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The Boltzmann equation for electrons in many-valley semicon-
ductors, with scattering by acoustical and optical lattice vibra-
tions, is solved for high electric fields in the following two cases:
(1) Intervalley-scattering is completely negligible. Then, in each
particular valley, the distribution of the electrons over the energy
is Maxwellian for energies of the electrons larger than the energy
of an optical phonon. The corresponding electron temperature
varies approximately with the square of the electric field strength
and depends on the angle between the electric field and the
longitudinal axis of the particular valley under consideration. The
electron temperatures are therefore in general diferent in different
valleys. The deviations of the electron distribution from the

Maxwellian one for energies of the electrons smaller than the
energy of an optical phonon are small. (2) If allowance is made for a
transfer of electrons between different valleys a finite difference in
the populations is set up even for infinitesimally small intervalley
scattering rate. In addition to this, for finite intervalley rate, the
electron distribution deviates from the original Maxwellian one.
The deviation increases with increasing intervalley rate constant,
increasing lattice temperature, and increasing difference of the
average electron energies in the different valleys. Both of these
eBects of intervalley scattering are important for the explanation
of the field dependence of the Sasaki eA'ect.

I. INTRODUCTION

~ XPERIMENTAI. determinations of the drift ve-
- & locity of carriers in high electric fields were first

carried out by Ryder and Shockley' ' and have been ex-
tended by several authors. ' ' An explanation of the
results was put forward by Shockley" by considering the
momentum and energy balance of carriers subject to the
electric field and to scattering with acoustical and
optical phonons.

Later theoretical work dealt with the quantitative
aspects of the current vs voltage characteristics, either
by considering the energy and momentum balance for
displaced Maxwellian distributions in more detail and
for the whole region of electric fieldsU "or by solution
of the Boltzmann equation in restricted regions of the
electric field and under certain assumptions on the
scattering mechanisms. "" All the theoretical work

' E. J. Ryder and W. Shockley, Phys. Rev. 81, 139 (1951).' E. J. Ryder, Phys. Rev. 90, 766 (1953).' J. B. Gunn, J. Electronics 2, 87 (1956).
4 J. B.Arthur, A. F. Gibson, and J.W. Granville, J. Electronics

2, 145 (1956).' K. S. Mendelson and R. Bray, Proc. Phys. Soc. (London) A70,
899 (1957).' T. ¹ Morgan, J. Phys. Chem. Solids 8, 245 (1959).' K. H. Seeger, Phys. Rev. 114, 476 (1959).' J. Zucker, J. Phys. Chem. Solids, 12, 350 (1960).

9 R. Bray and M. D. Brown, Proceedings of the International
Conference on Semiconductor Physics, Prague, 1960 LCzech J.
Phys. (to be published) j.

"W. Shockley, Bell System Tech. J. 30, 990 (1951)."H. Frohlich and B.V. Paranjape, Proc. Phys. Soc. (London)
B69, 21 (1956)."R.Stratton, Proc. Roy. Soc. (London) A242, 355 (1957)."R.Stratton, J. Electronics 5, 157 (1958).' M. S. Sodha, Phys. Rev. 107, 1266 (1957)."M. S. Sodha and P. C. Eastman, Phys. Rev. 110, 1314 (1958)."E.M. Conwell, J. Phys. Chem. Solids 8, 234 (1959)."E.M. Conwell and A. I.. Brown, J.Phys. Chem. Solids 15, 208
(1960)."J. Yamashita and M. Watanabe, Progr. Theoret. Phys.
(Kyoto) 12, 443 (1954)."J.Yamashita, Phys. Rev. 111, 1529 (1958)."I.Adawi, Phys. Rev. 115, 11 (1959); 120, 118 (1960).

m M. Hattory and H. Sato, J. Phys. Soc. Japan 15, 1237 (1960)."T. N. Morgan, Bull. Am. Phys. Soc. 3, 13 (1958); 5, 194
(1960).

hitherto mentioned was based on the simple parabolic
model for the band structure.

