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Relaxation and Activation Energies for an Interstitial Neutral Defect in an
Alkali Halide Lattice*
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A method has been developed for calculating the relaxation energy for an interstitial neutral defect in
an alkali halide lattice by expanding the electrostatic, polarization, and dipole-dipole energy contributions
to second order in terms of the displacements of the ions from their regular positions. The repulsive energy
contributions involving the defect atom are treated exactly„whereas the repulsive contributions involving
the regular ions themselves are also expanded to second order. This method has been applied to the case of
an interstitial chlorine atom in NaC1 for positions where the defect atom is at the center of a cube of ions
and at the center of a square of ions; the difference when related to the same standard configuration gives
an activation energy of approximately 0.5 ev for the migration of a neutral interstitial chlorine atom in NaCl.

CI FIG. 1. Neutral
interstitial atom ()()
at the center of a
cube of ions. The
arrows indicate that
on relaxation the ions
will move outwards.

I. INTRODUCTION

ADIATION damage studies' and color center
studies' have focused considerable interest on the

nature of defects in crystals. In the alkali halides Seitz, '
Varley, ' and St. James' have proposed models for the
V centers, assuming them to be either single or paired
vacancies, and Kanzig et al. have shown strong experi-
mental evidence for the presence of molecular ions, for
example C12, in which a neutral chlorine atom and a
chlorine ion are joined by an attractive force. The
presence of neutral atoms in the alkali halides was made
understandable' by a mechanism in which ionizing
radiation would strip several electrons from an anion,
the neighboring ions then forcing it into an interstitial
position where it would pick up electrons until it
became neutral. The present method of calculation was
developed to investigate the distortions around such a
neutral atom and its activation energy for migration.
The neutral atom is assumed to be close to a position of

yCI

symmetry, either at the center of a cube of ions or at
the center of a square of ions as shown in Figs. 1 and 2,
and removed somewhat from the vacancy originally
associated with the displacements. No special attractive
part to the potential between the defect atom and its
neighbors is assumed. The presence of attractive forces
would tend to favor the production of a molecular ion;
in this calculation we wish to find the stable positions
under the infiuence of the crystal forces alone.

Various methods have been developed for the calcu-
lation of relaxation energies, i.e., energies associated
with ions displaced from their normal lattice positions.
Mott and Littleton' treated the relaxation around the
vacancy in alkali halides and assumed a polarizable
medium past the first shell of neighbors. In this case the
defect possesses a net charge and the electric fields so
produced are relatively large, making necessary special
consideration for the polarization terms. Kurosawa et al. '
have studied the polarization contributions in some
detail, paying special attention to overlap. Several
recent models of the polarization have been developed
by Lundquist, ' following the work of Lowdin" on wave
functions in ionic crystals, and by Woods et al."based
on a phenomenological Inethod. For the neutral defects
considered here the simple point-ion model of polariza-
tion effects should be appropriate since the main ener-
gies will be repulsive in nature. Tosi and Fumi" and
Guccione et al."have been concerned with the inhuence
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of different repulsive interactions on the migration
energies in the alkali halides. Both the Born-Mayer
exponential form and an inverse twelfth power in the
distance have been used. The Born-Mayer exponential
form is used in this work. In the calculations presented
here the crystal is not considered to be a polarizable
continuum, but as in other work on neutral defects, for
example the divacancy calculation of Dienes, '4 the
contributions from each individual ion are summed.
Since the neutral atom is a "large" defect, particular
attention was given to the repulsive energies, and, as
the calculations show, they mainly determine the
relaxed positions of the ions surrounding the defect.

Thus, the calculations to be described represent an
investigation of the distortion around a neutral defect
in alkali halides and of the activation energy for migra-
tion of such a defect within the framework of classical
crystal forces. In Sec. II the notation and some general
formulas are described; in Secs. III—VI the expressions
are developed for the various energy terms; Secs. VII—
VIII contain the energy calculations for the two con-
6gurations of the neutral atom depicted in Figs. 1 and 2;
the activation energy is discussed in Sec. IX; and in
Sec. X a brief discussion is given of the limitations and
possible improvements of the present method of cal-
culation.

II. NOTATION AND GENERAL FORMULAS

Some of the regular ions of the crystal will be dis-
placed from their normal positions by interaction with
the defect. Capital letters, such as X, M, will be used
to refer to these movable ions. The fixed ions will be
referred to by Greek letters as n, P. Small letters as s,j
will be used to refer to all the ions of the crystal. The
notation for physical parameters is the following:
r;= position vector of ion at its normal position,
r, '= position vector of ion at its relaxed position,
r;;= r;—r;= vector joining two ions in their normal
positions, r, = r —r =vector joining two ions in their
relaxed positions, r;,, r; =distances between ions,
e;= ionic charge, and 0,;=polarizability. The coordinate
system used is illustrated in Fig. 3. In the current
study, the position of the neutral defect will be either
(s, —'„—',) for the cube-center position or (—'„ts,0) for the
square-center position with the unit of distance being
ro, the anion-cation separation.

