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Self-Consistent Nuclear Model~
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A Hamiltonian proposed by Duerr is applied to carry out self-consistent calculations for atomic nuclei.
Average exchange forces, calculated from a plane-wave model, are included in the Hartree potential. In order
to obtain agreement with the empirical data, two coupling constants and one constant representing the range
of the interaction have to be adjusted. The range turns out to be 3.23&(10 "cm. Because this range is very
short the calculations may not be justified and must be considered as a formal procedure. Having adjusted
the three parameters, reasonable neutron and proton binding energies and nucleon densities are obtained for
the nuclei 0" Ca~, Ce'~, and Pb"'.
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FIG. 1. Difference between the calculated last proton and last
neutron binding energy in case of the Pb 0 nucleus as a function of
the range. The star means the experimental value.
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I. INTRODUCTION

'HE purpose of this paper is to present a simple
nuclear model which mathematically leads to the

self-consistent state of atomic nuclei.
Recently the Brueckner theory' achieved considerable

success in explaining the properties of finite nuclei,
although complete quantitative agreement has not been
found as yet. Considering the difhculties of the formal-
ism and the ambitious purpose of the theory this is not
surprising.

The Brueckner theory has the disadvantage that its
mathematical language is highly complex and thus
presents great difficulties in actual computation. There-
fore, it is of interest to make an attempt to solve the
self-consisteiit problem in the framework of the much
easier to handle independent-particle model. It has to be
pointed out that the independent-particle model con-
tains inherent inaccuracy, namely, the two-particle
correlations are neglected. Since in case of short range
forces they may be important the present paper should
be regarded as a formal mathematical procedure.

We shall attempt to obtain a self-consistent single-
particle potential using a Hamiltonian proposed by

Duerr. ' We limit ourselves to spherically symmetric
fields and use as specific examples the nuclei Pb', Ce",
Ca", and 0".The Duerr-Hamiltonian looks as follows:

H= p f cet Rk't+p'Mc' Q p. p a3fc''q' Q p pf'
c2

C2

——L(V v o)'+tts'too'j, (1.1)
2

where n and p are the Dirac matrices, y represents an
attractive scalar field and qo a repulsive field which
transforms like the fourth component of a vector field,
a and b are coupling constants. It was pointed out
earlier in a paper by Johnson and Teller' that a pseudo-
scalar field gives zero average in the interior of a nucleus
which is built up of shell model states. On the other
hand this is not so in the case of a scalar field. Thus the
Hamiltonian (1.1) is the most general type which gives
nonzero average potential in the interior of a large
nucleus. In the nonrelativistic limit both q and qo be-
have like scalars. As we shall see, it is necessary to have
two 6eMs because an attractive 6eld alone yields a
collapsed state. The Hamiltonian (1.1) represents a
velocity dependent field because at high nucleon ve-
locities the expectation value of P tends to zero. The
effective velocity dependent potential is 3fc'( a(p)p-
+b(I)qo) where I is the unit matrix.

Unfortunately the Duerr-Hamiltonian leads to wrong
predictions for high-energy scattering. It has, however,
the advantage that it gives a closed and handy formalism
which leads to stable states of nuclei. Actually we shall
attempt an approximation to a Hartree-Fock model by
introducing the exclusion principle into the statistical
formulation.

II. DERIVATION OF THE SELF-CONSISTENT
FORMALISM

In the nonrelativistic limit (p&&Mc) the Hamiltonian
(1.1) becomes after a Foldy-Wouthuysen transforma-
tion (see reference 2)

3 M. H. Johnson and E. Teller, Phys. Rev. 98, 783 (1955).
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V . The two collective mesonthe Coulomb repulsion, . e
potentials for protons U„and „0 pcorres on to an(
Vo in the formula (2.1), and they are given by

V„=V—V,„for protons,

U&0= Up —Vp for protons.

Similarly the collective neutron potentials are

V = V—V, for neutrons,

V o = Vo—Vo, for neutrons.

In the single-particle Hamiltonian e si — nian for neutrons U, is
obviously omitted.