After the discovery of the transverse and longitudinal
anisotropy e6ects of hot electrons in n-oe, 23 "it became
obvious that the actual band structure plays a dominant
role in these effects. Therefore, a theory of hot electron
eGects in e-Ge should be transport theory for a many-
valley semiconductor at high electric fields. A first step
in this direction was carried out by Shibuya. "A more
complete treatment has been given by Yamashita and
Inoue" by combination of a Boltzmann-type treatment
for intravalley scattering, partly based on the actual
band structure, with a balance-type treatment for
intervalley processes. In this paper we start from the
Boltzmann equation for electrons in many-valley semi-
conductors with intravalley and intervalley scattering.
This equation, given in Sec. II, is based throughout on
the modern form of the deformation potential theory. "'4

The Boltzmann equation is solved in Secs. III and IV
for a case where intervalley scattering is assumed to be
completely negligible. In Sec. V a solution of the
Boltzmann equation is obtained for a case where inter-
valley scattering is small compared to intravalley scat-
tering. The solution can be found by means of a
perturbation treatment, where the solution for no inter-
valley scattering at all plays the role of the zeroth order
approximation.

s'W. Sasaki and M. Shibuya, J. Phys. Soc. Japan 11, 1202
(1956).

"W. Sasaki, M. Shibuya, and K. Mizuguchi, J. Phys. Soc.
Japan 13, 456 (1958).

"W. Sasaki, M. Shibuya, K. Mizuguchi, and G. M. Hatoyama,
J. Phys. Chem. Solids 8, 250 (1959)."M. I. Nathan, Bull. Am. Phys. Soc. 5, 194 (1960).

s' E. G. S. Paige, Proc. Phys. Soc. (London) A72, 921 (1958)."S.H. Koenig, Proc. Phys. Soc. (London) A73, 959 (1959)."E.G. S. Paige, Proc. Phys. Soc. (London) A75, 174 (1960).' S. H. Koenig, M. I. Nathan, W. Paul, and A. C. Smith, Phys.
Rev. 118, 1217 (1960).

"M. Shibuya, Phys. Rev. 99, 1189 (1955).
3~ J. Yamashita and K. Inoue, J. Phys. Chem. Solids 12, 1

(1960); see also M. Shibuya and W. Sasaki, J. Phys. Soc. Japan
15, 207 (1960)."C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956).

~4 W. A. Harrison, Phys. Rev. 104, 1281 (1956).
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The results of this paper, unless stated otherwise, are
applicable to any substance with a many-valley struc-
ture of the particular band under consideration, al-
though special reference is given to e-Ge and all
numerical estimates refer to this particular substance.

II. BOLTZMANN EQUATION

In order to formulate the Boltzmann equation we
have to discuss the structure of the particular band in
that part of the Brillouin zone accessible to electrons for
experimentally realizable electric field strengths and
lattice temperatures and the scattering mechanisms for
electrons in the part of the Brillouin zone under con-
sideration. The band structure will be dealt with first. It
is assumed to be of the nondegenerate many-valley type,
eventually including higher, nonequivalent valleys with
constant effective masses in the accessible range of
energies. This restricts the k vectors to values lying
around the minima with distances Ak from the minimum
smaller than 107 cm ', and obviously defines an upper
limit for the field strength. The energy of an electron in
the valley j is then given by

Lhk, (')' Lhk &"]'
t Dk, (»j'

p(&') = Ap(»+-'f), ' + +, (1)
mg

in the system of principal axes of the valley under con-
sideration. Here Ae'» is the energy of the jth minimum,
relative to the band edge, m&('& and m~(&' are the
transverse and longitudinal masses.

In the following we restrict ourselves throughout to
relatively pure samples, so that the inQuence of im-

purity scattering can be neglected everywhere. The
interactions with the lattice vibrations give rise to
intravalley and intervalley transitions of the electrons.
To shorten the notation, the term intervalley phonon
will be introduced for phonons involved in intervalley
scattering. Under the restriction 6k&10 cm ' the fre-
quencies of optical and intervalley phonons are inde-
pendent of the wave number. The frequencies of the
longitudinal and transverse acoustical phonons taking
part in intravalley processes are given by the linear part
of the dispersion law and are equipartitioned thermally
for the lattice temperatures of experimental interest
above 78'K.

