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A Hamiltonian proposed by Duerr is applied to carry out self-consistent calculations for atomic nuclei.
Average exchange forces, calculated from a plane-wave model, are included in the Hartree potential. In order
to obtain agreement with the empirical data, two coupling constants and one constant representing the range
of the interaction have to be adjusted. The range turns out to be 3.23X 107 cm. Because this range is very
short the calculations may not be justified and must be considered as a formal procedure. Having adjusted
the three parameters, reasonable neutron and proton binding energies and nucleon densities are obtained for

the nuclei 0%, Ca®, Ce'®, and Pb?8,

I. INTRODUCTION

HE purpose of this paper is to present a simple
nuclear model which mathematically leads to the
self-consistent state of atomic nuclei.

Recently the Brueckner theory! achieved considerable
success in explaining the properties of finite nuclei,
although complete quantitative agreement has not been
found as yet. Considering the difficulties of the formal-
ism and the ambitious purpose of the theory this is not
surprising.

The Brueckner theory has the disadvantage that its
mathematical language is highly complex and thus
presents great difficulties in actual computation. There-
fore, it is of interest to make an attempt to solve the
self-consistent problem in the framework of the much
easier to handle independent-particle model. It has to be
pointed out that the independent-particle model con-
tains inherent inaccuracy, namely, the two-particle
correlations are neglected. Since in case of short range
forces they may be important the present paper should
be regarded as a formal mathematical procedure.

We shall attempt to obtain a self-consistent single-
particle potential using a Hamiltonian proposed by
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F1c. 1. Difference between the calculated last proton and last
neutron binding energy in case of the Pb2® nucleus as a function of
the range. The star means the experimental value.
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Duerr? We limit ourselves to spherically symmetric
fields and use as specific examples the nuclei Pb?8, Ce',
Ca® and O'. The Duerr-Hamiltonian looks as follows:

H=3_ i ca-phit-BMc* = aM o 3 §i*BY:
C‘l
+boMcpo ; %*‘PH‘E‘[(V @) Huite’]

“%[wwwm, (L1)

where @ and 8 are the Dirac matrices, ¢ represents an
attractive scalar field and ¢, a repulsive field which
transforms like the fourth component of a vector field,
a and b are coupling constants. It was pointed out
earlier in a paper by Johnson and Teller? that a pseudo-
scalar field gives zero average in the interior of a nucleus
which is built up of shell model states. On the other
hand this is not so in the case of a scalar field. Thus the
Hamiltonian (1.1) is the most general type which gives
nonzero average potential in the interior of a large
nucleus. In the nonrelativistic limit both ¢ and ¢q be-
have like scalars. As we shall see, it is necessary to have
two fields because an attractive field alone yields a
collapsed state. The Hamiltonian (1.1) represents a
velocity dependent field because at high nucleon ve-
locities the expectation value of B tends to zero. The
effective velocity dependent potential is Mc2(—a(B)e
+8(I)¢o) where I is the unit matrix.

Unfortunately the Duerr-Hamiltonian leads to wrong
predictions for high-energy scattering. It has, however,
the advantage that it givesa closed and handy formalism
which leads to stable states of nuclei. Actually we shall
attempt an approximation to a Hartree-Fock model by
introducing the exclusion principle into the statistical
formulation.

II. DERIVATION OF THE SELF-CONSISTENT
FORMALISM

In the nonrelativistic limit (p<<Mc¢) the Hamiltonian
(1.1) becomes after a Foldy-Wouthuysen transforma-
tion (see reference 2)

3 M. H. Johnson and E. Teller, Phys. Rev. 98, 783 (1955).
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where

V=aMce; Vo=bMctpy; g=1—V/Mc.

It is tacitly assumed in (2.1) that the time derivatives
dV/dt and 9V /9t are zeros. We see that in the positive
energy states ((8)=1) there is a large spin-orbit inter-
action. In previous models this large spin-orbit interac-
tion has been generally taken as a Thomas-type
interaction in which a phenomenological factor occured.

Formula (2.1) is the Hamiltonian in the Hartree
approximation.
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F16. 2. Top energy levels in self-consistent fields. a=3.10X10%
cm™, g1 =2.3gX1078 cgs, g2=1.80X 1078 cgs.

