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= 3.0.72 —lnE, where E is in electron volts. For the
(110)chains S=d and Eq. (3) becomes h. = (13IO/y) —1.
The upper solid curve in Fig. 2 follows from this
relation with Io computed from Eq. (9) with @=0.
The dashed curve shows the trend of A with energy
as revealed by the calculations of Gibson et al. (see

their Fig. 27). The agreement is satisfactory, the
slightly greater focusing found in the three-dimensional
model probably resulting from the effect of neighboring
chains of atoms. The lower curve in Fig. 2 corresponds
to I0= 1, that is, to the commonly used equivalent
hard-sphere approximation.
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The first anharmonic contribution to the ground-state energy of a body-centered cubic lattice of electrons,
oscillating in a uniform background positive charge, has been calculated. The result is —0.73r, rydbergs,
with r, the radius, in Bohr units, of the sphere equivalent in volume to that occupied per electron. Combining
this term with previous results gives for the ground-state energy of a dilute electron gas the expression
A=I'r, „—1.792r, '+2.65r, & —0.73r, '+O(r, 2), where E&, p comes from the overlapping of electronic
wave functions and falls off exponentially with r,&; while the r, and r, & terms are, respectively, the
Coulomb energy of a bcc lattice and the zero-point energy of the electrons.

The "correlation" energy corresponding to the above expression, as well as the kinetic and potential
parts, has been plotted and an interpolation has been made between the low-density curve and the high-
density expression of Gell-Mann and Brueckner. The interpolated curves give strong evidence that the
next term in the above low-density expansion for I' is approximately —0.8r, ~. If the high-density expression
is rapidly converging near r, =1, it also is predicted. that the r, term in the high-density expansion will be
approximately —0.02r,

IGNER' originally pointed out that the ground-
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~ ~

state energy of an electron gas (electrons
moving in a uniform background of positive charge)
approaches the energy for a body-centered cubic lattice
of electrons as the density approaches zero. This energy,
as calculated by Fuchs, ' is —1.792r, ' rydbergs per
electron, where r,, is, in Bohr units, the radius of a
sphere equal in volume to the volume per electron of
the gas. The next approximation to the energy of
the dilute gas is obtained from the zero-point motion of
the electrons about their lattice points, which becomes
a problem of evaluating the normal modes of the
oscillations. Recently, two accurate calculations for the
zero-point motion have been made independently, '4
the results agreeing within one percent. We shall take
the average of these two results, 2.65r, l, which may
be compared with the values 3r, :and 2.7r, ' obtained
by Wigner' from two different estimates.

A complete solution of the lattice dynamics which is
encountered in the dilute electron gas problem is
obtained by expanding the Coulomb potential in
powers of displacements of the electrons about their

~ Permanent address: University of Bristol, Bristol, England.'E. P. Wigner, Phys. Rev. 46, 1002 (1934); Trans. Faraday
Soc. 34, 678 (1938).' K. Fuchs, Proc. Roy. Soc. (I.ondon) A151, 585 (1935).

'Rosemary Coldwell-Horsfall and A. A. Maradudin, J. Math.
Phys. I, 395 (1960).

~ W. J, Carr, Jr. , Phys, Rev, 122, 1437 (1961l.
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X[v(f',s') V„][v(f—f', s") |7.]—, (3)

respective lattice points. The energy then is an infinite
series in powers of r,=', the terms beyond the r, ' term
being the anharmonic corrections, which may be
calculated from perturbation theory. The first anhar-
monic correction, the r, ' term, comes from the sum of
a second-order energy perturbation due to cubic terms
in the displacements, and the first-order perturbation
due to the quartic terms in displacements.