With these assumptions, the formal Holtzmann equa-
tion for electrons in the valley j,

energy to spheres in each particular valley, This is done
by means of the transformation of Herring and Vogt, "
by which eGective wave vectors Ak~(&) are introduced
instead of Ak(&') and effective fields F*(&) instead of F.
The effective wave vectors and effective fields are
defined by

6k~("=
I

n(') j&Ak("

F*(i)= L&I(i))lF

where the tensor nt:&& is given by

(3)

(4)

mp/mi(')
0
0

0 0
mp/mg(" 0

0 mp/m)( )

when O~ is the angle between the effective field and the
effective wave vector in the valley under consideration.
The y dependence of the distribution function drops out
approximately for this special choice of the coordinate
system on account of the nearly isotropic e6'ect of the
combined transverse and longitudinal acoustical scat-
tering.

It is obvious that the expansion (3) can be stopped
after the P~ term in the case of infinitesimal electric
fields. The same appears to apply for high fields as well. "
We therefore tentatively restrict ourselves to the first
two terms. With this restriction, the insertion of (5) into
(2) leads after regrouping to the following result:

Pp(cos0) Pgf )g )).. r).'„, r);„,j— —
+Pi~cosO)Dff )Q t Sip), pl gj,=0 (6).

The )) and f are given by the following expressions, where
the superscripts characterizing the particular valley
have been dropped where possible:

in the system of principal axes of the valley under
consideration. Here mo denotes the free electron mass.
The transformation (3) is to be carried out simultane-
ously in the phonon q space for phonons interacting with
electrons in the valley j.

A detailed analysis of the Boltzmann equation for the
case of n-Ge has shown that the solution can be ap-
proximately expanded in terms of I egendre polynomials
only:

f(d) (gk~(/)) —P f (2) (p)P (cosH)

Bt i;,i~ Bf „ii Bt

gf(i)'
-OPt — ~~ - int;

can be worked out using the transition probabilities
given by the deformation potential theory. "'4

It is expedient to transform the surfaces of constant

The ))„and f„h eavbeen obta, ined by the procedure of
Herring and Vogt, using the transition probabilities

"A justification for this is contained in unpublished vrork of H.
Risken and EI. G. Reik.
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given in Table V of their paper. They are given by

( fo dfol+
r„p de &,AT de )

1 ~22'~'modem, kT=-o'

7

7., p ph'[detn]'*E'*

=-,'==-.'(I+g[(=-„/=-,+ 1)'m&/me —1j),
-1 4'

) ac &ac 1 J lp

&~2«smp~I r"- 2&~

ph4[deta)&c P

(9)

(9a)

(9b)

(10)

(10a)

Zts =~e'[1.31+1.61Z„/Zg+1.01(g„/gg)'). (10b)

1 (E AE +»t*
7 & E E )

&& [(n,+1)fp&O (E+»)—n, fp&&l (E)]

(E—AE&"—») '

E.

&& [n,fp&'&(E—»)—(e,+1)fo"'(E)j, (11)

1 (E—AE&o+»p 1

!e,
7 1 E E )

(E—AE&"—»~ '
+I ! (.+1) f"'() (12)

Here [detnj*'=molmc 'm~ '*, p is the density, cq the
longitudinal velocity of sound, z and are the
deformation potential constants for dilation and uniaxial
shear. Equations (10), (10a), and (10b), describing
essentially the momentum scattering, are already con-
tained in Herring and Vogt's paper. In the derivation of
(9), (9a), and (9b), which describe the energy scattering
due to longitudinal and transverse acoustical phonons,
the finite energy of the acoustical phonons has been
taken into account and use has been made of the fact
that the variation of fp(c) is small over the energy of an
acoustical phonon.

The last statement is not true for optical and inter-
valley phonons. For these scattering mechanisms the
following expressions for q and f are found, which all
have the general form

process under consideration. Ae&'~ is the energy of the
minimum of the 6nal valley, if the minimum of the
initial valley is at the band edge. If lQ j and b,e(»=0
we speak of equivalent intervalley scattering. In (11)
and (12), use is to be made of the convention that
x&=0 for x(0. The expressions (7)-(13) are substan-
tially the same as the corresponding ones in the paper of
Vamashita and Inoue, " apart from the fact that in
(9)—(13) the true masses and the true deformation po-
tential constants appear instead of some sort of averaged
quantities. This difference is brought about by the fact
that in their treatment the evaluation of the scattering
terms is based on the simple parabolic model of the band
structure and the Sommerfeld-Bethe-Seitz method" '7

is used instead of the method of Herring and Vogt.

