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On the basis of the Pade approximant method we deduce from the exact series expansions for the Ising
model that the reduced magnetic susceptibility behaves at the critical point as xt.,=L0.09923/(0. 101767—w}]«', xb„--L0.152773/(0. 1561789—w)]'", x„=[0.22138/(0. 218156—w]'", xt =L0.2432/(2 —v3 —w)]'",
x,~=L0.35724/(v2 —1—w)]'", and xs=t 0.4506/(1/v3 —w)]r", where w=tanh(I/kT) ancl the last figure
quoted is somewhat uncertain. The spontaneous magnetization is found to behave as (Io/I )f„
=L12.5(0.664658—ss)] .s, (Io/I„)b«=$10.4(0.5326607 —s )] 3, (Io/I„)„,=L10.9(0.411940—s'}]0.3, where
s=exp( —2I/kT) and again the last place quoted is somewhat uncertain. The numbers 5/4 and 7/4 have
an error of at most 10 ', and 0.3 of at most 10 '. The lattices referred to are fcc, face-centered cubic; bcc,
body-centered cubic; sc, simple cubic; t, triangular; sq, simple quadratic; and h, honeycomb.

INTRODUCTION
' "T is frequently the case in the solution of physical
~ ~ problems that one is unable to obtain a closed form
for the answer. Yet one may, in principle, have com-
pletely solved the problem. Consider for example the
three-dimensional Ising model. Methods have been
developed' to compute any finite number of terms in
the power series expansion of the partition function,
both about infinite and zero temperature. From the
theory of functions of a complex variable' we know
that a knowledge of every term of the power series
(convergent) is equivalent by analytic continuation to
a knowledge of the function everywhere (as long as
there are no "natural boundaries" ). However, practi-
cally speaking the power series may converge so slowly
as to be a most dificult way to evaluate the function.
In fact, the power series may not even converge at all
at the point of interest, even though the function
considered is perfectly smooth and well behaved.
LConsider, for example, tanh(10. 0).j From the standard
theory of analytic continuation, what one must do to
continue the function beyond the circle of convergence
of its power series is clear. We simply compute the
value of the function and as many derivatives as
necessary to as high a degree of accuracy as desired at
some new point inside the circle of convergence but
closer to the point of interest than our original origin.
Ke obtain a new convergent series expansion for the
function. By repeating this process suKciently often
we may finally obtain the value of the function at the
point of interest (presumed non-singular).

In certain cases, all this work is not necessary. Ke
may automatically obtain the analytic continuation by
appropriate manipulations on the power series. Con-

*SVork performed under the auspices of the U. S. Atomic
Energy Commission.

t Now at Department of Physics, University of California,
San Diego, California.

' C. Domb and M. F. Sykes, Proc. Roy. Soc. A235, 247 {1956)
and references contained therein.

~ See, for instance, E. T. Copson, An Introduction to the Theory
of Functions of a Co1nplex Variable (Oxford University Press,
New York, 194g).

sider, for example, a function f(z) which has a singu-
larity at s= —1 and all its other singularities within a
circle of radius unity about s= —2. Suppose we wish
to know f(2) and f(~). The change of variables
z=3tt/(1 —2w) maps the exterior of the circle of radius
unity about s= —2 in the s plane into the unit circle
in the m plane. The points s=2 and s= ~ go into
w=2/7 and 1/2, respectively. Since a power series
converges out to the nearest singular point of the
function it defines, the power series of g(tt) = f(3w/(1—2tt)) converges for all ~w~ (1 and thus we may
easily compute f(2) and f(ro) from the power series
expansion of g(w). A case of very similar nature to the
example just discussed is the spontaneous magnetization
for the three-dimensional Ising model. The power series
here is known not to converge at the critical point, '

which makes the determination of its behavior near
the critical point very difficult from the power series
expansion. It is doubtless true that a trick similar to
the one used in the example given above would enable
one to compute the value of the spontaneous magnet-
ization for every real temperature [the series expansions
are given in terms of exp( —A/T)J less than the critical
temperature. The trouble is that one does not a priori
know the location of all the singular points of the
spontaneous magnetization. This trouble could be
avoided if we could introduce a sequence of approxi-
mants to the function value which is invariant under
the group' of homographic transformations, z=zlrv/
(1+Bw). One would expect such a sequence to converge
at least as well as the best power series obtainable by
any trick of the type described above. Such a sequence
should automatically e6ect the analytic continuation
to any point, not directly blocked o6 from the origin
by singularities of the function under consideration.