From Appendix lI of reference 4, the cubic and
quartic terms lead, respectively, to the energy expres-
sions (in rydbergs), per electron:
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The v's are the polarization vectors for the normal
modes, the oI's are essentially the frequencies (r&=2ihI

in rydbergs, with I the frequency), the f's are the wave
vectors, s=1, 2, 3 denotes the three polarizations, &7 is
the number of electrons, V' is the gradient operator,
and n is a lattice vector in real space having components
that are all even or all odd integers. Since values of v
and co have been tabulated in reference 4 for 512 points
in f space, these points being the centers of space-
filling polyhedra having 1/512 times the volume of the
unit cell in f space, we use the approximation whereby
each sum over f is replaced by iV/512 times the sum
over the 512 points. The resulting expression for e3 was
programmed for machine computation, as indicated in
the Appendix, and evaluated on an IBM 704 electronic
data processing system. The result is

e3———1.14r, '.

A check on the accuracy of the calculation was obtained
by simultaneously running the program for the case
where all the co's are set equal to unity, a case which
can be evaluated analytically. In this special case,
which corresponds to the Einstein independent oscil-
lator model, exact values of the sum for all points in f
space were obtained by summing over f', s, s', and s".
From a comparison with these points it was concluded

that the approximate method. of summation was
accurate within 2 to 3%. It is to be noted that all
terms in (1) are positive or zero so that the error in the
sum is no greater than that of the individual terms.

An interesting feature of the calculation was the fact
that the function of f obtained after summing the
right-hand side of (1) over f', s, s', and s" rarely
deviates by more than 25% from its average value,
except near f=0, where the expression goes to zero.
Another point to be noted is that the value of (1) is
about four times as large as the value obtained from
an Einstein approximation, indicating that the inde-
pendent oscillator model can be used only as an order
of magnitude estimate for the anharmonicity of lattice
vibrations.

The contribution of the quartic term to the energy
was obtained with the aid of a desk computor, the
result being

~4
——0.409r, '. (6)

The sum of (5) and (6) gives —0.73r, ' ry, with an
estimated accuracy of 3'Po, for the first anharmonic
correction to the energy. Thus the ground-state energy
of a dynamic bcc lattice of electrons in a uniform
background of positive charge is

EI———1.792r, i+2.65r, i —0.73r 2+O(r, ) 2(7).

However, Eq. ('7) gives the energy of an electron gas
only in so far as the electrons may be treated as dis-
tinguishable. %hen the electronic wave functions begin
to overlap appreciably, additional terms proportional
to exp( —constXr, '*) enter into the expression, as first
pointed out by signer. ' These exponential terms arise
principally from exchange, as shown in reference 4.
Although, formally, exchange effects easily may be
included, actual calculation is difficult and the following
approximation has been used:

E,» ——(21r, ' 4 8r, 'I—'
1. 16r, —5I'). exp( —2.06r 'I')

—(2.06r, 'I' —0.66r, I ) exp( —1.55r '~') (8)

the expression corresponding to the exponential terms
which arise from an antisymmetric wave function
describing an antiferromagnetic arrangement of inde-
pendent oscillators centered about the lattice points.
Although (8) is not exact, it is satisfactory for deter-
mining at what r, the exponential terms become
important, and for making small corrections to the
total energy E. Thus for sufficiently large r,

~2
E=E,„, 1.792r, '+2.65r, ' —0—.73r, '. (9)
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FIG. 1. Energy of the electron gas plotted against r, . Q, from
Eq. (10); , from Fq. (9); ~, points for 2.21r, —0.916r, ';

, from the first three terms of Eq. (7).

It is found that E. , is small compared with E~ for
r,. greater than 5 or 6, and therefore between this value
and ~, Eq. (9) is a good approximation to the energy
providing (a) the series (7) continues to converge
rapidly, and (b) there are no other states which in this
range of r,, "cross over" and lie appreciably lower in
energy.
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The equations are plotted in Fig. 1 where the dotted
line shows E& alone as given by the first three terms in

(7), and the solid and dashed curve shows a plot of E
as obtained from (9). The dashed part of the curve is
included to show that (9) has the correct qualitative
features even for smaller values of r, . Because of the
anharmonic correction this curve is appreciably lower
in energy near the intermediate densities than a similar
curve plotted in reference 4.

