
PHYSICAL REVIEW VOLUME 124, NUM BER 3 NOVEM B ER 1, 1961

Dependence of the Free-Carrier Faraday Ellipticity in Semiconductors on
Scattering Mechanisms*

J. K. FURDYNA AND M. E. BRODWIN

Department of E/ectrica/ Engineering, Northwestern University, Evanston, I//inois

(Received June 30, 1961l

The theory of the Faraday ellipticity in semiconductors is developed, via the Boltzmann transport
equation, under the assumption of an isotropic energy-dependent time of relaxation 7-. Equations relating
ellipticity to semiconductor parameters are derived for various ranges of the collision, cyclotron, and applied
frequencies. It is observed that, besides its dependence on the value of the scattering parameter, Faraday
ellipticity is rather sensitive to the type of scattering mechanism as such, and to the distribution function.
Some specific experiments are suggested in the ranges where ellipticity appears particularly promising as a
tool for investigating these aspects of the scattering process. Numerical examples, calculated for thermal
and ionized impurity scattering in nondegenerate carrier systems, are contrasted with the results of the
constant-7- approximation, showing the inadequacy of the latter approach. Finally, the effect of spheroidal
surfaces of constant energy on Faraday ellipticity is brieQy discussed.

1. INTRODUCTION

ARADAY ellipticity arises from the difference in
attenuation of the left- and right-handed circularly

polarized components of an initially linearly-polarized
plane electromagnetic wave, transmitted through a
substance in the direction of an external magnetic field.
In terms of the complex effective dielectric constant
(ey) it= ey Wte~", with e+' and e~" real, the attenu-
ation constant for a nonmagnetic material is given by

&+=~( o/2) *L(e+"+e~'")*—e+'3*, (&)

where ~ is the angular frequency of the wave, po the
permeability of free space, and the subscripts + and
—refer to the left- and right-handed modes of circular
polarization. The ellipticity, i.e., the ratio of the minor
to the major axis of the resulting electric field pattern,
is given by' '

mental investigation of the collision processes in
semiconductors.

2. APPLICATION OF THE CONDUCTIVITY TENSOR

The effect of the energy dependence of the relaxation
time 7- on the Faraday ellipticity can be conveniently
seen by developing the problem in terms of the con-
ductivity tensor e. For isotropic materials in a magnetic
field,

&12

0

0-12 0
0-11 0
0 ogg.

(3)

where axis 3 coincides with the direction of the field.
The real and imaginary parts of the effective di-

electric constant for the two senses of polarization
can now be written'

ey est + (011 ~&12 )/teq

y e(0 11 W(712 )/tO.

(4a)&=«nhL-'(&- —P+)6=-'(P-—P+)1 (2)

t being the thickness of the specimen. This expression
can be simplified for the range of low losses (e~') e~")
as well as high losses (e~")e~').

The theory of the Faraday ellipticity in semiconduc-
tors has been previously discussed on the basis of the
free-carrier model, assuming a constant relaxation
time."Because of the strong and unique dependence
of ellipticity on scattering, the latter assumption is a
rather serious drawback in discussing this phenomenon.
In the present paper the theory is extended, via the
Boltzmann transport equation, to include the depend-
ence of the relaxation time on energy. It will be shown

by the resulting equations that, apart from its de-
pendence on the relaxation parameter predicted by the
previous formulation, ellipticity is a strong function of
the scattering mechanism itself, and of the carrier
distribution function. Faraday ellipticity can therefore
be expected to be a very powerful tool for the experi-

* Supported by the Advanced Research Projects Agency of the
U. S. Department of Defense.' R. R. Rau and M. E. Caspari, Phys. Rev. 100, 632 (1955).' J. K. Furdyna and S. Broersma, Phys. Rev. 120, 1995 (1960).
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Here e,t' is the dielectric constant of the material
without free carriers, and the single and double prime
denote the real and imaginary parts. The Faraday
ellipticity then becomes4 for the region of small losses

t. (PO/est ) 1+&12 +(&11&12 &11 O12 )/OOest 1) (~)

and for high values of the loss tangent

&= l(po /2)*'1[ '(& —~)+ "3/L '(~ —&))*' (6)

where

tt —(est tO+011 )/O 11 (e+ +e—)/(e+ +t )q—
which can generally be neglected when the loss tangent
is very large.

