference 1, ¢;2 was obtained for a completely ordered
spacing. The results using this model, designated model
2, are also given. All real tracks should exhibit blob-
variance behavior intermediate between these extremes.
The more inclined the track, the better it should be
approximated by model 1.

Equation (13) provides a best estimate of g’. It
remains to calculate its reliability. The second deriva-
tive of W with respect to g provides a measure of the
width of the probability peak. The likelihood function,
Eq. (11), approaches a Gaussian as N becomes large.
For a Gaussian, the variance of g’ is given by

oyt=—(*W/ag")7, (14)

at the maximum of W. We adopt this expression for
the error. Then we find for a track length A,

Ao,/ (=1/p)=w/L. (15)

This function, corresponding to the theoretical limits
(model 1 and model 2) for ¢32, is also included in Table
I. In order to demonstrate the substantial gain effected
by introducing the mean blob length, a column is also
given that is the calculated uncertainty remaining in
the grain density when the mean gap length alone is
used. It can be seen that a very important amount of
information has been salvaged by utilizing the blob
information—especially in near-saturated tracks. More-
over, the required measurements are of types that are
efficiently made with automatic track analysis equip-
ment. The requirement that N be large (say 10 or more)
for the Gaussian to represent well the mean blob length
distribution, seldom limits the applicability of the
theory.

In the error estimates, no allowance has been made

12 Henry P. Stapp, Lawrence Radiation Laboratory (private
communication).
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for the uncertainty of a or for systematic errors of
other sorts. For minimum error, the calibration meas-
urements of @ and ¢ are to be made, independently of
g1 and g on other track segments. If a faulty measuring
technique is employed, —(L/B) InL(=a) may vary
with the dip of the track. In other circumstances o
could depend slightly on g. For example, in a bubble
chamber the energy required to produce the bubbles
might so lower the temperature in the vicinity of a
saturated track that the bubble size is reduced. For
these reasons it is good technique to make the cali-
bration measurements on tracks similar to the one in
which g’ is to be measured, and, of course, with the
identical equipment. If no separate estimate of a is
available, the likelihood function can be considered to
depend on g and «. Then its maximum as a function of
both parameters may be found. There is generally a
loss of information when such a procedure is necessary,
however.1 ]

To measure b, one could observe only the track and
gap lengths along with the blob density. Then b would
be estimated from (1—L)/B. A wise check would be
to measure the blobs themselves, because measurement
errors can tend to be systematic. This should especially
be done if g; and g; fail to agree as well as expected.

The results of reference 1 giving statistical errors in
ionization parameters were based on inexact assump-
tions and are superseded by these results.

The possibility that the instrument sensitivity may
vary with track position, particularly with depth, has
previously been mentioned. This effect must be elimi-
nated by empirical correction. Each estimage of g
requires multiplication by a factor f(r,g), where 7
represents the point coordinates. As indicated, f may
also be a function of g.

Some numerical data drawn from grain, bubble, and
droplet measurements are now cited in order that the
reader may be oriented as to orders of magnitude.

For Ilford K.5 emulsion, using optics of high numer-
ical aperture, « is about 0.48 micron. At the minimum
of ionization g~2000/cm (5000, perhaps, if the emulsion
is hypersensitized). In K.5 emulsion g saturates at a
value of 60 000-70 000 per centimeter for singly charged
particles.

In a propane bubble chamber « can be about 0.03 cm,
and at the minimum of ionization, g may be 20-30/cm.
In a bubble chamber g does not saturate, but for
£>100/cm the lacunarity becomes very low.

On a photograph in which a cloud-chamber track
image is reduced to %5 actual size, a=~10~2 cm, and at
the minimum of ionization, g is perhaps 250/cm on the
film. There is no saturation of g in a cloud chamber and

18 A. Ahmadzadeh, Lawrence Radiation Laboratory Report
UCRL-9527 (unpublished). Quite another approach to this
problem was taken by Ahmadzadeh in this document which since
has been withdrawn. His form of the likelihood function of g
makes redundant use of gap data and consequently weights the
data incorrectly. The form of the likelihood function itself is an
approximation which underestimates the error in the result.
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the droplets can be allowed to diffuse. When droplets
are individually countable, the present methods of
analysis do not provide any additional information,
but the diffused image of the track then limits the
accuracy of a curvature measurement.

IV. MASS ESTIMATION

A principle of mass-ratio determination that uses
grain-density information alone is the following:

Segments of track having the same initial and
terminal grain densities have lengths in proportion to
the masses of the equally-charged particles that
produced them.

A corollary is: If tracks of stopping particles of
equal charge have equal mean grain densities, the
track lengths are proportional to the particle masses.

As an application of the preceding theory we shall
apply this corollary. Let the track of a particle that
comes to rest be broken into segments of equal projected
lengths. Such segments are to be short enough so that
the average grain density in one of them is negligibly
different from that at its center. For protonsin emulsion,
a length of about 100 microns might be suitable. We
let the segment length be unity in what follows.

The grain densities in different parts of a track are
not known equally well. They must be weighted by
their reciprocal variances. Thus, for # uninclined seg-

ments,
n g/ n 1
w-3(55) /2 (5)-
=1 o'y/2 i 7=1 (7912 i

The expression (g’/a,*); for the ith cell can be desig-
nated p; and the measured g’ in this cell is g/. Now
from Eq. (15),

(g'/04?)i=Lifwi=p(Ly), a7

where L; and w; are the measured values in the 7th cell.