The expressions for the various energies involve, in
general, summations over all the ions in the crystal in
their relaxed positions. It is convenient to separate this
into a sum over the movable ions in their relaxed
positions plus a sum over the fixed ions,

where f(r,) is some function of the coordinate vector

"G.J. Dienes, J. Chem. Phys. 16, 620 (1948).
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FIG. 2. Neutral interstitial
atom (X) at the center of a
square of ions, with arrows in-
dicating the relaxation of the
surrounding ions,
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of ion i. The sum over n may be rewritten to give

P; f(r )=P
iiLf(rsvp')

—f(r~)7+ps f(rs) (2. )

f(r~') f(r~) =V~f—(r~) ~rsvp

+,'Ar~ VsiVs-if(rsvp) &rsi, (3)

where V'~ is the gradient with respect to the variables
x~, yN, s~ and the dots represent the scalar product of
the vectors involved. Summing over all the ions (fixed
and movable) gives

Equation (4) refers to functions involving one variable
r;. This expression can be extended to a function of
several variables by iteration of the procedure to obtain

FIG. 3. The coordinate
system used in describ-
ing the crystal.
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In this way a sum over all the ions in their relaxed
positions has been separated into two sums; one over
the movable ions only, and the other over all the ions
of the crystal in their regular positions. The procedure
is then to expand the sum over the movable ions by
Taylor's series up to second order in r&' —r~—=Ar&.
Some of these sums are available in the literature, others
vanish because of symmetry; the others that are needed
are computed. The electrostatic energy terms do not
involve the neutral defect atom, and are a double sum
over all the ions. Similarly, the polarization energy
terms that do not involve the defect atom are a triple
sum while the dipole-dipole terms are a quadruple sum.
The repulsive energy terms that do not involve the
additional atom are treated by the expansion method
but the terms involving the additional atom will be
calculated exactly.

Expanding the first summation in Eq. (2) by Taylor's
series to terms of second order gives
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the general expression"

[f(r,r, r„') f—(r, ,r, , r )]
~ ~ 0 g

=P{P Vg[f(ry, r, , r„)+f(r,, riv, . r„)+ +f(r;, . rq)]} ArN
j ~ ~ n

+-,' P Arq {P V'~V~[f(r~, r;, . r„)+ +f(r;, r~)]} priv
~ ~ ~

+ P Ar24 {P ~72rV'z[f(r24, rz, r," r )+f(r24, r;, rz r„)+ +f(r;, rir, rz)]}.hrz. (5)

It is to be noted that in Eq. (5) the number of
functions for each of the first two terms on the right-
hand side is e, while the number of functions that will

appear in the third term will be the number of pairs
chosen from r4 quantities or 24(42—1)/2.

symmetry. The final result is

Ey6L
AE, = A, Q Arv . [rNz'l 3rxzr—gz] &rz,

XI (X&I ) ~XI

III. ELECTROSTATIC ENERGY TERMS

The electrostatic energy for all the ions in their
relaxed or movable positions is

2 (e'e4/r'i'),

so that f(r, ,r,)=-,'(e;e,/r44') in Eq. (5). Equation (5)
reduces to a double sum in which many terms vanish by

where AE, =difference in electrostatic energy in ev,
4~ ——e&/

~
e&

~
(and similarly for ez), A, = ,' (e'/ra)—

(= 2.56 ev for NaCl), r2= internuclear separation, and
I =unit dyadic.

One can examine the electrostatic potential in the
rigid lattice at a position (x,y, s) near the ion site
(0,0,0), with the ion at (0,0,0) missing, by making use
of the following expression":

r2V exp[—42r Q (2H, —1)']{8cos[2rx(2Hi —1)]cos[2ry(2H2 —1)]cos[2rs(2H2 —1)]}
8 4g 2Ht', —1

4 ([2r(X'+y'+S')]l) G(2ri[(r4 —X)'+ (r4 —y)'+ (24, —S)2]l)—(-1)"'""', (7)
(x'+y'+s')-*'[(n&—x)'+ (222 —y)'+ (I,—s)2]l

where the H s take on all positive integer values, the
function C is given by

2
C (x) = I exp( —x')dx,

0

the values of ei, e~, and n~ being all positive integers
except the combination 0,0,0, this being the meaning of
the prime on the S„,and finally

G(x) =1—C (x).