The sequence of fiV, IVj Pade approximants has the
property that it is invariant under the above mentioned
group of homographic transformations. 4 In general a

'Qe shall actually consider only this subgroup of the full
homographic group s= (A+8m)/(C+D7/f).

4 G. A. Baker, Jr. , J. L. Gammel, J.. G. Kills, J. ATath. Anal.
and Applications 2, 405 (1961).
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Pade approximant is of the form of one polynomial
divided by another polynomial. In the LX,Mj Pade
approximant the numerator has degree M and the
denominator degree iV. The coeKcients are determined

by equating like powers of s in the following equations:

f(s)Q(s) P(s) gscv+iv+I+BsM+K+2+. . .

Q(0) = 1.0,

where P(s)/Q(s) is the L1V,M$ Pa,de approxima, nt to
f(s) Th.e full range of convergence of the sequence of

(X,Ej Pade approximants is not known. For certain
classes of functions their convergence has been proved
and for many examples it has been shown to be quite
rapid. For a fuller discussion of these questions the
reader is referred to the work of Baker, Gammel, and
Wills4 ' and the references quoted therein.

The purpose of this paper is to use the Fade approxi-
mant method (approximation by the sequence of fE,X]
approximants) to deduce relatively accurate values for
the magnetic susceptibility and spontaneous magnet-
ization for various three-dimensional Ising model
lattices. We also consider the magnetic susceptibility
for several two-dimensional lattices so that the value
of the critical point deduced by this method may be
compared with the exact value. '7

2. ESTIMATION OF THE NATURE AND LOCATION OF
THE CRITICAL POINT FROM THE SERIES

EXPANSIONS FOR THE MAGNETIC
SUSCEPTIBILITY

The simplest assumption that one can make concern-
ing the nature of the singularity of the magnetic
susceptibility for a two- or three-dimensional Ising
model lattice is that in the neighborhood of the critical
point the magnetic susceptibility is proportional to
(1—T,/T) ' g. The work of S-y—kes and Domb'' indi-
cates that this assumption is very likely so. If it is so,
then the logarithmic derivative of the magnetic suscepti-
bility will have a simple pole at the critical point, and
its residue will give the nature of the singularity. Since
the Pade approximant is the ratio of two polynomials,
a simple pole has the possibility of being exactly
represented by the Pade approximant and hence one
would expect convergence at this type of singularity
to be particularly good. For this reason we have
computed the $E,S] Pade approximants to the loga-
rithmic derivatives of the magnetic susceptibilities.
EVe have used the series expansions given by Sykes
and Bomb." The logarithmic derivatives of the
magnetic susceptibility, "x, are

' G. A. Baker, Jr. and J. L. Gammel, J. Math. Anal. and
Applications 2, 21 (1961}.' L. Onsager, Phys. Rev. 65, 117 (1944).' R. M. F. Houtappel, Physica 16, 425 (1950).

s M. F. Sykes, J. Math. Phys. 2, 32 (1961).
9 C. Domb and M. F. Sykes, J. Math. Phys. 2, 63 (1961).
' Ke are actually considering the reduced high-temperature

susceptibility defined as ATxo/ns'

d lnX.g„= 12+120w+ 1188w'+ 11664w'+ 114492tr, '

+1124856w"+11057268ws

+108689568w'+
cf 1Mbcc=8+48w+344w'+2016w'+13928w'+83376w"'

+567512w'+3443136w'+ 23173256w'+

d 1nx„=6+24w+ 126w'+ 528w'+2646w'+ 11160w'

+54942ws+236448w'+1147590ws

+4995384w'+23995758w" +
d 1nX]

—=6+24w+90w'+336w'+ 1266w4+4752w'
JN

+17646w'+65760w +245646w'+917184w'

+3422898w"+12773952w"+
nX, sq =4+8w+28w'+48w'+ 164w4+296w'+956w'

1760wr+ 5428w s+ 10568ws+31068w io

+62640w"+179092w"+369160w"

+1034828w'4+
d lnXg

=3+3w+9w'+ 15w'+33w4+27w'+87w'

+159w'+ 297w'+243w'+ 795w"+1503w"

+ 2499w"-+2355w"+7209w'4+ 13503w"

+21729w"+22707w" +64299w "+120975w"

+192411w"+214107w"+571461w"

+1086972w-''+

where fcc stands for face-centered cubic lattice; bcc,
body-centered cubic lattice; sc, simple cubic lattice; t,
triangular lattice; sq, simple quadratic lattice; h,
honeycomb lattice; and

w = tanhI/kT, J= exchange integral.