The Pauli exclusion principle requires that the total
wave function of the N-particle system be antisymmetric
which leads to the determinant form for the total wave
function and to the Hartree-Fock equations for the
single-particle functions. Instead of solving the com-
plicated Hartree-Fock equations we try to modify the
Hartree equations in such a way that these modified
Hartree equations should yield approximately the same
single-particle functions and energies as the correct
Hartree-Fock equations. We can do that by introducing
an exchange potential Ve, which results from the aver-
age exchange effects. We shall add this potential to the
simple Hartree potentials to obtain the collective poten-
tial to be used in the modified Hartree approximation.
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T1c. 3. Top energy levels in self-consistent fields. a=3.10X10%
cm™ g1 =2.3gX1078 cgs, g2=1.80X1078 cgs.

We assume that Ve satisfies a Yukawa type equation
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™

(2.2)

where f(p;u) is given by (A1.9) in Appendix I. (For
detailed discussion of the exchange potential see Ap-
pendix I.) We have to keep in mind that the exchange
effect acts only between particles having the same spin
and isotopic spin state. The proton and neutron distri-
butions are in general different in a nucleus and the
exchange potentials acting on them will be different as
well.

Because of this difference between the proton and
neutron exchange effects the effective meson potential
acting on a single proton and neutron in a nucleus will
be different. Since in most cases there are more neutrons
than protons in a nucleus the meson well for protons
will be deeper. This difference is counteracted by the
Coulomb repulsion.

The inclusion of the Pauli principle in the above
discussed way yields the total Hamiltonian for a system
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Fic. 4. The “big” scalar potential for protons (V) in the Cel®
nucleus belonging to different iterations.
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F16. 5. Self-consistent neutron potential (V,—V )
for the Pb8 nucleus.

consisting of Z protons and N neutrons
z N
H= Z Hpi+z Hni+Hscalar mesonT Hvector meson. (23)

=1 =1

Here the Hamiltonian for a single proton is
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F16. 6. Self-consistent proton potential (V,—Vpo— V)
for the Pb8 nucleus.
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where e=1 for j=1I44, e=-—[—1 for j=={—1. The last
two terms in (2.4) are the spin-orbit interaction and
the Coulomb repulsion V.. The two collective meson
potentials for protons V,, and V o correspond to ¥V and
Vo in the formula (2.1), and they are given by

V=V —Ve for protons,
Vpo=Vo—Vqx for protons.
Similarly the collective neutron potentials are
V=V —Ve for neutrons,
Vno="Vo—Vyex for neutrons.

In the single-particle Hamiltonian for neutrons V. is
obviously omitted.

20
CeI‘O
30
40+

50

60+

70

80

F16. 7. Proton potentials (V,—Vy—V.) for the Cel® nucleus
belonging to different iterations. For starting potential the diffuse
type V=D/[1+expa(r—R)] was used. III can be considered as
the self-consistent potential.

The Hamiltonian (2.3) combined with (2.2) for the
exchange part yields the field equations for the collec-
tive potentials and the single-particle equations as well :

V2V =V o= — 4w g ¥{p,[ 1— Kp,t/ M?c%g,7]
+Pn[1 _KPn%/MZCZgn2:|

— (w?/8m) f(op; w1)}, (2.5)
Vzvpo—,ltszp(): -47rg22{pp+pn
— (u?/87) fop; p2)},  (2.6)
Hp‘/’i'—‘—‘Eﬂ/h. (2.7)
In (2.5) and (2.6),
z N
Pp=§1 I‘piP} Pn=§1 (¥4l
go=1-V,/Mc*; g.=1—V./Mc*;

K= (3/10M) (3n%)%2.

We redefine the coupling constants in a more familiar
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way,
a2M262=47rg12 ; bZM262= 47(.g22'
In (2.5) we used the approximation

n z
— 2 VY= Kp,l,
2M =1

which is good only in the case where the wave functions
can be represented by plane waves.

' The equations for the collective neutron potentials
can be obtained in the same way, the only difference is
that we have there f(p,;u). Finally the Coulomb po-

tential V. is determined by the Laplace equation
V2V c=4mep,, (2.8)

where ¢ means the elementary charge (4.8024X1071
cgs)-
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F16. 8. Neutron potentials (V,— Vo) for the Ce0 nucleus
belonging to different iterations. For starting potential the diffuse
type V=D/[1+expa(r—R)] was used. III can be considered as
the self-consistent potential.

We observe that the repulsion which eventually keeps
the nucleus at a finite size appears both in the single-
particle Hamiltonian (2.4) and in the equation for the
attractive potential (2.5). In (2.4) it appears in the form
of an increased kinetic energy because of the effective
mass

My*=MQ1—V,/Mcd).

We also see from (2.5) that in case of high momenta
the attractive potential becomes small whereas the
repulsive part in (2.6) remains large. This latter effect
corresponds to the relativistic case where 8V tends to
zero with increasing momenta.