In the present discussion, the conductivity tensor is

' B. Lax and L. M. Roth, Phys. Rev. 98, 549 (1955).' J. K. Furdyna and S. Broersma (unpublished). In the present
article we do not discuss explicitly the narrow range where
0&e+"/e+') (—1). In this region of extreme attenuation experi-
ments involving transmission are impractical.
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found by solving the Boltzrnann transport equation for
components of the electric current, in the case of
orthogonal high-frequency electric field and dc magnetic
field. Components of the tensor are given explicitly in
Appendix II. Second-order terms in the electric field
are neglected, and the effects of orbital quantization at
higher magnetic fields are not considered. The existence
of an isotropic relaxation time is assumed in the form
~=v-pe", where ~ is the carrier energy relative to the
band edge. The main part of this article is further
restricted to single-band conduction, spherical surfaces
of constant energy (except in Sec. 6), and nondegenerate
carrier systems. It is, however, a simple matter to
extend the equations to more complicated semicon-
ductor models by using appropriate conductivity tensors
in Eqs. (5) and (6).

3. SMALL LOSSES

A 6)e 4'0 ) 6) (4
When the collision frequency 7. ' greatly exceeds the

cyclotron frequency co, as well as the frequency of the
electromagnetic wave or, and the dielectric loss tangent
e+"/e~' is small compared to unity, ' the ellipticity is
given by

gamma functions

which becomes 1.50 for ideal lattice scattering (p= ——', ),
and 3.05 for ionized impurity scattering (p=~), as
compared to unity predicted by the energy-independent,
Inodel. The quantity p is more sensitive to the type of
scattering than the parameters more commonly used
in investigating collision processes, e.g., the ratio of the
Hall-to-drift mobilities. '

The range in which Eq. (7) applies is typical for
room temperature microwave experiments on relatively
pure materials. Note that in this range ellipticity
exhibits a change of sign, i.e., a reversal in the sense of
elliptical polarization, at &o„'/co'=4rt. This is of interest
to the experimentalist, since the condition for the node
involves few parameters, and can be determined with
high precision. The feature should be particularly
useful for the investigation of scattering as a function
of temperature. Since the quantity co~ is constant
through the exhaustion range of a semiconductor, it
should be possible to study the relative behavior of g
in this range by obtaining a temperature plot of signal
frequencies at which ellipticity vanishes.

where second order terms (cor)' and (co,r)' have been
neglected in the conductivity tensor components. Here
o =ne'(r)/m* is the dc conductivity, tttI ——(e/et*)((r')/
(r)) the Hall mobility, 8 the magnetic field, r the
relaxation time, coo= (tte'/nt*e, i')'* the classical plasma
frequency, with carrier concentration, effective mass,
and electronic charge denoted by e, m*, and e, respec-
tively —all in mks units. For a Maxwell-Boltzmann
distribution, the symbol (g(x)) represents the integral

oo

(g(x))= i' g(x)x&e *dr; x—= e/kT,
3 7l p

where k is the Boltzmann constant, and T the absolute
temperature. The validity of this distribution is
assumed for all numerical examples in this article.

Equation (7) is expressed in terms of o, tttI, and &o~-
which are known (or can be calculated) from standard
dc measurements, or from the Faraday rotation'''
(see also Appendix I). This form shows that ellipticity
is a strong function of the value of (r), as well as of
the scattering mechanism and the distribution function
which determine the dimensionless quantity (r')/(r')(r).
When the form r = roes' is assumed and Eq. (8) applied,
this quantity is conveniently expressed as a ratio of

5 In this frequency range the loss tangent is approximately
equal to o-/u~, t', where 0. is the dc conductivity of the material.

6 M. J. Stephen and A. B. I.idiard, J. Phys. Chem. Solids 9, 43
(1959}.

~c)& ) ~ )~
In the case of small losses and high magnetic fields,

i.e., when the cyclotron frequency exceeds both the
experimental frequency and the average collision
frequency, the Faraday ellipticity is given by

(10)

where co, is the cyclotron frequency eB/tst*, with
remaining symbols as previously dehned. The 6rst
form is expressed in terms of standard semiconductor
quantities 0- and pII which are generally known for a
given sample, but which themselves depend on the
type of scattering. The quantity (r)(1/r)((ri)/(r)~)s
equals 1.85 for ideal lattice scattering, and as much as
24.4 for ionized impurity scattering, while the energy-
independent model predicts unity.