In Table I we have listed, except where otherwise
noted, the location of and residue at the closest pole
to the origin of the L1V,S] Pade approximant. By
examination of the results listed in Table I it seems
reasonable that, within an error of the order of a few
thousandths, all the three-dimensional lattices have

g =0.25 and all the two-dimensional lattices have
g= 0.75. These results conhrm the previous observations
of Domb and Sykes. '

It should be remarked that the poles in Table I
which lie nearer than the one which corresponds to the
ferromagnetic critical point always have a zero very
close by and represent a severe perturbation of the
function value over only a very small range. The
occurrence of these perturbations is not clearly under-
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TAaLz I. Results derived from d Inx/dw.

].ocat Ion

0.10101010
0.10187683
0.10171078

I'esIdue

—1.2243648
—1.2564708—1.2451572

0.13953488
0.15593068
0.15618195
0.1.5601592

residue

—0.9345592
—1.242589—1.2500231—1.2392262

location

0.19047619
0.21510662
0.21896751
0.21815114
0.21818264

(—0.18387029

I'esldue

—0.8707483—1.2048243—1,2808656—1.2505286
—1.2518014

0.00068696)

10

location

0.26666667
0.26705389

(—0.12912285
0.26671401
0.26392285

(0.22948115
0,26795019

0.267949193

residue

—1,7066667—1.71;24366
0.00018936)—1.7055748

—1.7516520
0.06541672)—1,7495212

location

0.28571428
0.41118648

0.40926772
0.41644866

0.41216606
(—0.20919322

0.41412464
0.41421058

0.414213562

residue

—0.6530612
—1.6545587

—1.6257290—1.7973526

—1.6823402
—0.00003223)—1.7458396
—1.7496448

location

0.33333333
0.50000000

residue

—0,3333333—1.0000000

0.56793836
(—0.07395963

0.57301019
0.57266504

(—0.09651947
0,57737042
0.57739267

(—0.24445536
0.57736770
0.57737006

(—0.49713508
0.5773502692

—1.5302682
0.8X10 s)

—1.6176357—1.6104612
—0.35X10 ')
—1.7512127
—1.7521167

0.8X10 s}
—1.7510165—1.7511293

0.738X10 ')

no positive real pole
0.56797947 —1.5308261

stood, but in the examples studied by Baker, t ammel,
and Wills' ' they have not impeded the convergence
elsewhere.

To test the consistency of these results and obtain
more accurate estimates of the location of the critical
point we have raised the three-dimensional suscepti-
bilities to the 4/5 power and the two-dimensional ones

to the 4j7 power. This operation has the effect of
converting the ferromagnetic singularity into a simple
pole. In Table II we list the location of the nearest
pole and its residue for the L1V,lVj Pade approximants
to Lg(to) j".

From looking at the results listed in Table II we see
that the Pade approximants have converged to the

TAnLz II, Results derIved from (g)'".

1
2
3

5

location

0.10204082
0.10174095
0.10177220
0.10176345

fcc
residue

—0.09958349—0.099113327—0.099263130—0.099202123

location

0.16129032
0.15627479
0.15617854
0.15617908

bcc
residue

—0.16649323—0.15314145—0.15277110—0.15277365

location

0.22727272
0.21871837
0.21804071
0.21819754
0.21814435

sc
residue

0.24793388-0.22349263—0.22055930—0.22169306
—0.22121910

9
10

location

0.26923077
0,26837648
0.27030309

(0.21287916
0.26784605

0.26795882
0.26795969

(0.12757395

0.267949193

residue

—0.248S2071—0.24526609—0.246644S8
—0.0023842)—0.24297979

—0.24383274
—0.24383884
—5,56X10 ')