III. DISCUSSION OF THE RESULTS

The Egs. (2.5)-(2.7) form the basis for the self-
consistent calculations which were carried out for the
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F16. 9. Self-consistent proton potential (V,—V o~ V) for the
Ca® nucleus.

018 Ca® Ce'0 and Pb*® nuclei. Since we do not assume
that the two-particle interaction is represented by the
exchange of single = mesons, the Compton wavelength
of the fields V and V, was taken as a free parameter. We
shall call it briefly the range of the potentials. The range
of ¥V and V, has to be taken as equal. Otherwise the
effective potential ¥V —V oscillates at the nuclear sur-
face. The nuclear radius, or in other words 7, in the
nuclear radius expression R=7,4% is known from the
experiments with limited accuracy. According to these
7o is likely to be between 1.2 and 1.4X 10~ cm. The
nuclear size, the binding energy of the last neutron and
proton can be reproduced by varying three parameters
which are the range of the potentials and the coupling
constants g; and go. The ratio of the last proton and last
neutron binding energies is a function mainly of the
range. The calculations for the Pb»® nucleus were
carried out with several ranges and it was found that the
correct last proton and last neutron binding ratio was
reproduced by taking a=3.10X 108 cm™ (a=pu;= p2).
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I'16. 10. Self-consistent neutron potential (V, — Vo) for the
Ca® nucleus.
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F1c. 11. Self-consistent proton potential (V,—Vzm—V,) for the
O nucleus.

A. Self-Consistency

The self-consistent state was obtained usually after
the third or fourth iteration regardless of the range of
the potentials. For starting potentials the diffuse type
V=D/[1+4expa(r—R)] was used, where the potential
depths had to be chosen adequately. As mentioned
above the correct 8+ and B~ stabilities for the neigh-
boring nuclei of the Pb?® nucleus were reproduced with
a potential range 1/a=23.23)X107* cm (see Fig. 1). This
short range was needed in order to produce a sufficiently
great difference between the interactions of like and
unlike nucleons. The small value of the range raises
serious doubt as to the validity of the use of average
potentials. Actually the exchange forces are substitutes
for the more usual symmetry forces. It is possible that
the former results of our calculations correspond to a
physical situation in which the range is longer and
symmetry forces are added.

B. Top Levels

The correctness of the top level system can be checked
from the experimentally known (v,#) threshold energies
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TF1e, 12, Self-consistent neutron potential (V,—V,0) for the
016 nucleus.
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and from the §* and B~ decay energies and angular
momentum states of the neighboring nuclei.

The stability of the Pb*7 nucleus and the activity of
AcC'™7 with 1.47-Mev B~ energy indicates that in the
case of Pb*® nucleus we can expect the top neutron level
(3p3) to be about 1.47 Mev higher than the top proton
level (3s3). The coupling constants were adjusted to
reproduce the nuclear radius and the experimentally
measured (y,n) threshold energy for the top neutron
level, which in the case of the Pb3 nucleus is 7.4 Mev.
The sequence of the top proton and neutron levels can
be checked by the angular momentum states of the
neighboring odd Z and odd N nuclei, respectively. As
we go away from the magic shells we go from the
spherically symmetric state to the deformed core state,
consequently our level system which was calculated in
spherically symmetric fields cannot be trusted quanti-
tatively. Nevertheless, the TI?5 TI2% Au' nuclei
confirm that the 3s; and 2dj levels are the top proton
levels, similarly the Pb®7 and Hg? nuclei show the
3p; and 3ps levels as top neutron levels.

pp 208
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F16. 13. Effective nucleon mass in the self-consistent field of the
Pb28 nucleus. «=3.10X108 cm™.

The above discussions seem to indicate that the
parameter set a=3.10X108 cm™, g,=2.39X1078 cgs,
g2=1.80X 1078 cgs yields the self-consistent state for the
Pb28 nucleus and predicts top levels for the neighboring
nuclei with fairly good accuracy (see Fig. 2). We may
observe that the magnitude of the coupling constants
are enormous, g:2/fic~18, gs#/hc~10. This is the result
of the short range interaction alone. Taking the range as
a variable the same magnitude for the potential depth
can be obtained by keeping g/a constant. Thus the =
meson range would result g/%c~0.95, g:*/fc~0.53.

Tasre I. Comparison of calculated and experimental neutron
separation energies.