The second form of Eq. (10) is expressed in terms of
co„and co„which do not depend on scattering, to show

7 For a general discussion of the relation between scattering
mechanisms and fundamental galvanomagnetic coefficients see,
e.g. , A. H. Wilson, The Theory of Metals (Cambridge University
Press, New York, 1954), 2nd ed. , pp. 231—242; also F. J. 81att,
in Solid Stctte Physics, edited b-y F. Seitz and D. Turnbull lAca-
demic Press, Inc. , New York, 1957), Vol. 4, pp. 238—258.

8 In the high-magnetic-Geld limit, the loss tangent reduces to
~/(~esfII ~'&')
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that the high-6eld Faraday ellipticity directly measures
the quantity (r ') rather than (r). Note that here,
unlike the low-field case, the sign-reversal condition
does not depend on scattering. Thus, if co„ is unknown,
it should be possible to determine its value from an
ellipticity node at high fields, and apply this value in

interpreting measurements obtained at low fields or at
other frequencies.

C 6b) 6) ) 6))4

When losses are small and the frequency of the wave
is larger than both the collision and the cyclotron
frequency, ' the Faraday ellipticity is given by

Similarly as in the high-magnetic-6eld range, ellipticity
in this region measures (r ), i.e., the average collision

frequency. However, it does not possess the experi-
mentally convenient feature of a sign change as a
function of or. The second term in the brackets will be
relatively unimportant at infrared frequencies, but it
is likely to dominate in microwave experiments at very
low temperatures.

4. HIGH LOSSES

The range of very high values of the loss tangent
e~"/e~' will be considered for the case when the collision

frequency exceeds both the cyclotron frequency and
the frequency of the wave. For small co,r, Eq. (6)
becomes, after neglecting terms in g,

(T (1+% r 2&X ei T )/(1+e)'r')')
X (12)

When terms in (e~,r)' and (&or)' are neglected, this
relation can be expressed rather simply in terms of the
semiconductor parameters 0- and @II as

E= —
2 (p p(uo/2) IIp~8 (1—2a&(r)iI), (13)

where g is defined by Eq. (9).
It follows from Eqs. (12) and (13) that in the limit

of very small cv(~), Faraday ellipticity in lossy materials

depends on scattering only through 0. and p&, and
cannot provide additional information. The effect of
scattering becomes increasingly significant, however,
when cv(7) exceeds approximately 1/10.

The condition under which Eq. (12) reverses sign as
a function of frequency or temperature in the small

6eld limit is strongly dependent on the type of scatter-

' In the high-frequency limit, the loss tangent is approximately
given by 0/(ee»'oPr'l,

ing. It is easily seen that in the energy-independent
approximation ellipticity will display a change of sign
when &u(r) =0 41 . U. sing tabulated integrals, " it is
found that when scattering is dominated by thermal
lattice vibrations, the zero in Eq. (12) occurs when
e&(r)=0.33, and when it is prima, rily due to ionized
impurities, the zero occurs at e&(r) =0.17. Equation (13)
vanishes at values of cu(r) suKciently close to the above
to be useful as a good approximation for this range.
When e+'/e+" are smaller than unity but not negligible,
Faraday ellipticity can be similarly analyzed by retain-
ing terms in a in Eq. (6).

The region of high frequencies or high fields is not
discussed in this section. The value of the loss tangent
is itself a function of the parameters ~r and ei,r [as
can be seen from Eq. (4) and the tensor components
given in the Appendix/, and in general decreases as
these quantities are increased. Hence, in the limit
cur))1 or cu,~))1 the situation will generally belong to
the range of small losses, described by the equations in
the previous section.

5. GENERAL MAGNETIC FIELD DEPENDENCE
OF ELLIPTICITY

As shown above, Faraday ellipticity varies as the
6rst power of the magnetic field in the range co, &7- ',
and inversely as the third power of the 6eld when

co,))v='. It has been previously observed' that the
variation of ellipticity with magnetic field will in general
display a maximum when co,= r ') co. Similarly, a peak
will appear at cyclotron resonance, co,=co)r '. The
shape of the maximum, its magnitude, and the value
of the field at which it occurs will depend to some
extent on the scattering mechanism. The analysis of
this dependence is, however, quite tedious, and therefore
much less revealing than the analysis of the ellipticity
in the high and low limits of the field.