Expansion of Eq. (7) to fourth order in x,y, s gives

rpV/e= 1.7473+3.7(x4+y4+s4)
10 8 (x2y2+x2s2+y2s2) (8)

'5 A detailed discussion of Eq. (5) and of several other equations
in this paper is given in the Appendix which has been deposited
as Document Xo. 6822 with the ADI Auxiliary Publications
Project, Photoduplication Service, Library of Congress, Wash-
ington 25, D. C. A copy may be secured by citing the Document
number and by remitting $1.25 for photoprints or $1.25 for
35 mm micro6lms. Advance payment is required. Make checks
or money orders payable to: Chief, Photoduplication Service,
Library of Congress,

From this expansion the electric field at (x,y,s) involves
terms of third order and the gradient of the electric
field terms of second order. Both terms vanish when the
ion is at its lattice position. By taking the gradient of
Eq. (7) or Eq. (8) the electric field may be conveniently
calculated. It would be needed when the additional
atom is at any position other than a symmetrical one,
as for example when it is allowed to be placed along the
diagonals of the basic cube or square. By using Laplace's
equation V'U=O we see that the coefficients of the x'
and x'y' are related by 3.7=10.8/3 and also that the
x' term must vanish.

IV. POLARIZATION ENERGY TERgBS

(a) Terms Not Involving the Additional Atom

The polarization energy of a polarizable ion, made
up of the energy of formation of a dipole and the energy
of interaction between the dipole and the electric field is

——,'-O.h"',

where o. is the polarizability and E the electric field at

"P.P. Ewald, Ann. PhysiI4 64, 253 (1921).
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the ion's position. In the undisturbed lattice this term
vanishes since the electric 6eld is zero at the ion's
position. However, with relaxation around a defect this
term can be important. As the type of defect considered
here is neutral the regular ions and the defect may be
considered separately. For the regular ions the energy
becomes

where E; is the electric field at the position of ion i
When the ions are in their relaxed positions this electric

field is a sum over the contribution from each ion so that
the energy becomes

(9)

We note that the restrictions on the ions do not disallow
j=k. Equation (5) then involves a triple sum. After
considerable reduction the expression for this polariza-
tion energy term becomes

( 31'zl'z 3r ~1 ~ 1 9(r ~'r z)r wr 'zest''
AEp=g ar~' ( 2e~ez) Pn

I . . . ,+, + I
.arz.

NL E r;L r;N r;N r;L r;~'r;L' r;z'r;~'
(10)

It is to be noted that the double sums over all of the
ions of the lattice have disappeared through symmetry,
leaving a single sum over i, with the restriction that i
should not equal either L or X. Once these sums are
calculated then a double sum over the movable ion
remains. The sums over i must be computed for each
different pair of ions L, Ã and there is a pair of sums
for each case, one over the anions, with polarizability

n and one over the cations, with polarizability n+.
However, it is again possible to reduce considerably, by
symmetry, the number of sums necessary, e.g. , for
similar length vectors joining L and E the results are
related. Letting ev ——e~~e~, n+=zt+'X10 '4; ez, = &z~e~,
n =o. ')(10 ", expressing distances in terms of the
anion-cation distance ro, and expressing the energy in
ev, one obtains from Eq. (10)

9(r~~ 4z)r~~4z)t' 3r zr z3 r Nr'N'''
&E„=A,P &r~ (e~ez) P ~+'~ — +

NI '+ ( r;z'r, q' r;~'r, z' r;g'r'z, '

( 3r zr z3r, ~'r;g'I
rLrN rNfL fNrI

9(r x r'z)«xr z't
hrz„(11)

riL riN

where
1 e'

&.= (
———X10-

zation energy is given by

G
1
2

For sodium chloride A„=(—0.115) ev. To simplify the
summations one of the ions L or E can always be taken
as the ion at the origin, and as we are summing the
components of a tensor, by examining the symmetries
of L and S many of the components can be seen to be
related. In addition many summations vanish through
symmetry. Furthermore, by writing r;L as r,—rL, some
summations already obtained in connection with pre-
vious expressions can be used.

Expressing the above term as

and using Eq. (5) for the double summation and Eq.
(3) for the terms with index e, one obtains

AEpg=2 Q d,r„[QV'„|7izf(r„,riz, ri)] hr~
M l

(b) Terms Involving the Additional Atom +[+V„f(r„r;,rz)] hr„

If the interstitial is placed at the cube-center or
square-center position, then the electric field on it is
zero in the rigid lattice. However, because of relaxation
an electric field may act on it if the relaxation is not
symmetrical about the interstitial. Also, if the additional
atom is slightly on' its central position, then an electric
field is present even in the undistorted lattice. If r,
and r„'refer to the additional atom, then the polari-