FIG. 5. Self-consistent neutron potential (V„—V„s)
for the Pb"' nucleus.
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Fro. 8. Neutron potentials (V„—V„o) for the Ce'oo nucleus
belonging to different iterations. For starting potential the diffuse
type V=D/L1+expn(r —R)g was used. III can be considered as
the self-consistent potential.

0",Ca", Ce"', and Pb"' nuclei. Since we do not assume
that the two-particle interaction is represented by the
exchange of single m. mesons, the Compton wavelength
of the 6elds V and Uo was taken as a free parameter. XVe

shall call it brieQy the range of the potentials. The range
of V and Vo has to be taken as equal. Otherwise the
effective potential V—Vo oscillates at the nuclear sur-
face. The nuclear radius, or in other words ro in the
nuclear radius expression R=roA& is known from the
experiments with limited accuracy. According to these
ro is likely to be between 1.2 and 1.4&10 " cm. The
nuclear size, the binding energy of the last neutron and
proton can be reproduced by varying three parameters
which are the range of the potentials and the coupling
constants g~ and g2. The ratio of the last proton and last
neutron binding energies is a function mainly of the
range. The calculations for the Pb"' nucleus were
carried out with several ranges and it was found that the
correct last proton and last neutron binding ratio was
reproduced by taking n=3.10X10ts cm ' (n=iu&= ps).

We observe that the repulsion which eventually keeps
the nucleus at a finite size appears both in the single-
particle Hamiltonian (2.4) and in the equation for the
attractive potential (2.5). In (2.4) it appears in the form
of an increased kinetic energy because of the effective
nlass

M~*=M (1 U„/Mc')—

We also see from (2.5) that in case of high momenta
the attractive potential becomes small whereas the
repulsive part in (2.6) remains large. This latter effect
corresponds to the relativistic case where PU tends to
zero with increasing momenta.
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III. DISCUSSIGN OF THE RESULTS

The Eqs. (2.5)—(2.7) form the basis for the self-
qonsistent calculations whiqh w|;rc carried out for &he

80"

Fx(. 10. Self-consistent neutron potential (V„—V„0) for the
pa~ nucleus.
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FIG. 11. Self-consistent proton potential (V~—V„s—V,) for the0"nucleus.

A. Self-Consistency

The self-consistent state was obtained usually after
the third or fourth iteration regardless of the range of
the potentials. For starting potentials the diffuse type
V=D/[1+expo, (z' —R)j was used, where the potential
depths had to be chosen adequately. As mentioned
above the correct p+ and p stabilities for the neigh-

boring nuclei of the Pb"' nucleus were reproduced with
a potential range 1/o. =3.23X 10 "cm (see Fig. 1).This
short range was needed in order to produce a sufficiently
great difference between the interactions of like and
unlike nucleons. The small value of the range raises
serious doubt as to the validity of the use of average
potentials. Actually the exchange forces are substitutes
for the more usual symmetry forces. It is possible that
the former results of our calculations correspond to a
physical situation in which the range is longer and

symmetry forces are added.

B. Top Levels

The correctness of the top level system can be checked
from the experimentally known (y, zz) threshold energies

10

t0

20-

and from the p+ and p decay energies and angular
momentum states of the neighboring nuclei.

The stability of the Pb'-" nucleus and the activity of
AcC"'" with 1.47-Mev P energy indicates that in the
case of Pb"' nucleus we can expect the top neutron level

(3p;) to be about 1.47 Mev higher than the top proton
level (3sr). The coupling constants were adjusted to
reproduce the nuclear radius and the experimentally
measured (y, zz) threshold energy for the top neutron
level, which in the case of the Pb"' nucleus is 7.4 Mev.
The sequence of the top proton and neutron levels can
be checked by the angular momentum states of the
neighboring odd Z and odd E nuclei, respectively. As
we go away from the magic shells we go from the
spherically symmetric state to the deformed core state,
consequently our level system which was calculated in
spherically symmetric fields cannot be trusted quanti-
tatively. Nevertheless, the TP", TP", Au"' nuclei
confirm that the 3s; and 2d; levels are the top proton
levels, similarly the Pb"' and Hg"' nuclei show the
3pf and 3p; levels as top neutron levels.