(y,m) threshold Last neutron

Nucleus (Mev)® binding (Fig. 1-2)
o 16.3 0.4 19.25
Cat0 15.9 +0.4 16.25
Cett0 9.054:0.2 11.5
Ph28 7.4 0.1 7.4

a Taken from: Experimental Nuclear Physics, edited by E. Segré (John
Wiley & Sons, Inc., New York, 1953), Vol. IL.
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F16. 14. Effective nucleon mass in the self-consistent field of the
0 nucleus. «=3.10X108 cm™.

This range however does not give the empirical 8+ and
B~ stabilities.

Having fixed these parameters for the Pb*® nucleus
the calculations were carried out for the Ce?, Ca® and
O nuclei. Table I shows that the obtained last neutron
binding energies are in close agreement with the experi-
mental (y,7) threshold energies.

The stable La'® nucleus with /=72 and the unstable
Ce® nucleus which transforms with K capture to La!®
indicate that the top proton level is about 0.5 Mev
higher than the top neutron level in the case of the Ce!*
nucleus (see Fig. 2). The 0 and Ca® nuclei have equal
numbers of protons and neutrons, consequently the top
proton level must be considerably higher than the top
neutron level (see Fig. 3). This is proved by the short
half-life of 8+-unstable O and Ca® nuclei.

There is one remarkable difference between the level
system shown in Figs. 2 and 3 and the empirical data.
The 1d; level has to be above the 2s; level both in the
proton and neutron case, and similarly the 2d; level is
above the 3s; level for neutrons. (The only case where
the 3s; level is above the 2d; level happens in the proton
case in accordance with the level system of Pb%8.) The
reason for this discrepancy lies partly in the inaccurate
way of calculating the exchange effect. The average ex-
change effect has been calculated assuming for the wave
functions plane waves. This is a good approximation for

2103

4ns

1103

—

F16. 15. Proton and neutron densities in the Pb%8 nucleus.
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F1c. 16. Proton and neutron densities in the O nucleus.

heavy nuclei as in the case of Pb*$; however for light
nuclei it is inaccurate. Furthermore, the exchange effects
are different for different nucleon states and we calcu-
lated the exchange potential in an average way.

IV. CONCLUSION

We saw that the Hamiltonian (1.1) in Sec. I yields
saturation and it also has the nice property that it
automatically gives a large spin-orbit interaction. How-
ever, this Hamiltonian predicts wrong nucleon-nucleus
scattering data at high energies. In case of high energies
it predicts a net repulsion which is in contradiction with
the experiments. On the other hand, at low energies as
in the ground state of the nucleus it works surprisingly
well.

The magnitude of the coupling constants g; and g; had
to be chosen in such a way that there should be enough
repulsion to produce the right nuclear radii and that,
furthermore, the depth of the effective potential V—V,
should give the correct binding energy for the top
neutron. The result is that the potentials ¥V and V, have
the order of magnitude 450 and 390 Mev, respectively
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Fic. 17. Single-particle radial distributions in the Pb»8 nucleus.
R is the radial part of the single particle wave function,
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(see Fig. 4); therefore, the effective potential is the net
difference of the two nearly canceling fields (see Figs.
5-12). Thus, our model is a rather drastic device which
keeps the nucleus at a finite size. What really matters
is the velocity dependent difference between the large
potentials. It can be expected that any velocity de-
pendent potential of similar strength, such as following
from the Brueckner theory, would give similar results.
One of the consequences of the model is that the nu-
cleons inside the nucleus have an effective mass of the
magnitude 0.5 times the bare mass (see Figs. 13 and 14).
Figures 15 and 16 represent the density profile of the
Pb?8 and O nuclei, respectively. We may notice that
in case of equal number of protons and neutrons as
in the case of O the Coulomb repulsion pushes the
protons somewhat outward. Figure 17 shows the radial
part of some wave functions for the Pb*? nucleus.

The scalar field corresponding to the range that we
found might be represented by mesons having the mass
4.43 times the mass of the 7 meson. This is in the range
of a K-meson Compton-wavelength. The range, how-
ever, can not be established accurately by our calcula-
tions, and its physical reality is doubtful.