+i2hr„[gV„V„f(r„,r;, rz)] Dr„, (12)

with the f function as indicated above. We note once
again the appearance of double sums over all the ions of
the lattice. However, carrying out the differentiation
and making use of the fact that the additional atom is
originally in a symmetrical position, these sums vanish.
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The single sum also vanishes in this case by symmetry
considerations, so that there is no additional polarization
energy, to the order considered here, for the additional
atom. The reason for this can be understood by con-
sidering expansions of the electric field in a crystal in
the neighborhood of the cube-center or square-center
position. As in Eq. (8) the terms in 2:, etc. will vanish.
With this term vanishing, only the repulsive interac-
tions of the additional atom need be considered and the
electrical energies can be computed independently of
the type of neutral atom present. Since the expansions
are in terms of the distance of a relaxed ion from its
normal position, this restriction must apply to the
additional atom as well, so that in this approximation
cases cannot be treated where the interstitial is placed
at arbitrary large distances from the symmetry posi-
tions. Such cases can, however, be treated by expanding
about the new position of the interstitial and possibly
also about a new position for a nearby displaced ion
which may have been moved a large distance from a
lattice position.

V. DIPOLE-DIPOLE ENERGY TERMS

Since the interstitial is not polarized in the con-
figurations considered here, only the regular ions of the
lattice enter into the dipole-dipole energy calculations.

The dipole-dipole interaction energy of two polar-
izable ions of polarizabilities n~ and n2 and separation r2i
is given b

I
E1.E2 3(r21'El)(r21'E2) )

Ug e ——nial!f9
3 r215

where Ei is the electric field at the ion 1 caused by the
ion at 2 and E2 is the electric field at ion 2 caused by
the ion at 1. For all the regular ions in the lattice in

arbitrary relaxed positions, this energy is

(E (k') E/(l')

~ ( ~i) E. r;,"
3Lr; .E,'(k') jLr; E,'(l') j)

)/5

in Eq. (13), one obtains for the dipole-dipole interaction
energy, BED, the quadruple sum

ZED= Q f(r, ',r, r, ', r,')

—A'CE '

ijkl(i', kgi, l gj)

I 1
t'I & I '|'L&jL

r'A; 3r l r''

3 (r, e2r, 2') (r; eir; ~')

r "r ~ "r."ik jl ij

Equation (5) is then applied, and in order to convert
to ev we let u, =n, '&& 10 ", e2= q2

I
e

I
and A „=-2' (e2/rq')

&(! 10 "j', which is 0.0050 ev for the case of sodium
chloride. The calculation of the complete expression for
AED in terms of the ArN is straightforward but tedious.
The triple sums over all ions and several of the double
sums vanish because of symmetry. The terms remaining
give

where E (k') represents the electric field at ion i in
its relaxed position caused by all the other ions in their
relaxed positions, with a similar definition for E,'(l').
Using

E,'(k') =
k (kAi)

I 3IqMrqM 3rqlrql
q&LAED A, p Ar12 q11q2r——

MN

r, l3rqM5rLN'

q q 2 q q q q q qql «'r M'«N' r l'r M'rlN r l r M rlN r l r M rlN

9(rq3r r») ri&rq2r 9(r«rg+) rg+rqi 9(r,i rq2r) rqirq2r 27(rqi' rq2r)(r iriq~) r r iraq)q2q

r MrLNr l
3

rqM rlN rql rrM rLN rql

The reason for so many of the other terms vanishing is
connected once again with the fact that the expansion
of the electric 6eld in the neighborhood of an ion is
strongly convergent. Equation (15) contains a set of
rather formidable double sums over all ions of the
lattice, except for the particular restrictions, and these
sums have to be evaluated for each pair of movable
ions that are chosen. However the terms for pairs of
ions connected by similar length vectors are simply
related to each other. Since the dipole-dipole energy is
inversely proportional to r', the terms decrease rapidly
as a function of distance. Thus only a few of the terms
are large enough to consider and in the applications

made in Secs. VII and VIII this term was estimated
from the first terms of the series and treated as a cor-
rection to the main energy terms. It is to be noted that
because of the appearance of the factors nq'el' inside
the summations it is necessary to separate the sum into
four parts as follows
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where the +'s and —'s refer to a summation over

cations and anions, respectively. One of the ions, say

M, may be chosen as the (0,0,0) ion to simplify the

expressions and, in order to take all cases into account,
has to be considered alternately as a cation and as an
anion in order to include all possible symmetry cases.
One useful approximation in evaluating sums is to
consider only cases where 3I and )V are not more than

two units apart, and to place a similar restriction on q

and l, q and 3f, and l and Ã. In other calculations of
relaxation energy in the literature, these dipole-dipole

and polarization terms had been approximated by the
introduction of a polarizable medium. Certainly such

a concept should apply far from the defect, but it is to
be noted that the larger terms in the sum come from
ions which are relatively close by.