location

0.46666667
0.41823005
0'41404192

0.41281162
(—0.23886399

0.41421872
0.41420612

(—0.19136145
0.41421714

0.414213562

residue

—0.49777778
-0.37414691—0.35510985

-0.34657517—0.00001166)—0.35728803—0.35719057—0.9X10—s)—0.35728743

location

0.73684211
0.56866762
0.56346843

(—0.14787515
0.58226219

0.57767633
0.57719100

0.57734619
0.57734607

(—0.01404287
0.57737434
0.57734262

(—0.54474770
0.57734823
0.57735732
0.5773502692

residue

—0.93074791—0.42032321—0.40380449—0.00000302)—0.47764838

—0.45254064—0.44915654

-0.45052022—0.45051897—1.15X].0-»)
—0.45082173—0.45045917—0.00015766)—0.45052893—0.45070361
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TAsLE III. The [X,X$ Pade approxitnants to (w —tv, )d 1nx/dw at w, .

1
2
3

5
6
7
8
9

10
11

fcc

—1.2591654—1.2497759
—1.2497511

bcc

—1.2211120—1.2507893—1.2498902
—1.2493802

—1.2253865—1.3044557—1.2501891—1.2507423
—1.2505479

—1.7320495—1,7320495'
—1.7479548—1.7508444—1.7494566

sq

—1.5672233
—1.7058387—2.0000000
—1.7279384—1.7515982—1.7498932—l.7497973

h

—1.3660254
0.0

—1.6096621
—1.7179725—1.8376120—1.7409649—1..7542884—1.7503526
—1.7501918
—1.7501958'
—1.7500932

a Pole at -0.562 )&10 ~ with residue of —8.4)(10 '4. b Pole at 0,11860601 with residue of -2.2 )&10 '.

known answers for the location of the critical point
within a few parts in the sixth place for the sq and h
lattices and within a, part in the fifth place for the
triangular lattice. The rate of convergence for the
three-dimensional lattices is such that about the same
degree of accuracy is obtainable for them as was
obtained for the two-dimensional cases. Furthermore
they seem to show an oscillatory pattern of convergence
(starting with cV= 2 for the loose packed lattices) which
enables one to estimate the error. Using the rate of
convergence as a guide to interpolate the last two
approximants for each lattice, we estimate for the
critical point.

fcc m. =0.101767 Residue=0. 09923

bcc m, =0.1561789 Residue =0.152773

sc w, =0.218156 Residue=0. 22138

where the last place quoted must be considered rathn
uncertain. It is to be noted that these estima, tes are
also consistent with those of Table I. They also round
to the answers given by Bomb and Sykes, except for
the fcc which however differs by an amount which is
less than their quoted error.

As an additional consistency check on our procedures
we may now remove the simple pole in the logarithmic
derivative which corresponds to the ferromagnetic
critical point by multiplying the logarithmic derivative
by (w —w,). We may then use Pade approximants to
evaluate (w —w, )d in'/dw at w, . Actually, for the
close-packed lattices this refinement is not strictly
necessary as the power series converges reasonably
well at m, . For the loose packed lattices x goes to zero
for a value of w somewhat smaller (algebraically) than.
—m„ the antiferromagnetic critical point. This zero
necessarily produces the maximum in Xo observed by
Burley. "' lt also causes a singularity in d lnx/dw which
slows the convergence of its power series so that the
use of the Pade approximant method is necessary to
obtain a reasonably accurate value at m, from the
terms available. We have listed the values of the $E,Ãj
Pade approximants to (w —w.)d in'(w, )/dw, in Table

"D. M. Burley, Phil. Mag. 5, 909 (1960);

5.0

i I i i
]

I I i I
/

i i i I
[

i l([l [i
fI

body-centered cubic f~

p. simple cubic
'5. simple quadratic l~

4. honey comb

11

(4)

(4)
rg

ii i I

-I.O -0.5 0.0 0.5 ID

.I."IG. i. Reduced magnetic susceptibility vs njord, . for the loose-
packed lattices. The discontinuity in the vertical sca, 'le at 1.0
should be noted.