Pb Sos

M+n

M

20 25

Fro. 13. Effective nucleon mass in the self-consistent Geld of the
Pb" nucleus. 0.=3.10&(10"cm '.

The above discussions seem to indicate that the
parameter set n=3.10)&10" cm ', g1=2.39)&10 cgs,
g2

——1.80&(10 ' cgs yields the self-consistent state for the
Pb"' nucleus and predicts top levels for the neighboring
nuclei with fairly good accuracy (see Fig. 2). We may
observe that the magnitude of the coupling constants
are enormous, gts/kc 18, gzs/Sc 10. This is the result
of the short range interaction alone. Taking the range as
a variable the same magnitude for the potential depth
can be obtained by keeping g/rr constant. Thus the zr

meson range would result grs/kc 0.95, gss/Ac 0.53.

Mev
40.

TABLE I. Comparison of calculated and experimental neutron
separation energies.

50-

60-

70.

Nucleus

O16
Ca4'
Cp140

Pb208

(y,zz) threshold
(Mev)

16.3 ~0.4
15.9 ~0.4
9.05~0.2
7.4 ~0.1

Last neutron
binding (Fig. 1—2)

19.25
16.25
11.5
74

FIG, 12, Se&f-consistent neutron potential I', V„—V,„o) for the
0"nucleus.

a Taken. from: Experimental WNclear Physics, edited by E. Segre (John
bailey & Sons, Inc. , New York, 1953), Vol. II.
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(see Fig. 4); therefore, the effective potential is the net
difference of the two nearly canceling fields (see Figs.
5-12). Thus, our model is a rather drastic device which
keeps the nucleus at a finite size. What really matters
is the velocity dependent difference between the large
potentials. It can be expected that any velocity de-
pendent potential of similar strength, such as following
from the Srueckner theory, would give similar results.
One of the consequences of the model is that the nu-
cleons inside the nucleus have an effective mass of the
magnitude 0.5 times the bare mass (see Figs. 13 and 14).
Figures 15 and 16 represent the density profile of the
Pb"' and 0" nuclei, respectively. We may notice that
in case of equal number of protons and neutrons as
in the case of 0" the Coulomb repulsion pushes the
protons somewhat outward. Figure 17 shows the radial
part of some wave functions for the Pb"' nucleus.

The scalar field corresponding to the range that we
found might be represented by mesons having the mass
4.43 times the mass of the ~ meson. This is in the range
of a E-meson Compton-wavelength. The range, how-
ever, can not be established accurately by our calcula-
tions, and its physical reality is doubtful.

It is of some interest that by the use of three ad-
justable parameters a wide variety of nuclear binding
energies and levels could be reproduced within limited
errors.

where

Vj&(ri) =g' ' p '&' (r2)Cexp( ~l ri r2l) j/(I ri —r, i)dej.

Vjj(r) also satisfies the differential equation

V'U;i —n'V, i= —4~f,"p, i . (A1.4)

a,=4~g2n-i/(~'+
i I,—I,

i
~) (A1.6)

Formula (A1.6) gives the exchange energy of two
nucleons. The total exchange energy of a nucleon having
a momentum Sk; in a nucleon gas is given by

V.„=4n.g'fl-' ~ (n'+ ik;—k i')-'dn;

Using plane waves we have

p;i*(r) = (1/0) exp[ —i(k;—ki) ~ r].
(0=volume occupied. )

The solution of (A1.4) is given by

VB(r)=L(4~g')/(~'+ I»—«I') jpB*(r) (A1 5)

Replacing (A1.5) into (A1.3) we obtain
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where p;i(r)=P;(r)Pj*(r) Using (A.1.1) for A(1.2) we
have

jf, ,= p, ,(r,) V, ((rj)di i, (A1.3)