It is of some interest that by the use of three ad-
justable parameters a wide variety of nuclear binding
energies and levels could be reproduced within limited
errors.
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APPENDIX
I. Exchange Potential in a Nucleon Gas

In this section we calculate the exchange energy of a
nucleon having the wave vector k moving in a nucleon
gas. We assume that the wave functions can be repre-
sented by plane waves. This is a fairly good approxima-
tion for heavy nuclei. We also assume a Yukawa type
interaction between two particles,

V(1,2)=—glexp(—a|n—r:|)1/(|ri—r|). (AL1)

Let us calculate first the exchange term between two
particles:

Ajl=—'ffpjl(rl)sz*(rz)V(1,2)d'1)1d1)2, (A1.2)
where p;;(r)=y;(r)¢.*(r). Using (Al.1) for A(1.2) we
have

Ajl:fpjl(rl) Vii(t1)dos, (A1.3)
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where

Vu(fl)=g2fﬁjl*(f2)[exp(—a|fl“r2[):|/(|1’1—r2|)d7)2-

V j1(r) also satisfies the differential equation
V2V ju—a?V = —4ngip ™. (A14)

Using plane waves we have

pi*(1)=(1/Q) exp[ —i(k;~ki)-r].
(@=volume occupied.)

The solution of (A1.4) is given by
Va(r)=[(4rg?/ @+ |kj—k:[%)Jos* ().
Replacing (A1.5) into (A1.3) we obtain

(A1.5)
A =472 @+ | kj—k|?). (A1.6)

Formula (Al1.6) gives the exchange energy of two
nucleons. The total exchange energy of a nucleon having
a momentum 7k; in a nucleon gas is given by

N
Ve rga [ (@ [ly— k|
0

dn= (1/4x*)Qk 2dkd(cos?),
thus

Kmax pa+l
Vex= (g*/m) f f (®+kP+kE+2k ik, cos9)
0 -1
Xk 2dkd(cosd)

Kmax 2+ k +k 2
— (&/2) f b Ine (bytEs)
o

—— k. dk,.
a2+ (k]— k 1)2

(A1.7)

The integral in (A1.7) can be carried out in a long but
straightforward way and it yields

2 1 Kmax+k j 2+ 2
Vo= (5_) { (") (Kmox”— k4o ln———-——————( )t
T

ij (I(max_kj)2+a2
Klnax+kj
+2K ax — 2a tan™? —
a
Kmax— kj
—2atan~'— ¢, (A1.8)

o

Formula (A1.8) gives the exchange energy of one
nucleon with all the nucleons in a nucleon gas. It con-
tains the self-exchange energy too which in the Hartree-
TFock method cancels the self energy appearing in the
Hartree method. We see from (A1.8) that the exchange
potential depends on the momentum 7%#; of the nucleon
in question. For a nucleon having the average mo-
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mentum §Km.x (A1.8) yields

DA

49(37%p) 1602
i (37%p)+16a?
—2a tan™[ (7/4) (37%) 1]

+2(37%)}

—2a tan™'[ (1/4) (3n%) o] } (A1.9)

In (A1.9) we used the relation K .= (37%)3, where p is
the nucleon density. It is assumed that half of the
nucleons are in the state spin up and half of them in spin
down.

Formula (A1.9) is valid for an infinitely large nucleus.
In that case, the potential energy is a function of the
nucleon density alone, which is a constant. In analogy
with the equation which holds for the classical type
direct potential we assume that for finite size nuclei the
exchange potential also satisfiesa Yukawa type equation

V2V ex—aVex=—(g2%?/2m) f(p; @),  (A1.10)

where f(pja) is the expression in the parenthesis on the
right side of (A1.9). We observe that in the interior of
the nucleus where V2V, can be neglected formula
(A1.10) goes over to (A1.9). Near the surface the term
V2V ex becomes important. No justification of this term
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is known to us beyond the statements that a surface
term of this order of magnitude is reasonable and that
the introduction of this term greatly simplifies the
treatment of the expression for ¥, and V¥ in Sec. II.

II. Computational Methods

The equation for the radial part of the wave function
has the form

R+ f(2)R'+[Fnji(%) —Anjg(x) JR=0, (A2.1)

where the functions f(x) and %(x) contain the potentials
and spin-orbit term, g(x) is the effective mass function
defined in Sec. II, and \,;; is the eigenvalue in dimen-
sionless units.

(A2.1) was solved step by step using the approxi-
mation

R'(x)~[R(x+Ax)—R(x—Ax)]/2Ax,
R"(x)~[R(x+Ax)—2R(x)+R(x—Ax) ]/(Ax)

The solution of the field Eqgs. (2.5) and (2.6) was per-
formed by simple integration* using the Weddle nu-
merical integration method.

The IBM 704 electronic computer was programmed
to solve (A2.1) and the field equations and the solutions
were carried out until the self-consistent state was
reached.

4 For details see R. Mises: Differential and Integral Gleichungen

der Mechanik and Physik (Friedrich Vieweg und Sohn, Braunsch-
weig, 1930), Vol. 1.