IIL SOLUTION OF THE BOLTZMANN EQUATION
FOR INTRAVALLEY PROCESSES ONLY

The complete "Boltzmann equation" in the approxi-
mation where only the I'p and I't terms in (5) are im-
portant consists of a set of 2E equations for fp&" (c) and
f&&&'l(E) where JV is the number of valleys under con-
sideration. The two equations for a particular valley j
are coupled to the other equations on account of inter™
valley processes.

A considerable simpli6cation of the mathematical
problem can be achieved if intervalley transitions of the
electrons can be neglected in a first approximation. In
the case of e-Ge this is possible for transitions to other
equivalent valleys. The ratio (D,/Dp)' where D; is the
deformation potential constant for equivalent inter-
valley scattering and Dp the deformation potential con-
stant for optical intravalley scattering is of the order of
10 '."Little is known about the corresponding ratio for
nonequivalent intervalley scattering, but these transi-
tions are certainly not important for average energies of
the electrons smaller than the energy of the minimum of
the nonequivalent valleys relative to the band edge. We
therefore restrict ourselves in this and the following
section to the solution of the Boltzmann equation for
intravalley processes only. Under this simplification, the
Boltzmann equation reads

—E.p*—(oft)

(fo df l=E., E'! +-
de &kT dc J

422'Imp&D'~&

ph'co[deter& o j&
(13)

+ (E+»p) lel[(n, +1)fo(E+»o) —e,fo(E)j
+ (E—»P)lE&[nofo(E —»P) (eo+ 1)fo(E)] (14)

The superscript j characterizes the initial, the super-
script l the final valley, co is the frequency of the phonon
involved in the particular process, n, the number of
phonons present, D the deformation potential for the

e' A. Sommerfeld and H. Bethe, Handhech der Physr'h (Verlag
Julius Springer, Berlin, 1933), Vol. 24."F. Seitz, Phys. Rev. 73, 549 (1948)."G.Weinreich, T. M. Sanders, and H. G. White, Phys. Rev.
114, 33 (1959).
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~& &'(dfslde) =fi

E o*=eF*(rp/3) (2e/alp) ' (16)

is the energy gain of an electron during the time q.s/3,
where rq is an optical relaxation time, defined by (13).
As v-pa- e ' this quantity is independent of the energy.
Similarly, E&~&* is also an energy gain:

Zi.&*=eP~(r) (2e/q&sq)'*. (17)

H'ere (r) is a combination of the acoustical time of
momentum relaxation r„~ and the optical relaxation
time rp'.

1 1 1 (e+Ao&s) * (e Aoio) *

+—I, I
—

I + (~,+1)I—
&ae 1 7'p-

(e+Ao&qp 1 f e—Ao&pp 4

x N, l I+(~,+1)l
e

is an eGective temperature, characterizing the whole

acoustical and optical excitation of the lattice, which

aGects the momentum relaxation. The quantity

It is convenient to write this combined relaxation time
in the form

(r) = r., iT/T, qq(e),
where

D SC
T.H(e) = T+

2kGop~~y

The lower limit of integration is to be replaced by zero
for ~—Puop~0. The constant of integration C must be
zero on account of particle conservation.

The system of Eqs. (21) and (15) is similar to a
system of equations given by Franz. 4' 44 He did not give

a solution and the method of solution proposed by him

is quite different from the way in which our solution is

actually obtained. Ke shall come back to the method of

Franz, after our solution is completed.
It is easy to get an approximate solution of (21) for

arbitrary values of the electric field strength in two

particular ranges of energy. The first, not very im-

portant one, is the range of very small energies, which

is treated in the Appendix. The second range of energies

is the range 2Acop&~(e where e is the energy above
which the effective masses cease to be constants. In this

energy range, we replace e+Ao&q and e—Aoiq by e in the
definition (19) of the effective temperature T,rq(e) The.
effective temperature then becomes independent of the

energy,
Dp SCi

T.rr T+ ———(qs, +-', ),
@)ply

(22)

f, (e) = expL —./aT, *] (23)

and so does E(~&*.In the same approximation we replace
the term ($+Acqq)q/&/e in the integrand of (21) by
unity. Furthermore, we tentatively omit the E„terms
in (21) on account of the smallness of 8„.It will be
shown in more detail in the next section that they are
unimportant in the range of energy under consideration.