III. They show consistency with the assumed values
for g within an error of at most 10 '. The exact values
of m, were used for the two-dimensional cases.

In Figs. 1 and 2 we have plotted the reduced magnetic
susceptibility vs w/w, . For loose-packed lattices this
plot is carried over the whole disordered range from
—I to +1.The close-packed lattices are carried further
in the negative direction as they have no antiferro-
magnetic state of order and hence no antiferromagnetic
transition. %e see that the magnetic susceptibility
curves are differentiated almost entirely by the di-
mensionality of the lattice and the coordination number
is relatively unimporta, nt. These figures are based on
the Pade approximants to Ly(w)j'". We have listed
the coe%cients for them in an Appendix.
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IO.O-
I j I j I I

~
& 1

j I l I l
j j l[l(i TAnx. z IV. The (X,1Vj Pade a mx''I, a e approxiynants to

u n I0/I„)/du at u, .

I.0—

1
2
3

6
/

9
10

~ ~

~ ~ ~

0.43022570
0.31992175
0,32227436
0.32124883
0.30826516
0.30886220
0.30741574
0.30736227

0.54410588
0.32717390
0.32995454
0.19776749a
0.32193537
0.30638038

sc

0.30938496
0.28306575
0,30132063
0.30307992
0.30122094

a Pole at +0.577, zero at +0.557.

OO I I I I I I l I I I I I I I I

0.0 0.5 f.0

Fio, 2. Re u
packed lattices. The d' t' ' ' '

n a
e uce magnetic susce tibilit

1 h Id b o c1

' ne iscontinuity in th
' '

n a

3. ESTIMATION OF THE NATUR
SPONTAANEOUS MAGNETIZATION AT

E OF THE

THE FERROMAGNETIC CRITICAL
POINT

As is mell known from the wo
and Na a'4 t»

e work of Yang, " Potts, "
aya, the spontaneous ma nt" gnetizatton is propor-

latt~ces If we a,ssume th h
or t e two-dimensional Isin

magnet-a,ssume that the spontaneous moa, t e (T, T)" then-
gari mic erivative of t

n s o it. We remark that it is easy to
m e known exa,ct values that t

t th d 'll u or ee o wi give the exact re

finite order approximant.
na cases y the computation of oonly a

Using the results of Domb and 8 kes'
additional f functions

d hi(lp/I„)b„/du
= —SN' —112N'2u +128u' —1680u'+3872u" —3368u"

0 Ioo SC

)

) /
= —6u' —60u'+ 72us —630u P+ 1344uy —6900u'

+18960u' —79332u'P+ 246624 "u"—939900u"+
where

u = s', s= exp( —2J/kT) = (1—tt)/(1+m).

Rather thanan proceeding as we did in Sec. 2
use our knowledge of th 1 poe ocation of the

1 p bably make our taskwe will roba
i we a so remove it. Thus wew

' . us, we orrned P~,1V]

(1—u) (u, —u) d log(Ip/I„)

I.O

where the ss'
''
in the denominator w - '

e imit of the multi 1
'

s
u —+ ~. The

.ip ying factor 6nite as
e reason for this re uirq ement is that the

ic envatives of the s one spontaneous magnet-
e two- imensional cases tend to zero i e

(sc) fs 24u"'+-—
(fcc) fs ——u"+-

7

we obtain for the logarith
'

d

g I
mic erivatives of

ooy

d hl(Ip/I~)foo/du
= —12u' —264u"+288u" —720u'4 —4032u"

+11424u"—4N —6996m'7 —3648N's —19680N'9

—23184uso+266904us' —404064u"+ )

8

Qe— slmplo qood, ohc

honey comb ——

face-centered cubic ———

body-centered cubic

simple cubic

"C N YanC. 5. Yang, Phys. Rev. 85, 808 (1952).
. 3. Potts, Phys. Rev. 88, 352 (1952).

"S.Naya, Progr. Theoret. Phys. (Kyoto) 11, 53 (1954)

I

o.9
I

Q,e
z/z. .

FIG. 3. S ont'p a,neous magnetization vs «j.,M go

I.O
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TABLE V. Results derived from (10/I„)~.