VI. REPULSIVE ENERGY TERMS

(a) Terms Not Involving the Additional Atom

The exponential form,

A . .e—Rr;,

was chosen for the repulsive energy between ionsi and j,
where A;; has different values for different pairs of
ions, and R is a constant which will be chosen the same
for the different pairs but may be varied to see its
importance. The method of choosing these constants
will be presented in the next section; in this section
expressions are derived for the repulsive energy for the
various ions in the lattice. For all of the regular ions
in the lattice in their relaxed positions, the repulsive

energy is &A . . —Rrig'""
~

t'. i (~&i)

Application of Eq. (5) gives

BE@= Z Ar~.
NL (NQI)

jr~a'I (1+Rr~r) r—~L,r~r] Arg
2RNL

,ge—Br~ i',

+Q Are Q ( r~;21+ (1+8—rv, )r~;r~;) Ar~. (16)
N t'+N 2y N'3

Equation (16) contains a sum over all the ions of the
crystal which converges quickly because of the ex-
ponential part. Since AN, will be chosen differently for
the different pairs of ions four sums are necessary in or-
der to have results good for an arbitrary alkali halide, if
R is chosen the same for each. These sums will be varia-
tions on the expression

g
—8rN+

A~++ [ r~~'I+(1+8—r~+)r~+r~~], (17)
+ 2yN+

where + represents the cations, by replacing + with-
for anions and considering X as either an anion or a
cation. In this sum X can be considered as the (0,0,0)
ion whence from symmetry the off-diagonal terms are
zero and the rN+rN+ ones can be replaced by 3yN+'I,
so that Eq. (17) reduces to

1 E
+—I

2

with similar expressions for the other terms. These
summations can be easily evaluated on choosing a
value for E. For E.=8.14,

P exp( —8.14r,)/r;=0. 001753,
odd.

g exp (—8.14r,)/r, =0.000085,

where "odd" refers to ions that can be reached from
the origin by an odd number of steps and "even" to
those that are reached by an even number of steps.

(b) Terms Involving the Additional Atom

The expansion method is used for ions further away
than the hrst shell. Representing the interaction
constant by A, N between the additional atom and ion
E, and using the same E as before, this energy difference,
DE~g, is, from Eq. (3)

yvl

Here l stands for those ions which are further away
than the first shell and the Ar, is the displacement of
the additional atom from its symmetrical position. This
term can be further reduced by symmetry in the
manner of Eq. (1/).

For the nearest neighbors exact expressions will be
used (in the sense that expansions are not employed)
for the energy difference on relaxation. This energy
AER8 is given by

g exp( —8.14r,) =0.001756,
odii

~ (r, RreN' r Rr„~)——(19)

P exp( —8.14r;) =0.000121,
even

where the X ions are restricted to the 6rst shell and
will usually be considered to be among the movable
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ions. Provision has been made here in the r„,y' term for
the cases where the additional atom will be considered
near its symmetrical position. In order to bring the
hrN's into this expression we use

but treat the additional parts exactly.
All of the terms have now been derived, giving for

the total energy of relaxation d,E

AE=
AEs+AEp+AED+AErt+AEttg+ATE'its,

(20)

with DEs from Eq. (16), DL't from Eq. (11), DL'D

from Eq. (15), dEtt from Eq. (16), AL~'rt& from Eq.
(1&), and &L'its from Eq. (19).AE is a function of the
ArN and Ar„.The equilibrium energy, for small dr&'s
and hr„may be obtained from the equations

(21)

between two ions,

4(r) =Ci2b exp/(rt+r2 —r)/p5,

where r is the distance between the ions; r~ and r~ are
the radii of the ions; p has an average value of 0.345
X10 ' cm; Ci2 ——1+Zt/1Vi+Z2/cV2, where Z, , Z2 and
Ã~, F2 are the charges and number of outer electrons
respectively for the two ions; and b is a constant for
each alkali halide, being 2.19&10 " erg for NaC1. For
ri and r2 the Goldschmidt radii are used: 1.81A for
Cl and 0.98 A for Na+. The same form and the same
b and p are used for the interactions involving the Cl'
atom. After comparing with the Cl radius and by
calculating the average radius from the outer P-wave
function for Cl',

r, = rP'dr

where x stands for the x, y, or z component of ArN and
Ã takes on all values of the movable ions as well as the
additional atom. In general Eq. (21) will be difficult
to solve, especially when the additional atom takes on
an unsymmetrical position, and the usual procedure
will be to pick various values for the ArN's and, by
examining Eq. (20), to find what choices will make it
a minimum. It will be noticed that with the exception
of AEgq all the terms have the form

where BN~ is a tensor and S can equal M, taking care
of the special cases where lV=M by choosing B»=0.

Equation (21) can also be used in a process of suc-
cessive approximations by minimizing with respect to
some of the ArN's Grst, and then, with these values
fixed, minimizing again with respect to the other ArN s.