Then a Maxwellian distribution

~aq e&0/&sq 0

is a solution of the approximate equation
(20)

characterizes the ratio of the acoustical and the optical
contribution to the energy relaxation of the electrons.
E„isindependent of the energy and can be seen to be of
the order of 10 'A&op. For this estimate, the numerical

values for qs-Ge, Re=30 ev, De=10' ev/cm, ss-" eqs=5

X40" sec ' ' are used.
Integration of (14) and elimination of fi by means of

(15) gives

d p—Erp*E(r&*-
d6

fo dfo ~' (4+A ql ' f'&'l '*

=&..e --+ +
kT rfe I& a-scoq E e ) (e)

p

JE

provided that kT,* is defined by

E q*E( &*=(kT *)'t (2N q+1) (qsq+1) exp( —Ao&o/AT, *)
—I, exp(+Ao&p/kT )$. (24)

For high fields (high electron temperatures) most of the

electrons populate the energy range under consideration.

In this case the following expression fox the electron

temperature is obtained from (24)qi:

C
X(( +q1s)qfo((+Ao&q) —qsqfp($)$df+ —. (21)

kT,*=Z.p*E(.&*/Ao&p+Ao&p (qq q+-', ),

Z.,"Z(.&*=-', (eE*)srq(r) e/ms.

(25)

(26)

"H. J. G. Meyer, Phys. Rev. 112, 298 (1958).
qq H. J. G. Meyer, J. Phys. Chem. Solids 8, 264 (1959).
"H. 6. Reik, H. Risken, and G. Finger, Phys. Rev. Letters 5,

425 (1960)."B.N. Brockhouse, J. Phys. Chem. Solids 8, 400 (1959).

4' W. Franz, Z. Naturforschung 15a, 366 (1960).
4'W. Franz, Proceedings of the International Conference on

Semiconductors Physics, Prague, 1960 t Czech. J. Phys. (to be
published) $.
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OJ-

(27) in the entire region of energy, without introducing
any serious error.

In concluding this section, let us digress for a moment
to the case of small electric fields. Here from (27) the
following expression for the electron temperature, which
now only describes the very tail of the distribution, is
obtained:

k T,*=k T+E,p*E&.)*/Mp.

0.6- Most of the electrons however are now in the energy
range 0&&&2~0 where the solution is dificult to
obtain. This explains the mathematical complications
which are met in the theory of warm electrons.

Q2-

%co
I

24 co
8

3%co

Fro. 1. fp(p) as function of the energy for kT,*=2hs&p. I—high-
energy limit function exp( —p/kT, *); II—corrected function;
III—corrected function with the same normalization integral as I,

The electron temperature of each particular valley
varies approximately as the square of the electric field
strength. On account of the dependence of the effective
field on the direction of the electric field, the electron
temperatures are in general different for different
valleys.

The function fi(e), describing the nonuniformity of
the electron distribution, is now easily found by means
of (15), (23), and (25). This function,

fi(e) = —(E&.)*/kT *)fo(e) (27)

decreases approximately as the inverse first power of the
electric field. The smallness of fi at high fields makes it
plausible that the omission of higher terms in the
expansion (3) is not unjustified (see also reference 35).

The function fp(e), which for e) 2Acpp is given by (23)
and (25), can be easily obtained for smaller energies by
means of a numerical integration of (21), where —as a
zeroth approximation —the function fp(e) in the inte-
grand is to be replaced by (23). The result of such a
numerical integration for the somewhat marginal case
kT, =2Atpp is given in Fig. 1. Comparison of (23) and
the corrected function shows that deviations from (23)
only occur for energies e&Aco0. The range of validity of
(23) seems therefore to be larger than one might expect
from its derivation. The deviations are due to a sweep-
out effect of electrons with & &Acro caused by the electric
field, as for those electrons the influence of scattering on
the distribution is gradually dying out with decreasing
energy. We therefore conclude that for high electric
fields fp(e) may be replaced by (23), and for the
calculation of the drift, velocity fi (e) may be replaced by

dfp ( E,.e) ( E„.e )
I

kT.*+
I
= -

I
1+ — If.,

de t Appp J' ( kTAcop)
(29)

with kT,~ given by (24). For (E„/Ao~p)(e/kT, *)&&1, a
condition which is not very restrictive, this equation has
a Vamashita and Watanabe type of solution