APPENDIX

I. Exchange Potential in a Nucleon Gas

In this section we calculate the exchange energy of a
nucleon having the wave vector k moving in a nucleon
gas. We assume that the wave functions can be repre-
sented by plane waves. This is a fairly good approxima-
tion for heavy nuclei. We also assume a Yukawa type
interaction between two particles,

V(1,2) = —g2(exp( —n~ ri —r&i)j/(~ ri —r2~). (A1.1)

Let us calculate first the exchange term between two
particles:

A;i ———
~

~~p, (r,)jp;i*(r,)V(1,2)dvidijj, (A1.2)

pxmsx ~+&

V.*=(g'/~) ' (n'+kP+k P+2k, ki «s8)—'
J,

Xk j'dk jd (co»)

p &max

=(g'/ ), '

'o

n'+ (k;+k j)'
k;—' ln kid&&.

n'+ (k;—k))'
(A1.7)

The integral in (A1.7) can be carried out in a long but
straightforward way and it yields

(g2) (1 ) (X .„+k;)'+n'
I(&-, '—k,'+ ')»

(2jr) &2k;j' (Jt .—k;)'+n'

&max+k j+2E, —2n tan '

+max —~j—2jj. tan ' . (A1.8)

Formula (A1.8) gives the exchange energy of one
nucleon with all the nucleons in a nucleon gas. It con-
tains the self-exchange energy too which in the Hartree-
Fock method cancels the self energy appearing in the
Hartree method. We see from (A1.8) that. the exchange
potential depends on the momentum haik, of the nucleon
in question. For @ nucleon having the average mo-
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mentum aE „(A1.8) yields

(g'l f2) (7 0I'.*=
I

—
I I

—l(3~'~) '
I

—l(3+v)'+~'
E2sr& I E3) &163

49(3sr p) &+16n'
X ln. +2 (3sr'p)1

(3m'p) '+16n'

—2cr tan —'L (7/4) (3sr'p) &n
—'$

—2n tan-'L(1/4) (3m'p) ln —'j . (A1.9)

In (A1.9) we used the relation E,„=(3sr2p)1, where p is
the nucleon density. It is assumed that half of the
nucleons are in the state spin up and half of them in spin
down.

Formula (A1.9) is valid for an infinitely large nucleus.
In that case, the potential energy is a function of the
nucleon density alone, which is a constant. In analogy
with the equation which holds for the classical type
direct potential we assume that for finite size nuclei the
exchange potential also satisfies a Yukawa type equation

&'V ~'&..= (g'~'/2—~)f( ~) (A1 1o)

where f(p;n) is the expression in the parenthesis on the
right side of (Ai.9). We observe that in the interior of
the nucleus where V'V, can be neglected formula
(A1.10) goes over to (A1.9). Near the surface the term
V' V, becomes important. Xo justification of this term

is known to us beyond the statements that a surface
term of this order of magnitude is reasonable and that
the introduction of this term greatly simplifies the
treatment of the expression for V~ and V~0 in Sec. II.

II. Computational Methods

The equation for the radial part of the wave function
has the form

R"+f(x)R'+3k„s&(x) P,„;r—g(x) jR=O, (A2.1)

where the functions f(x) and k(x) contain the potentials
and spin-orbit term, g(x) is the eRective mass function
defined in Sec. II, and X;~ is the eigenvalue in dimen-
sionless units.

(A2.1) was solved step by step using the approxi-
mation

R'(x) -[R(x+ax) R(x S—x)j//2—zx,
R"(x)-LR(x+~x) —2R(x)+R(*—Zx) j/(Zx)2.

The solution of the field Eqs. (2.5) and (2.6) was per-
formed by simple integration4 using the XVeddle nu-
merical integration method.

The IBM 704 electronic computer was programmed
to solve (A2.1) and the field equations and the solutions
were carried out until the self-consistent state was
reached.

4 For details see R. Mises: Differential and Integral Gleichgngen
der Mechanitr, assd Physik (Friedrich Vieweg und Sohn, Braunsch-
weig, 1930), Vol. 1.