The other solid and dashed curve in Fig. 1 is a plot
of the leading terms in the Gell-Mann and Brueckner'
expression for the high-density region:

E=2.21r, 2—0.916r, '+0.0622 lnr, —0.096. (10)

With DuBois" value for the third-order terms, the
expression for this region becomes

E=2.21r, '—0.916r, '+0.0622 lnr, —0.096
+r, (0.0049 lnr, +C). (11)

However, the constant C has not yet been evaluated
and we have used (10) in plotting Fig. 1. Again, the
dashed extension shows the behavior of the expression
(10) outside the range of quantitative validity.

The correct values for the ground-state energy must
lie below the points given by the triangles in Fig. 1
since these points are for 2.21r, '—0.916r,—', which 's

the expectation value of the Hamiltonian for a determi-
nant of plane waves. In the intermediate range of
2(r„&6, which is of greatest interest, both the high-
density and low-density expressions show qualitatively
reasonable behavior. Whether the inclusion of higher
order terms in the expansions (7) and (10) would
make them converge toward or diverge away from the
correct energy in this region is a question which cannot
be answered definitely, but the evidence is discussed
in the next section, where an interpolation is made
between the high- and low-density expressions.

As Mott' has pointed out, the high-density electron
gas is analogous to a metal, and the low-density case
to a nonmetal. Therefore, in going from low to high
density, it is reasonable to expect one or more transitions
corresponding to the change from nonmetallic to
metallic properties; i.e., the level which is the ground
state at low density will be crossed by the lowest
metallic band of energy levels. At the crossing there
will, in effect, be a discontinuity in the slope of
the energy-versus-density curve. Our assumption of
"smoothness" implies that the discontinuity is small.
In this regard, we follow the tacit assumption of Wigner
and others who have attempted to evaluate the corre-
lation energy by interpolation procedures. Within our
present knowledge, this is the best assumption that we
can make.

For interpolating between high- and low-density
results it is helpful to consider the kinetic and potential
energy curves in addition to that for the total energy,
as March' has pointed out. If T is the expectation value
for the kinetic energy and t/' that for the potential
energy, the virial theorem can be used to derive the
expressions

T= Br,E/Br-„
V= Br/ E/r, Br,

(12)

(13)

It is to be noted from (13) that the first anharmonic
term in (7) is entirely kinetic energy, whereas the
zero-point energy is half kinetic and half potential.
Also it is to be noted that (12) places a useful limit on
some of the energy expressions; the minimum value of
T for electrons is the Fermi energy, and therefore

( Br,E/Br, ) —(2.21/r ') &—0
If the expression (10) is used for the energy, one obtains

0.0338—0.0622 }nr,~&0.

CORRELATION ENERGY
~ 50 i l I i IIIIi i l I ' Iilll

The expression

Eo——E—2.21r '+0.916r,. ',

called the correlation energy, is of considerable interest
in connection with the binding energy of solids, since it
is widely used as a correction term in the Wigner-Seitz
calculation. Since E& has only a logarithmic singularity
at r, =0, it is somewhat better for interpolation purposes
than E, assuming that if E is a smoothly varying
function E~ is likewise. Inasmuch as E~ is the difference
between two functions which have minima at di6erent
points, it is not entirely obvious that E& should be free
of "bumps" at intermediate densities even if the energy
E happened to be; nevertheless, in the following the
assumption of "smoothness" will be made.

'M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364
(1957).' D. F. DuBois, Ann. Phys. 7, 174 (1959).
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8 N. H. March, Phys. Rev. 110, 604 (1958).

FIG. 2. Correlation energy versus r, . Upper and lower solid
curves obtained from Eqs. (10) and (9). Dashed curve is the
interpolated curve. O, points obtained by adding the term—0.8r, & to (9). &, points obtained from Eq. (11)with C= —0.02.
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TABLE I. Comparison of the correlation energy E,, obtained here,
with previous estimates. The energies are in rydberg units.

.25
«

.20—

l5

Present
Wigner (corrected) 'o
Hubbardt t

Nozieres and Pines'~

—0.085—0.090—0.099—0.094

—0.068—0.081—0.086—0.081

—0.058—0.075—0.074—0.072

—0.051—0.069—0.067—0.065

—0.046—0.064
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FIG. 3. Kinetic part of the correlation energy versus r, . Upper
and lower solid curves obtained from Eqs, (10) and (9). Dashed
curve is the interpolated curve. O, points obtained by adding
the term —0.8r. & to (9). Q, points obtained from Eq. (11) with
C= —0.02.