E„e(1 1
fp(e)-exp — 1+

I
———,I . (3o)

kT,~ 2A(pp (kT kT,*)

According to the estimate E„=10 'Ao;0, the E„term,
which varies quadratically with the energy, prepon-
derates over the linear one only for energies ~&30~0.
Under the experimental conditions 78'K&T&300'K
and 10' v/cm&Ii*&7X10' v/cm, kT,* has values be-
tween Aco0 and 10Acoo. Therefore the F„ terms pre-
ponderate only in the unimportant tail of a Maxwellian
distribution and can be omitted. This means physically
that the energy loss of the electrons by interactions with

IV. RELATIVE CONTRIBUTION OF ACOUSTICAL
AND OPTICAL SCATTERING

In the preceding section the solution of the Boltzmann
Eq. (21), (15) has been given for the case of mixed
optical and acoustical scattering in the sense that in
(15), which essentially describes the momentum scat-
tering, the acoustical contributions have been taken into
account, whereas they have been neglected in the scat-
tering terms of (21). This means, as was already men-
tioned, that the contribution of the acoustical phonons
to the energy loss of the electrons has been neglected. In
the literature, considerable attention has been given to
the question of the relative contribution of the acoustical
phonons to the energy loss of the electrons. We therefore
want to reconsider this problem in more detail and to
give a justification for the procedure employed in the
preceding section for the case of high fields by discussion
of the solution of (21) when the E„ terms are not
neglected.

In the case of high fields, fp(e) is a slowly varying
function of energy. In the range e)A&op, fp(e+A&pp) and
(e+Aa&p)» in the integrand of (21) can be expanded. One
then gets instead of (21) the approximate equation
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acoustical phonons can be neglected for those energies
which actually are accessible to electrons under the
experimental conditions under consideration. In the
earlier work of Yamashita and Watanabe" only the
quadratic term in the energy was retained in (27), and
the conclusion was drawn4' that even in the case of
mixed acoustical and optical scattering, a Shockley type
of behavior should result. This, in fact, corresponds to a
complete neglect of the contribution of the optical
phonons to the energy loss of the electrons. It is inter-
esting in this context to discuss brieRy a method of
solution for Eq. (21) which has been proposed by
Franz. 4'44 Franz takes as a starting point for an
iterative numerical solution a zeroth order approxima-
tion which is obtained from (21) if the optical scattering
terms are neglected. For e) 2%up he consequently gets a
Gaussian distribution, which for the case of high fields
has a large half-width. 'this zeroth order approximation
deviates greatly from the nearly correct Maxwellian
distribution with the same normalization in the entire
range of energies. It is therefore not a good starting
point for an iterative solution in the case of high electric
fields.

In concluding this discussion, two remarks must be
added. In the foregoing it has been tacitly assumed that
thermal equipartition holds for the acoustical phonons
interacting with the electrons. It has been pointed out
by Stratton" and by Conwell and Brown" that for high
average energies of the electrons, a considerable amount
of interaction consists of the emission of acoustical
phonons which are not excited thermally. This, of
course, gives rise to a higher contribution of acoustical
phonons to the energy loss of the electrons; the more,
the lower the lattice temperature. In our case, in fact
even for kT, *=10hcop, most of the electrons are situated
in k space with an average distance 6k=10' cm ', and
therefore equipartition is still valid for the range of
lattice temperatures indicated above.

For k T,*&10Acop, where the emissive acoustical
processes would become important, the whole theory as
given in this paper is not applicable, because then the
distribution of electrons extends appreciably to such
values of the energy that the basic assumption of con-
stant effective masses certainly breaks down.

solution of the equation

cffp(»—jV p*(i)jV( &*(t')

de

Yc'$+hcop) & (P
Ljs—sreo~ e ) ce)

X$(n p+1)fp&» (/+ I'ico p) n,f—pc»(q)]dg

+I
($—hcoc) '* (P) '*

e ) (e)

X Q Dn;+1)fp ' ($ fico;) —n,f, —(p)] d'(, (31)

Dp hC~
T,cc(e) = T+

~~1 2kMp

$6+Scop) '