There is, however, a range in which the ellipticity
vs 6eld curve shows a rather unique behavior, which is
extremely sensitive to the scattering mechanism and is
particularly suited for curve fitting. A brief qualitative
discussion of this behavior is therefore given. If a
material is characterized by high losses at small values
of 8, the sign of ellipticity is essentially determined by
(2~(7)iI—1), Eq. (13).On the other hand, if the low-loss

range is reached by increasing 8 sufficiently, the sign
is determined by (1—~~er~'/cv'), Eq. (10). Thus, under
the conditions xie~~'/ca)1, 2n(~)q)1, ellipticity will

reverse sign at some value of the magnetic field. The
shape of the resulting E vs 8 curve, particularly the
relative values of the extrema and the zero position,
are a sensitive function of the type of scattering. A

typical example is shown in Fig. 1. These curves are
calculated exactly, using Eqs. (1) and (2), with the
effective dielectric constants given by Eq. (4), for a

' R. B. Dingle, D. Amdt, and S, K. Roy, Appl. Sci. Research
II6, 144, 245 (1957).
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typical semiconductor sample at liquid nitrogen
temperature. Tabulated integrals' were used in evalu-
ating the conductivity contribution to Eq. (4), assuming
r = roep and p= —

s for lattice scattering, s for ionized
impurity scattering, and 0 for the energy-independent,
model. To make the comparison physically meaningful,
the quantity 70 was chosen in each case so as to give
the same value of (r). This value, as well as the values
of e,&', e, m*, and co used in the calculations, are indi-
cated in the figure.

6. EFFECTIVE MASS ANISOTROPY
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Equations (4) to (6), expressed in terms of the
conductivity tensor, apply to isotropic materials. By
the word "isotropic" we only make the restriction that
0.»=0-», in which case the initial linearly-polarized
wave can be resolved into two independent circularly
polarized components. ' When o-ii/0-», there arises an
additional problem analogous to optical birefringence.

In the case of spheroidal constant energy surfaces
(such as in n-type silicon or germanium), the relation
o.» ——a.» holds for all orientations of the magnetic Geld
in the range ~,«r '. In this case Eqs. (7) and (13)
can be used if

ee'(2m, +m, )(r)

- 0.2— Constant r----The rma I sco t t e——Impurit y scot t e ring

—0.~ 3 I e I eeasl
.OI .05 0 I

„I
0.5 I

a (m /v —eec)

Fxo. 1. Faraday ellipticity as a function of the magnetic Geld 8,
for the frequency range o&pe/aP)4, 2~(r)q)1. The curves are
calculated exactly using Eqs. (1) and (2). The values used in the
calculation are indicated in the figure. They are representative
of a wide range of semiconductors near the liquid nitrogen temper-
ature. The usual form v = r0~& is assumed in averaging the compo-
nents of the conductivity tensor, with p = —

& for lattice scattering,
—,for ionized impurity scattering, and 0 for the constant-7. approxi-
mation.

3'5'lim2
Gdp 7- 6s

where
and

(m, +2ms) e (~')
p~=

(2mt+m, ) ms (r)

0 '—=e'8'(mt+2ms) (2mt+ms)/9mt'ms',
"o'=—e'8'/mtmso,

Gop'co 1 ( 1cop)E= (poe. '') *t (14)

For 8 along a [100] axis,

coped 1 f 1(dp

Qo' r 0 4 (g'j
"C. Herring, Sell System Tech. J. 34, 237 (1955).

where mi and m2 are the longitudinal and transverse
components of the effective mass tensor. Since the
many-valley model permits both intravalley and inter-
valley scattering, this will affect the values of the
scattering-dependent quantities" such as g. The Fara-
day ellipticity can therefore be used to study this
aspect of scattering in germanium and silicon.