773

3
4
5
6
7
8
9

10
11
12
from g

0.70049101
0.70049101

~ ~ ~ +

0.66360465
0.66433442
0.66399412
0.66371331
0.664658

fcc
slope

—7.2065603—7.2065603
~ ~ ~

—12.661934—12.495958—12.577421—12.651636

0.57254334
~ . ~ a

0.53413230
0.53037024
0.53159797

0.5326607

bcc
slope

—6.0916502
~ ~ ~

—10.224762—10.910849—10.653271

0.45737318
0.41212918
0.41162508
0.41164581
0.41092472

0.411940

SC

slope

—5.9809307—10.861860—10.947899—10.944034—11.142299

' The $6,6j and the L7, '? J for the fcc are identical and the $8,8) does not exist. The $5,5) for the bcc does not exist.

u ' (except for the honeycomb lattice where it is u—l).
W'e would expect the Pade approximants to do better
further out if the functional behavior and the form of
the approximant match at infinity. In Table IV we
have listed the value of these Pade approximants at N, .
From these results we estimate that (Is/I ) goes to
zero like (u,—m)s" with an error of at most 10 ' in
the power.

As a 6nal check on the internal consistency of our
results, if we form the fiV,Ã) Pade approximants to
(Is/I„)"" we should find a simple zero at the critical
point. We see from Table V in which we list the location
of the appropriate zero and the slope at that point
that while the values for u, obtained from the spon-
taneous magnetization are not as accurate as those
from the magnetic susceptibility, they are however
consistent with them within a few thousandths. The
reason that these results are less accurate than those for
the magnetic susceptibility is that the logarithm of
spontaneous magnetization has roughly four complex

singular points which are as close or closer to the origin
than the critical point. (There are not enough coeK-
cients available for the simple cubic to identify more
than one closer singularity. ) In order to do a good job
at the critical point, the Pade approximant must also
take care of these other singularities.

In Fig. 3 we have plotted the spontaneous magnet-
ization vs s/s, over the whole ferromagnetic, ordered
range. The diRerence between the appearance of Fig. 3
and Fig. 1 of Burley' is more apparent than real and is
the result of plotting vs s/s, rather than T/T, as he
did. As the critical points for the three-dimensional
lattices are generally at higher temperatures than for
two-dimensional ones, this eRect causes the diRerence
in appearance.
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APPENDIX

7"e list here the Pade approximants from which the figures were prepared.

X~-= L(1 0—6 4878493w+29 266940w' 11 816067w' —7 4245573w')/

(1.0—16.087849w+ 89.630294w' —283.77802w'+ "/4. 773566w') g'"
Xb„=L (1.0+23.667027w+ 134.51767w'+ 176.26096w' —92.930262w')/

(1.0+17.267027w —15.671302w' —666.90235w' —1300.7945w4) g"4,

x„=L (1.0+6.1802658w+ 6.3507605w' —2.1384202w'+ 25.127806w'+4. 8168171ws)/
(1.0+1.3802658w —21.394515w' —26.70/960w'+24. 087141w'—122.05113w') j'~'

X,= L (1.0+0.87105230w+3.0148162w'+ 3.11'75050w'+ 3.0571423w4 —2.81653/6w')/
(1.0—2.5575191w—0.95124068w' —8.4221376w' —11.149369w4—19.448134w') )''4

X a= L(1 0+4.4331741w+6 6323991w'+4 '/961072w'+1 7261877w' 0.33157888ws
—0.57263274ws —4.3028266w')/ (1.0+2.1474598w —3.1740397w' —11.015221w' —13.264413w

—9.5895365w' —6.7966830w' —9.7192691w')$ ",
Xg=L (1.0+1.7262288w+ 3.2558681w'+3. 1997445w' —6.1144361w'—11.161589ws—20.974653w'

—14.779058w'+4. 1782428w'+9. 9072950w'+ 17.623607w"—3.555810"w"+2.8837465w")/
(1.0+0.011943082w+0.90886364w' —2.4094170w' —11.214862w4 —2.9776 &7w' —7.1011106ws

+19.066060w7+ 27.538787w'+ 15.376841w +8.81217/Ow' —23.012t'18w"+11.014469w")j'~'
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(Io/I )f„=L(1.0+3.8805092u+7.8281044u'+ 13.419386u'+14.181302u' —1.7565205u' —38.657407u'