Mp

+(„,+1)I I
+.(P7 1)~) M'

(e+Iico,) & li'e —irico; ) &

X«n'I I + (n'+ 1) I )

in which the unimportant contribution of the acoustical
intravalley scattering on the energy relaxation of the
electrons has already been omitted. Here p= (D;/Dp)',
where D; is the deformation potential constant for
equivalent intervalley scattering, M; denotes the fre-
quency of an intervalley phonon, and n; is the number
of intervalley phonons present. The sums in the inter-
valley scattering terms of (31) extend over all equivalent
valleys with the exception of the particular valley j
under consideration. The functions f~c»(e) and the
energy gains E~p*'» and E(~&*&&)are, as in Sec. III, given
by Eqs. (15)—(18) where the effective temperature is
now defined as

V. INFLUENCE OF INTERVALLEY SCATTERING

In the absence of intervalley scattering, the electrons
are distributed in a Maxwellian fashion around the
diferent energy minima under consideration, with elec-
tron temperatures which, in general, are diGerent for
diferent valleys. We consider now the inRuence of
scattering to other equivalent valleys on the distribution
of electrons.

If equivalent intervalley scattering is taken into ac-
count, the function fpc» for a particular valley is a

"S.H. Koenig, J. Phys. Chem. Solids 8, 227 (1959).

Here E is the number of equivalent valleys in the band
under consideration. Equation (31) can be solved for
high electric fields, if intervalley scattering is small as
compared to intravalley scattering. This is the case for
e-Ge,"because intervalley transitions of the electrons
in which transverse acoustical phonons are involved are
forbidden. 4'

In this case of high 6elds the energy range e) 2Puop is,
just as in Sec. III, the most important one. In this
range, the eGective temperature and the energy gain

46 R. J. Elliot and R. T..oudon, J. Phys. Chem. Solids, IS, 146
(1960).
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L~;(.&'"'~' become independent of the energy because
(p+A(d) and (p —A(p) in (32) can be replaced by c. In the
same approximation, the expression (&+A(pp)& in the
optical scattering term of (31) can be replaced by p'. If
furthermore, in contradistinction to the procedure
followed in Sec. III, the function fp(')($+A&pp) is also
expanded, the equation

1s ol)taule(l 11'1stead of (3l ). Hei e Pq=- 1/AT, "(') RIld
kT,*("is given by (25).

If p is so small that the inhuence of intervalley scat-
tering on the energy relaxation can be neglected, while
it is still large enough to establish a stationary state
distribution between the valleys, the Maxwellian dis-
tribution

[—f—"' p(P ')]
fp") (p) =C, exp( —P, p) (34)

(pp P, t" t'5+A(d;) *' ($) '
=v— exp(P, ') '

M& Acpp ao

X Z L(.,+10' (~+A;)-;f. (~)]
llj

($—A&p;) * f $) *

+I

is a solution of (33). The constants C;, however, are no
longer independent, but are determined by the principle
of detailed balance:

E' (E+A&7 ~) '

X[(e,+1)fp(&'(p+A(p, )+n;fp(&)(p)]dp=E, (35)

X p [+,f (1)(t A(p.) (ti.+1)fp(i)(t)] dp (33) which can be easily obtained from (33).Insertion of (34)
llj in (35) leads to the following proportionality:

[(n;+1) exp (—P,k(p, /2) +N; exp (P,A(p;/2) ]E 1 (P,A(p;/2)
(36)

C~=CP)' 1—
A(p,P,

2 (2n;+ 1)
(37)

It follows from the normalization condition for fp("(p)
that the number e, of electrons in the valley j is pro-
portional to C,P; '. Therefore the population ratio g,/e
is given by

where E~ is a modified Hankel function. In the case of
high fields, the argument of Ej and the exponential
functions is small and the functions can be expanded.
Then the following result is obtained:

energy relaxation of electrons in a particular valley. The
function fp("(c) then deviates from the original Max-
wellian distribution (34). The influence of intervalley
scattering on fp(&'(p) can be obtained to first order if in
the intervalley scattering terms of (33) the zeroth
approximation (34) is inserted. This perturbation pro-
cedure can only be easily done if in the intervalley terms
the energy of the intervalley phonon is neglected, which
implies that in a consequent form of the approximation
C; from (37a) should be inserted.