Suppose that when the particle mass is known we
symbolize the grain density by v and reserve g for the
grain density in the track of the particle of unknown
mass. Then for a known particle, the weighted mean
grain density, o, in the terminal # cells (length,
> 1" secd;) of its track is

70($ secéi)z;np,- cosd; / ‘T‘(“ﬁ“) (18)

Here the argument (31" secd;) of the function 7, is
the track length and, as for go, the subscript zero
indicates that the quantity is the calculated value for
an uninclined track. The angle §; is the inclination
angle of the track in the ith cell. The average of ¥,
for many particles we designate (¥o)a.v. Each average
is understood to be made for a fixed argument.

The track of an unknown particle is also to be
segmented into portions of unit projected length. The
available length is broken into #’ segments like those

(16)
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comprising the track of the particle of known mass. In
each interval, g and § are measured. Then p cosé and
p/g are determined. Using these numbers we calculate

a single number,
n’ n’ Pj
=ZP] COS&j/Z (——,) (19)
! LoNg

To apply the corollary condition above, the value of
¥o or (¥o)ay is tabulated or graphed as a function of its
argument. Then we find what value of 3 ..1" secd;
makes

go(z S€C6j
1

n n?

Fo(3 secd;) or (Fo)wr equal to  §o(2 secs;).

i=1 7==1

When §o and %, are equal, the ratio of the track
lengths,

n’ n
> sec(Sj/Z secd,
j=1 =1

is the estimated mass ratio. The mass-ratio limits
corresponding to a confidence interval of 47 standard
deviations are found from the following condition:

Go (X secd;)=vo(X secd)
=1 i=1

ir[(ﬁé(p,-/wwé(pj/gm—%. (20)

This error estimate neglects the energy-loss straggling.

Means for mass estimation that combine grain
density with multiple scattering or curvature in a
magnetic field have been developed, and are especially
valuable if the particle fails to come to rest. The result
is always improved if the properly weighted combina-
tion of g; and g, is used in preference to another estimate
of g. Of course, it may not be necessary to segment the
tracks of high-velocity particles if the velocity changes
little in the observed portion of the track. On the other
hand, it could be advisable to segment tracks in bubble
or cloud chambers when the track-to-camera distance
and the track aspect change along the track.
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MATHEMATICAL APPENDIX
A. Blob Length Variance

Let y1, ¥2, + -+, ¥a be the projections on the particle
path of the distances between successive grain centers
in a blob. The expectation value of v; is (y), and its
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variance is 2. The mean square blob length is

()=esn T (atyityet ) (1= o9

n=(0

=a’+ 2a(y)+o,2)e e ‘Z n(l—e v
n=0

+)teen S (1= e,

n=0

The mean blob length also can be calculated:

O=e X (@@hycbyet -y (i=er)

=a-+(y)e e f: n(1—e72)n,
n=0

Then oy2=(b2)—(b)? can be found, and in general,
a2=er%(1—e 02,2 421%(1—e ) (y)%

This formula neglects the variance of the diameter of a
single grain, which could be included as an added term,
but is hardly justified. Stapp'? has made calculations
based on a model in which the grain centers have a
Poisson distribution, and in which each grain has the
diameter «. To avoid interpenetration of the grains,
they can be thought to be displaced from the particle
trajectory. For this model we calculate

(=6=(1/g)[1—age=7/(1=e"2)],
(PW=[2(1—e 29—age ) — g2 ]/g?(1—e29),

and
o= (/@) [1—cgieos) (1= )]

When expressed as a function of the lacunarity, the
quantity o32/o? then can be written (1—12+42LInL)/
L2(InL)2.

Stapp’s model (model 1) permits the maximum
variance of y. The noninterpenetrability of crystals in
emulsion and the finite size of bubbles in a bubble
cluster tends to reduce this variance. Barkas! calculated
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o for a model (model 2) in which the term containing
o, was omitted. This yields for o;2/a? the expression
(1—L+LInL)?/[L*(InL)*(1—L)].

The two models probably represent opposite ex-
tremes, and in actual tracks intermediate behavior
should be observed. The results of numerical calcu-
lations for these models are included in Table I.

B. Gaussian Approximation Error

Let m be the number of grains in a typical blob. The
expectation value, (m), of this number is ¢*?, and an
estimate M derived from the mean length, b, of N
blobs is e2#2, For model 2, the distribution function,
P (M (m)) of (m) can be written down exactly. It is

P (M (m)) = ((m)—1)N D/ )V,

In this expression M is a sufficient statistic.
We put M —(m)=e. Then

N (B—(B))/2002= /20 2.

Then also the distribution function P (M ,(m)) can be
developed in powers of e. It takes the unnormalized
form

Q(M,E) zeXp(“ 62/20'52)[1——

YOM—1)é
3 (M—1) ]

with o 2=M (M —1)/N.

Whereas the modal value of (m) is M, the presence
of the second term in the brackets indicates that the
mean value of e is not zero. This term measures the
deviation of the model 2 distribution function from
the assumed Gaussian. The mean value of e is approxi-
mately — (24 —1)/N. On the other hand, its statistical
uncertainty, o.=M (M —1)/NJ}, always exceeds the
above systematic effect when N is greater than 4
+[1/MM~-1)].

When M is small, N must be large, but then the
weight given the blob information is negligible. The
Gaussian, therefore, is probably always a satisfactory
approximation for N>4. Model 2 describes the real
blob structure well enough so that this result can be
applied with confidence.