VII. RELAXATION ABOUT THE CUBE-CENTER
POSITION

As a erst example, the general method is applied in
this section to the case of a neutral chlorine atom
situated at the center of a cube of ions in sodium
chloride and the relaxation energy is computed with
the chlorine atom considered fixed and only the first
shell of Cl and Na+ ions movable. A symmetrical
relaxation diagonally outward is assumed; the Cl ion

(0,0,0) moves with Dr= (—p, —p, —p) and the Na+
ion at (1,1,1) with Ar= (q, iJ,q), where p and tJ are the
rectangular components of motion with the nearest-
neighbor distances as unity. Equation (21) is applied
to this two-parameter problem to solve for the p and tt

and hence for DE. Two cases are treated, first without
and then with the dipole-dipole correction term
included.

The constants used in the repulsive interaction are
obtained from the Born-Mayer form of interaction C (r)

where P represents the wave function, we chose 1.56 A
for the Cl' radius. The wave functions that were used"
involved exchange. For NaC1, R is 8.14 and A, , (in ev)
has the following values for the different interactions:

Cl——Cl, 3850; Cl —Cl', 2190; Cl —Na+, 466;
Na+ —Clo, 252; Na+ —Na+, 52.

To obtain a more accurate interaction energy
between Cl' and Cl is not an easy task. The Born-
Mayer results do not strictly apply to neutral atoms.
A calculation according to the Hartree method is
exceedingly complicated, although possible, for example
by the methods of Lowdin. " Recently the Thomas-
Fermi method has been used by Abrahamson et al. ' to
obtain interaction potentials between neutral atoms for
small separation. This method can be applied to the
interaction between an atom and an ion but its results
will not be very accurate in the region of separations
used here. The repulsive potential is the least accurate
of the various energy expressions and the eRect on the
activation energies of changing the parameters in the
potential will be noted.

The polarizabilities of Na+ and Cl were taken from

TABLE I. Energy contributions in terms of coeKcients of p and g
for the cube-center case, in ev.

Term

~&s
gap

Total

54.4—35.8
165.3
183.9

54.4—104.0
82.8
33.2

—266.4
64.6

134.4
—67.4

"D. R. Hartree, The Calculation of Atomic Structures (John
Wiley 8z Sons, Inc. , New York, 1957). S. F. Boys and V. E. Price,
Phil. Trans. Roy. Soc. (London) A246, 451 (1954).' A. A. Abrahamson, R. D. Batcher, and G. H. Vineyard,
Phys. Rev. 121, 159 |,'1961).
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the work of Tessman ef, at."as

n+=0.41)&10 "cm', o. =2.96X10 "cm'.

The polarizability of Cl' was not needed in these calcula-
tions. For later work, where the Cl' will be considered
in a position relatively distant from a symmetrical
position, it is necessary to know its polarizability and
for this purpose a rough value of about half of that for
Cl& may be used, 2.25& 10 '4 cm'.

With the constants chosen as above the various
energy expressions of Eq. (20) were evaluated and
expressed as functions of the parameters p and q. The
results (after the evaluation of a considerable number
of sums) are given in Table I. The contribution from
~~as is

AL&'g s = 7.60 exp (—14.10p) —7.60

+0.88 exp (—14.10q) —0.88,
so that

TABLE III. Energy contributions in terms of coefficients of p and
q for the square-center -case, in ev.

Term

~&s

Total

7.2—8.0
49.8
49.0

7.2—23.4
27.4
11.2

—61.4
8.1

40.4
—12.9

is important although the repulsive terms dominate.
As would be expected, by considering only AE'8, AE„,
and AJi g the equilibrium values are obtained with
p=q=0 and this is a solution for stable equilibrium,
i.e., essentially the additional atom has been removed.

An estimate of the dipole-dipole terms gives —18.4 pq,
which, although considerably smaller than any of the
other pq terms affects the sum proportionately more, by
changing it from —67.4 pq to —85.8 pq. Carrying
through the calculation as before for p, q, and AE yields

and Eqs. (21) become

DE= 7.60 exp (—14.10p)+0.88 exp (—14.10q) p= 0.104, q= 0.158, AE= —5.23,
—8.48 183.9b' 33.2 '—67.4p, i.e., a difference of 0.26 ev in the relaxation energy

results.

TABLE II. Contributions to the relaxation energy in the cube-
center position for the P,q and P cases, in ev.

Term

~&s
aEJ
~&z
~&as
Total

—1.87—1.19
4.48—6.39

—4.97

0.40—0.26
1.22—5.36

—4.00

'9 J. Tessman, A. Kahn, and W. Shockley, Phys. Rev. 92, 890
(1953).

Bd E/Bp= —107.2 exp( —14.10p)

+367.8p —67.4q =0,
(22)

BAE/Bq = —12.3 exp (—14.10q)

+66.4q —67.4p =0.