TQ —T 2 21f (16)

Because the inequality breaks down for r.,)1.73 the
energy expression (10), in the neighborhood of r, = 1.73
and beyond, cannot be a close approximation to the
correct energy. Ferrell' has given a more restrictive
condition by showing it is necessary that (Br,V/&lr, ) ~& 0,
which for (10) is violated for r,)1.05.

Following March we define the correlation kinetic
and potential energies by

by the circles) with the interpolated curves between
r,=6 and infinity. Thus strong evidence exists that the
next term in (7) is —0.8r, '*. Also, agreement could be
extended up to r,s=4 by choosing an r, '' term;
however, if the analysis were to be carried this far it
would be desirable to have a more accurate evaluation
of +exp.

In regard to the high-density region, our interpolated
curves may be used to estimate the constant C in Eq.
(11).If the value —0.02 is taken, the equation gives the
points indicated by triangles in Figs. 2, 3, and 4. We
predict, therefore, that, if the high-density expansion
is rapidly converging near r, = 1, and if DuBois value
for the r,, lnr. term is correct, a calculation of the
constant C in (11) will give the result C= —0.02.

It will be noted from Fig. 2 that the magnitude of
the correlation energy we obtain in the intermediate
region is 15 to 30%%uz lower than previous estimates. ' '0 "
A comparison is given in Table I. The error in our
results due to the use of a smooth interpolation is
difficult to estimate.

Vc——V+0.916r,,
—'.

In Pigs. 2, 3, and 4 the solid curves are obtained from
Eqs. (9) and (10) and the dashed curves are our
conception of the best interpolation between these two
expressions. Although some freedom exists in making
the interpolation, this freedom is restricted by the
necessity of fitting three rather than one curve, and
the requirement that Ec=Tc+Vc. Further, all reason-
able smooth interpolations have the feature, in the
low-density range, that the interpolated curve falls
above the solid line for Eg, and below it for T~ and V~.
This is just the type of discrepancy which could be
corrected by higher order terms in (7). If ar, " is a term
in the energy, the corresponding term in T is —(x&+1)ar"
and in U, (n+2)ar'". For n& —2 the correction to E
has the same sign as that for T and the opposite sign
as that for V, which is the desired qualitative behavior.
Since the next term in (7) is ar, l it is of interest to
see if this term alone can explain the discrepancies in
the low-density range of Figs. 2, 3, and 4. Such a term
gives the ratios AT/AE=-'„&& V/d E= —2, and by the
choice a= —0.8 the three calculated curves of Figs. 2,
3, and 4 can be made essentially to coincide (as shown

' R. A. Fertell, Phyg, R&;v, Letters 1, 443 (1958l,

APPENDIX

8=3+ ((v~ v&)(v& M(f&)+(v& vt)(v~ M(f&))

+(v, v, )v, M(f,))—D...t „&,J&&,k), (A.1)

where

M(f) = —V'r g
n+0

e
—i(f ~ n)

(A.2)

e
—i(f ~ n)--

D: 'k(f) 5(~f) (~f) (~f) '2 '' (A 3)
nM Q7

For convenience we have written v1, v2, and v3 instead
of v(f, s), v(f', s'), and v(f",s"), respectively. f& takes
the values f, f', and f", where f"=—f—f'+a reciprocal

' D. Pines, in Solid-State Physics, edited by F. Seitz and D.
Turnbull (Academic Press, New York, 1955), Vol. 1, p. 367."J.Hubbard, Proc. Roy. Soc. {London) A243, 336 (1958),

"P, Nozieres and D. Pines, Phys. Rev. 111,442 (1958).

Herein we give some details of the calculation of the
cubic anharmonic contribution to the ground-state
energy.