If this is done, we get the erst approximation as
solution of the equation

n, P, '[1—A(p;P, /2(2n~+1)] 1

n pi P(&[1—A(p,P1/2(2n~+1)] '

d
(38)

——[fp'&'(p) exp(P, p)]

If furthermore in (37) and (38) the small terms
P,A~,/2(2ti, +1) are neglected, one gets

C= y exp(P, p)

C~= CPP

ti;/e= P;~/&1P (',

(37a)

(38a)

where (38a) is now exactly the ratio of number densities
for Knudsen gases in X containers with diferent tem-
peratures. This result is plausible because in going from
(38) to (38a) the energy of the intervalley phonon is
considered negligible as compared to the average energy
of the electrons.

Let us now turn to the case of such values of y that
intervalley scattering not only results in a particle trans-
fer between different valleys, but also does acct the

where

y =y (2ti,+1)/A(p, . (4o)

Before explicitly writing down the solution, we shall
discuss its general structure, which is of the form

fp"'(p) =C~ exp( P~p)+v Zi ~ i(p) e—xp( —P«)
where l extends over all valleys, including j. This solu-
tion is composed of the original zeroth order solution
plus a small admixture of the Maxwellian distributi. ons
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from all valleys including j with energy-dependent
coeKcients, the variation of which with the energy
however is small as compared to the variation of the
exponential function. The admixture of "foreign" Max-
wellian distributions can be understood from the fact
that electrons passing from the valley I to the valley j
after the interaction still have the average energy of the
valley /. They need a certain time until they lose the
memory of their origin by participating in intravalley
processes. Furthermore, the energy dependence of the
coefficients 3 ~ and 3, is a consequence of the energy-
dependent scattering probability for intervalley and
intravalley processes. That the deviation from the
original Maxwellian distribution increases with in-

creasing intervalley rate constant and increasing excita-
tion (2n,+1) of the intervalley phonon is obvious.

After this general discussion, the explicit form of the
solution of (39),

pi
f,&'&(p)= E, yP, C (.V——1)P,p+ Q ~

&~»' (p, —pi

p' exp[(P» —P»)&]—1
—d( f

nomena can be achieved by using the distribution func-
tion (41) and (42). This opens the possibility of a new
determination of the intervalley rate constant by an
analysis of hot-electron experiments.
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APPENDIX

A solution of Eq. (21) without the acoustical term ca,n
also be obtained for small energies as long as

(I,+1)fp(p+A~p) »i,—fp(p)
= (e,+1)fp(Ap»p) —e,fp(0). (43)

The analytical behavior of the solution in this energy
range is determined by the energy dependence of E( )*.
Here two cases have to be distinguished. For energies
a& co

——10 'A~o, E(~)* is approximately given by

Z&.)"'=&.o*(e/+~o) '»o, .

Ã gAGOO

fp(p) = fp(0) 2 [(»ip+ 1)fo(5ppo) —npfo(0)].[~.o*]'can be given. As is seen from (41), the deviat. ions from
the original Maxwellian distribution also depend on the
differences of the electron temperatures. Application of
the principle of detailed balance to (41) finally leads to
the following expression for the constant E;:

For energies co=10—
'Acoo&e&AMO, L~( )* is nearly inde-

pendent of the energy:

Ji &r)*=L',, i"= el'*».„i(2c/mo):.

The solution of Eq. (21) in this energy range conse-

Xexp( P,')+—vP»& E exp( —Pip) (41)
«» p»

—pi

p»Ap»;

Z, =C|P;o 1—
1

'
2(2e,+1).

The solution for small energies in this energy range (as
long as (43) still holds) is then

2vP'Z-i L1/Pi-1/P ] 4(5&op) l

fo(e) = fo(o)——yP; Pi ln(P»/P, ) . (42) 3E.o*Eap i*

X»» +1 o heep —»i 0L( ~ )f ( ) .fo( )]( o)
In a subsequent paper, a theory of current and

anisotropy of hot electrons, based on the distribution. The omission of the acoustical terms in (21) is pos-
functions of this paper, will be given. lt will be shown sible if fp(As&p) is not too small compared to fp(0). This
that a quantitative description of hot electron phe- is always the case for hot electrons.