Solving the second of Eqs. (22) for p and substituting
in the first of Eqs. (22) yields an equation in q which
can be solved by numerical methods to give q=0.125
and p= 0.097, i.e. , both of the order of a 10%%uz relaxation
along each of the axes. This is small enough that the
expansion methods remain valid. These values of p and

q yield for AE the value —4.97 ev.
There are several interesting consequences of these

results. Table II shows the contributions to the energy
difference due to the terms separately, and in the last
column the results that would be obtained by con-
sidering only the four Cl ions as the movable ions
(a separate calculation which gave p=0.086). It is
clearly necessary to include the Na+ ions, especially
because of the large difference in the electrostatic and
repulsive terms. It is also noted that each of the terms

VIII. RELAXATION ABOUT THE SQVARE-CENTER
POSITION

With the Cl' atom fixed at the center of a square of
ions, a relaxation calculation was carried out with the
two nearest Cl ions and the two nearest Na+ ions as
movable ions. Table III gives the results of the com-
putation in terms of p and q, the x and y displacement
outwards for Cl and Na+, respectively (s displacement
is zero since the relaxation is confined to a plane).

The contribution from hEgq is

AEps = 13.87 exp( —11.51p) —13.87

+1.60 exp( —11.51q) —1.60,
so that

AE= 13.87 exp( —11.51p)+1.60 exp( —11.51q)
—15.47+49 Op'+ 11.2q' —12.9pql

and Eqs. (21) become

BDE/Bp= —159.6 exp( —11.51p)+98.0p —12.9q=0,
BBE/Bq= —18.4 exp( —11.51q)+22.4q —12.9p=O. (23)

Solving these equations gives

p=0.196, q=0.199, AE= —12.04 ev.

A calculation was also made in which only the two
nearest Cl ions were allowed to move symmetrically
outward. This yielded p=0.191 and AE= —10.54 ev, a
difference of 1.50 ev with respect to the previous case;
it is clearly necessary to include the Na+ ions. In the
square-center situation it is to be noted that the values
of p and q are almost the same, so that a calculation in
which the same outward displacement for Na+ as for



TABTK IV, C01itrIbutions to tllc rclaxatlon encx'gy In 1;hc square. -.

ccntcr position for thc p,g and p cases, in cv.

~&s
Q jap
~&a
~&as
Total

—1.82—0.92
4.58—13.88

—12.04

0.26—0.29
1.82—12.33

—10.54

IX. ACTIVATION ENERGY

To calculate the activation energy between the cube-
center and square-center positions it is necessary to
refer both computations to a standard configuration,
which was chosen as the regular lattice configuration
without the additional atom. The energy differences are
then easily calculated as the repulsive energy of inter-
action of the additional atom with the nearby ions in
their regular positions. The results are 8.48 ev for the
cube configuration and 16.00 ev for the square. The
results of the activation energy calculation are sum-
marized in Table V. The cube-center configuration, as
expected, turns out to possess less energy than the
square-center one, the difference, or activation energy,
being 0.45 ev, which is rather small in comparison with
the various contributing terms. If the dipole-dipole
corrections are included, the activation energy becomes
0.56 ev.

Mott and Littleton' calculated the energy necessary
to remove a positive ion from a NaC1 crystal as 4.62 ev
and that for a negative ion as 5.18 ev. A direct com-
parison cannot be made because the electrostatic terms
are dominant for charged defects whereas the repulsive
terms dominate for a neutral defect. However, it is to
be noted that the values are a little larger than those
calculated here for the energy necessary to place a
neutral atom in the lattice.

By letting
~z

—V]I r

where v is the peak vibration frequency of the crystal,
about 5&(10"/sec for NaC1, U is the activation energy,
k is Boltzmann's constant, and T the absolute tem-
perature, one can estimate the temperature for sig-

Cl was chosen would yield a good value. Table IV
shows the contributions made by the respective terms
in the p, q case and the p case. The repulsive terms
dominate even more than before because of the close-
ness of the ions to the additional atom.

The dipole-dipole terms were here calculated to be
—3.9 pq, to give for the corrected values

p=0.200, q=0.215, AE= —12.19 ev.

In this case an energy difference of only 0.15 ev results,
whereas in the cube-center case the change due to the
dipole-dipole terms was 0.26 ev.

iijficant mobility fo exist, F''or (~=0.45 ev this tepi=
perature is 1'78'K, and for 0.56 ev the corresponding
temperature is 222'K. Delbecq et al. '" report that at
173'K the C12 centers are beginning to move through
the lattice in KCl. It should be mentioned, however,
that we have not used the model of a molecular ion,
although it would be possible to extend the calculations
with the inclusion of some specific attractive forces.

In order to investigate the eBect of altering the
repulsive constant used in the Cl —Cl' interaction
energy, calculations were performed with the values
1800 and 2600 instead of 2190. This was done without
the dipole-dipole corrections, to give an activation
energy of 0.44 ev for the 1800 case and 0.47 ev for the
2600 case, compared to 0.45 ev for the 2190 case as
used in these calculations. In each case the relaxation
energies and energies relative to the standard con-
figuration change considerably, but when differences
are taken the results are remarkably uniform.