The gradient operations in the expression for
13(f,f', f",s,s', s") are carried out and Eq. (3) becomes
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lattice vector. Ke now use the relation

l i f
I' 1'(l/2) ~ o

exp( —n'n)N["' —'&dl, (A.4)

and the EwaM transformation formula,

Q exp( —if n —e'n)

fq'
=Vol —

I Z exp ——
I

b ——I, (A3)
&u) b I ( 2or]

e
—""

1 I-
I Z~-:.—;()

n' r(l/2) [ r) b

where

2——+ g e
—"'y;[ i(x'), (A.6)

n~p

vr' (~.(y) =
2~]

to obtain the following expression for the sums in
Eqs. (A.2) and (A.3):

and the value of r is chosen to give rapid convergence
of both the direct and reciprocal lattice sums. With
the value r=vr'/16 it was necessary to use only the
first six vectors n in the bcc lattice sum and the 6rst
two vectors b in the fcc lattice sum. The final expres-
sions for the M's and the D's are then given by

1. 4 liio] ( f )(f)=-I- I, —, 2 lb- —I~ (.)
&4) r(-,') m b=[o»] [ 2vri

(
n sin(f n) po(x')I 1+

n= [111j 2x')

3—y; (x'), (A.9)
(2x')'

[iiol ( fp ( f qD"(f)=I —
I & I

b ——
I I

b ——
I

E4I 1'(-') mo] b=[ooo] [, 27rJ, 0 2m);

fy 1-( fq
XI b- —

I qo(x) —
I

b-- —
I
~„

2m&l, 32 ( 2~);

+I b- —
I

~.,+I b ——
I ~„~ (x)

[ 2~),
'

V~ is the volume of the unit cell in the space reciprocal
to n, the b are the reciprocal lattice vectors, and r is a
convergence parameter.

When Eq. (A.6) is substitut:ed into Eqs. (A.2) and
(A.3), and the gradient operations are performed, the
following expressions are obtained:

(m)l ( f)
M(f)= — U,

l

—
I Pl b ——Iy, (x)

r(-;) L.) b &

—P n sin(f n)g (x'), (A.7)
n+P

ancl

.35

.30—

.25

[400]
I

5
+ Q n,n,~„sin(f n. ) [yo(x')I 1+

n= (111] E. 2x'

5 3 p
5.3

+ I+ 4;(x'), (A.10)
(2x')') (2x')'

5~[- (~pl ~'( fq ( f~
D,;g, (f) =—Vo —

I P —
I

b ——
I I

b ——
Ir(') E) b '[ 2), E 2 j,

XI "——
I eo(x) ——&I b ——

I &»@-i(x)
[. 2~)[, 2r ' & 2~), I

.20—

.15—
I

10—

+ P e,n, mj, sin(f n)p;(x') . (A.S)
n/0

Further simplification is obtained by use of the recur-
rence relations for the $ 's,

4- (y) =do(y)+ —4--[(y),
y

'.05—

0
0.1

[ [ [ I [[&I
1.0 10 100

FIG. 4. Potential part of the correlation energy versus r,.
Upper and lower solid curves obtained from Eqs. {10) and {9).
Dashed curve is the interpolated curve. O, points obtained by
adding the term —0.8r, & to {9).&, points obtained from Eq.
{11)with C= —0.02.



752 CARR, COL D WELL —HORSFALL, AN 0 FE I N

TABLE II. Table of the lattice sums defined by Eqs. (A.2) and (A.3) in the Appendix.

f

[1107
[200]
[2117
[220]
[222]
[310]
[321]
[3307
[3327
[4007
l411]
[4207
[422]
[431]
[4337
[4407
[442]
[444]
[510]
[521]
[530]
[5327
L6007
[6117
L6207
[622]
[710]
[800]

3I/, . 3E„ 3II, D„,.