60.306173uz —93.189067uo —77.8'I4280uo —75 149353u'o+ 27 847042uu —48.093601uu)/

(1.0+3.8805092u+ 7.8281044u'+ 13.419386u'+ 14.181302u4—1.7565205uo —31.990740uo
—34.436111u'—41.001704u'+ 11.5882963u'+ 19.392664u"+96.136905u"—53.146689u")]"I

(Io/I~) b«= L(1 0+3 5481591u+'I 8806661u' 1 1714755u' 19.310113u' 46 487253u' 37 851754u'
—26.364680u' —39.358346u')/ (1.0+3.5481591u+7.8806661u' —1.1714755u' —12.643446u4

—22.832859u'+14.686020u'+ 19.158817u'—9.9683914u')]""
(Io/I„)„=L(1.0+3.5495749u —5.7826623u' —24.453557u' —8.2315745u'+15.570039u'+49. 840321uo

+13.621297u7)/ (1.0+3.5495749u —5.7826623u' —17.786890u'+ 15.432258u'+ 17.018957u'

+11.021825u' —35.665913u')]"".
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Measurement of the Refractive Index of Lucite by Recoilless Resonance Absorption*

GRQDzINs AND E. A. PHILLIPs
Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cansbrzdge, 3IIassac)zusetts

(Received June 20, 1961)

A method of frequency-modulating a monochromatic electromagnetic wave by varying the optical path
length between the source and detector is described. The method has been applied to the measurement of
the refractive index of Lucite for the 0.86 A radiation emitted from Cos; the small frequency shift was
detected by recoilless resonance absorption. The refractive index was found to be 1—n = (1.29~0.03) )&10 ',
in agreement with classical theory.

HIS paper describes a method of frequency-
modulating a monochromatic electromagnetic

wave by varying the optical path length between the
source and detector. The method has been applied to,
and is described in terms of, the measurement of the
refractive index of Lucite for the 14.4-kev radiation
emitted from Co". The measured refractive index
agrees, within the 2~/A experimental uncertainty, with
the simple theory applicable when the radiation energy
is much greater than the binding energy of the electrons
in the refractive medium, as in this case. The technique
is in principle applicable to the nearly monochromatic
radiation emitted from optical-frequency masers.

It is instructive to consider the method from two
points of view, first in terms of frequency modulation
and then in terms of a Doppler shift. Consider a source
S and an observer (in our case a recoilless resonance
absorber) 2 separated by a distance x )Fig. 1(a)]. A
wave of angular frequency + emitted by S will have the
form e'"" "' at A. If a length I. of material with re-
fractive index e is placed in the optical path, the wave
becomes e'"" *"+'&,where the phase advance

y = (1—zz) coL/c.

If g changes with time, the instantaneous frequency
seen by A will be (s&+~/dt). This is done by moving a
wedge-shaped piece of material to produce a frequency

*This work is supported in part through a U. S. Atomic
Energy Commission contract, by funds provided by the U. S.
Atomic Energy Commission, the Off'ice of Naval Research, and
the Air Force Office of Scientific Research.

shift

1 dp——=Av= v

2' 4
(1—zz) dL

(2)

so that
(1—zz) =1.29X10 ',

(hv/v)g4 g, =4X10 "dI./dt.

The frequency shift thus obtained for reasonable values
of dL/dt can be det. ected by recoilless resonance
scat tering. '

A schematic drawing of the experimental arrange-
ment is shown in Fig. 2(a). The recoilless resonance

'R. L. Mossbauer, Z. Physik 151, 124 (1958); R. V. Pound
and G. A. Rebka, Jr., Phys. Rev. Letters 4, 337 (1960).

An equivalent point of view considers the radiation as
being Doppler-shifted during the refraction by the
moving wedge (Fig. 1(b)]. As it leaves the wedge the
radiation is deflected (toward the normal, since zz(1)
by an angle

a9= (1—zz) tann.

The change in momentum of the photon is Ap= phg,
and since the wedge is moving at a speed V it does
work on the photon, increasing its energy by

AE= Vdp= Vp(1 —zz) tann=E[(1 —zz)/c]V tann,

which is equivalent to Eq. (2) above.
For 14.4-kev radiation, the refractive index of Lucite

is (see below)