For the spheroidal surfaces of constant energy the
conductivity tensor becomes anisotropic (a»~o») in
the range co,)r ', ~,)co for an arbitrary orientation of
the magnetic field. However, in the special case when
8 is oriented along [111]or [100] crystallographic
directions, o.» becomes equal to o-» and Eqs. (4) to (6)
can again be applied. As an example, equations for
Faraday ellipticity are given for a material with six
constant energy spheroids along the [100] directions,
such as e-type silicon. For the magnetic field 8 along
a [111]axis,

y=3mt(m, +2ms)/(2mt+ms)'.

The form of the dependence of ellipticity on scattering
in the high-Geld limit is therefore unaffected by the
anisotropy of the effective mass. It is interesting to
note that the conditions for the nodes do not depend
on scattering, but can give some information regarding
the m* anisotropy.

'V. SUMMARY AND REMARKS

The equations developed in the present article show
that the Faraday ellipticity in semiconductors depends
in a rather sensitive and unique manner on the mecha-
nism of scattering, the carrier distribution function,
and the value of the average relaxation time even in
the range ~v-((1. This information can be conveniently
obtained from ellipticity experiments at various con-
ditions, in conjunction with standard galvanomagnetic
data known from dc measurements or from the related
Faraday rotation. When the conductivity and mobility
are only roughly known (so that an approximate value
of the loss tangent can be established), ellipticity alone
can provide much useful information. Here the ellip-
ticity nodes, which can be observed, e.g., by varying
the applied frequency, are especially interesting because
they can be determined with precision and involve few
parameters.
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From the equations developed above it can be seen
that the behavior of ellipticity predicted by the con-
stant-r approximation agrees qualitatively with the
more rigorous results of the present article. However,
since the constant-v- model neglects the inhuence of
the type of scattering and of the distribution function,
it cannot be used in a quantitative discussion of
ellipticity. Comparison shows that, in the range co~&1
(typical of microwave experiments), the effect of the
energy dependence of v- is equivalent to an increase of
the value of ~r wherever this parameter appears
explicitly in equations derived from the constant-r
model. ' It is interesting that in the energy-independent
analysis of the preliminary experimental data reported
in reference 2, the best fit was in fact obtained with
values of ~ considerably larger than those calculated
from the dc mobility and effective-mass information.

where a is defined in Sec. 2. In the range of very small
~, and co, these quantities can be shown to depend on
scattering only through cr and pII. In the high-frequency'
or high-field' limit (where the low-loss formulas apply),
rotation is scattering-independent.

The effect of the scattering mechanism is, however,
quite significant in the range where co7=1, as can be
seen by using the conductivity tensor components given
below. This will be of importance in low-temperature
microwave experiments. It can be readily shown that
when cu(r) &1, the theoretical value of rotation is
considerably lower than that obtained with the same
values of e,i', ii, m*, &u„oo, and (~) using the constant-r
approximation. The values of rotation calculated with
the energy-dependent model give improved agreement
with Faraday rotation measurements on germanium
at 77'K in the low-field region. '
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APPENDIX I. THE FARADAY ROTATION

Faraday ellipticity is always accompanied by Fara-
day rotation. Although the explicit dependence of the
rotation on scattering is in general not very interesting,
measurements of this effect can be helpful in inter-
preting ellipticity data. An outline of the problem of
rotation should therefore be useful in parallel with the
development of ellipticity presented above. The equa-
tions for the Faraday rotation in terms of the conduc-
tivity tensor are, 4 for the region of small losses

(A1)

and for the high-loss range

q (po&v/2) '&[on'(1+a) o'i2")/[o ii'(1+a))', (A2)

APPENDIX II. COMPONENTS OF THE
CONDUCTIVITY TENSOR

For reference, the components of the conductivity
tensor are listed for the case of isotropic energy-
dependent r and isotropic no*:

oii'= (ne /nz*)(r(1+os r +to r )S ') (A3)

o "=—(iM /ts*)io(7- (1+os r2 co r2)S —) (A4)

o iq'= —(ne2/m*)o&. (r2(1 cu2r2+ioP—r~)S ') (AS)

where
S= (]+oi2r2+oi 2~2)2 4~2~ 2~4

Often the tensors corresponding to more complicated
models are published for the steady state. These can
be readily generalized to the high-frequency case by
replacing r with r/(1+ioir), or, in the case of tensor
relaxation time, by replacing each component 7. with
~ /(1+iorr )