0.484 0.484 0 1.404
0.705 0 0 1.616
0.548 0.268 0.268 1.426
0.437 0.437 0 1.242
0.298 0.298 0.298 0.968
0.565 0.170 0 1.119
0.384 0.235 0.122 0.899
0.244 0.244 0 0.684
0.176 0, 176 0.127 0.563
0.481 0 0 0.617
0.400 0.070 0.070 0.545
0.326 0.102 0 0.462
0.222 0.084 0.084 0.337
0.157 0.067 0.052 0.239
0.062 0.051 0.051 O. 101

0 0 0 0
0 0 0.068 0
0 0 0 0

0.297 0.003 0 0.126
0.191 0.016 0.013 0.009
0.085 —0.085 0 —0.147
0.048 —0.048 0.030 —0.182
0.194 0 0 —0.096
0.155 —0.040 —0.040 —0.141
0.115 —0.115 0 —0.198
0.062 —0.062 —0.062 —0.261
0.077 —0.077 0 —0.135

0 0 0 0

1.404
0

0.907
1.242
0.968
0.660
0.846
0.684
0.563

0
0.411
0.580
0.518
0.385
0.331

0
0
0

0.273
0.348
0.147
0.182

0
0.188
0.198
0.261
0.135

0

0
0

0.907
0

0.968
0

0.526
0

0.593
0

0.411
0

0.518
0.341
0.331

0
0.458

0
0

0.274
0

0.397
0

0.188
0

0.261
0
0

0.415
0.954
0.656
0.338
0.260
0.820
0.456
0.173
0.128
0.894
0.728
0.550
0.388
0.251
0.105

0
0
0

0.679
0.479
0.314
0.224
0.533
0.458
0.408
0.285
0.265

0

Dz z z Dyed Dyzz Dzgx

0.601 0.415 0.601 0
0.954 0 0 0
0.656 0.142 0.293 0.142
0.603 0.338 0.603 0
0.260 0.260 0.260 0.260
0.887 —0.015 0.203 0
0.566 0.060 0.271 0.008
0.362 0.173 0.362 0
0.191 0.128 0.191 0.020
0.894 0 0 0
0.728 —0.093 0.032 —0.093
0,617 —0.135 0.064 0
0.388 —0.094 —0.003 —0.094
0.295 —0.080 0.030 —0.050
0.105 —0,047 —0.030 —0.047

0 0 0 0
0 0 0 —0.059
0 0 0 0

0.681 —0.171 —0.085 0
0.470 —0.261 —0.168 —0.122
0.258 —0.314 —0.258 0
0.197 —0.224 —0.197 —0.123
0 533 0 0 0
0.458 —0.208 —0.181 —0.208
0.363 —0.408 —0.363 0
0.285 —0.285 —0.285 —0.285
0.256 —0.265 —0.256 0

0 0 0 0

0
0

0.293
0

0.260
0

0.076
0

0.020
0

0.032
0

—0.003
—0.032
—0.030

0
—0.059

0
0

—0.085
0

—0.123
0

—0.181
0

—0.285
0
0

0
0

—0.170
0

—0.389
0

—0.258
0

—0.532
0

—0.138
0

—0.434
—0.304
—0,697

0
—0.584
—0.800

0
—0.210

0
—0.497

0
—0.085

0
—0.289

0
0

where

(A.11)

exp( —a2)du,

Ei(—y) being the exponential integral. The values
obtained for M(f) and D(f) are given in Table II.

The program was further simpli6ed by writing Eq.
(A.1) in the form

28= {vsgvsgLvi M—(1)+2vlgMg(1) —vlgD»g —viyDggy

vlzDggz j+vsyvsyLvi ' M (1)+2vlyMy(1) vigDgyy
—vi„D„,„—vtzDyyz]+ vszvsz[vi M (1)+2vizMz (1)

VlgDgzz VlyDyzz VlzDzzzj+ (VsgVsy+VsgV2y) (Viz&a

+viy~g vigDggy viyDgyy vlzDgyz)+ (vsyvsz

+V3yV2z) (Vly~z+V1& y I lgDgyz VlyDyyz

VlzDyzz)+ (VszVsg+ VszV2g) (VlzMg+ VlgMz

—vi.D„,—vi,D.„,—vi,D...)}+cyclic permutation

of the indices 1, 2, and 3. (A.12)

Thus it was necessary to state only one of these permu-
tations, say {231},explicitly.