TABLE V. Energies entering into the activation energy, in ev.

Cube-
center

Square-
center

Energy for introduction of additional atom
Relaxation energy
Energy relative to standard configuration
Activation energy

8.48 16.00—4.97 —12.04
3.51 3.96

0.45

C. J. Delbecq, B. Smaller, and P. H, Yuster, Phys. Rev. 111,
1235 (1958).

X. DISCUSSION

The activation energy calculated here cannot be
considered to be very accurate for several reasons.
First, only the nearby ions were allowed to relax,
whereas the next shell of ions should also be considered.
This can be done using the methods and expressions
developed in the first few sections, either by a method
of successive approximations or by assigning certain
values to the Ar~'s and testing for minimum values in
the relaxation energy. Second, the dipole-dipole energy
should be included in a more systematic way, rather
than as an estimate, and again the methods developed
here show this to be possible. Third, it should be inves-
tigated whether placing the additional atom in a
position a little away from the symmetry sites would
not yield lower energies. This also can be investigated
by the methods here. All three of these points are at
present being calculated on an IBM 704 computing
machine. Finally, the most stable configuration may
have lower symmetry than that assumed here, i.e., the
interstitial atom may find a lower energy position at a
considerable distance from the cube or square centers.
For such configurations, new expansions around these
positions for the electric field and thus the polarization
and dipole-dipole energies will be necessary. In this
way it can be investigated whether or not the additional
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atom tends to form a molecular ion because it tends to
drift naturally, i.e. without any specific attractive
energy terms, to a position nearer the anion than is
possible in the configurations considered here. A pre-
liminary calculation in this direction is not conclusive.

It will also be necessary in accurate future work to take
into account the polarization models of Lundquist' and
Woods et a/. ,

"for ions and atoms that are close together
and to consider other than exponential forms for the
repulsive interactions. ""
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Magnetic Field Dependence of the Superconducting Penetration Depth
in Thin Specimens

D. H. DOUGLASS, JR.
Lincoln Laboratory, t illassachzzsetts Institzzte of Technology, Lexington, hfassachzzsetts
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The magnetic field dependence of the superconducting penetration depth for very thin films as predicted
by the Ginzburg-Landau theory is considered. The results obtained depend upon the boundary conditions
on the film, For the usual case of equal magnetic fields on opposite sides of the film, the penetration depth
increases smoothly toward infinity as the critical field is approached, corresponding to a second-order phase
transition. For the less common case of unequal 6elds on opposite sides, the penetration depth increases
toward a finite value as the critical field is approached, corresponding to a first-order phase transition. The
results for the latter case are shown to agree remarkably well with the very precise experiments of Garwin,
Erlbach, and Sarachik on the field dependence of the penetration depth of a 250 A 61m of Pb. The pene-
tration depth in zero field as a function of thickness is also considered.

I. INTRODUCTION

HE magnetic field dependence of the supercon-
ducting penetration depth has provoked con-

siderable interest. This interest has been chief
concerned with bulk superconductors. Because most
bulk superconductors satisfy the nonlocal condition
(coherence length g greater than penetration depth X),
the interpretation of experimental results can be quite
difFicult. The reason for this difficulty is that there is as
yet no satisfactory theory that considers nonlocal effects
in the presence of a strong magnetic field. One way to
skirt this problem is to limit the coherence length by
making the dimensions of the superconductor small, as
in the case of a thin evaporated film. By making the
thickness d of the film, and hence $, less than X, the
superconductor will satisfy the local limit (/&X). There
is fortunately a satisfactory local theory that is valid
for all fields up to the critical field; it is the non-linear
phenomenological theory of Ginzburg-Landau' (GL).
Since the GL equations have been derived from the
microscopic theory by Gor'kov, ' the solutions of the GL
equations will have the same rigor as those of the micro-
scopic theory. Thus, by considering thin films the
nonlocal problem can be avoided, and the comparison

* Also at Department of Physics, Massachusetts Institute of
Technology, Cambridge, Massachusetts.

f Operated with support from the U. S. Army, Navy and Air
Force.

' V, L. Ginzburg and I.. D. Landau, J. Fxptl. Theoret. Phys.
(t'SSR) 20, 1064 (1950).

'L. P. Gor'kov, J. Kxptl. Theoret. Phys. (QSSR) 36, 191&8

(1959); Soviet Physics —JI'.TP 9, 1364 (1959).

between theory and experiment can be made with con-
siderably less ambiguity. Therefore, in this paper we
shall consider the magnetic field dependence of the
penetration depth in /hie specimens.

In the GL theory the penetration depth, X, is
inversely proportional to the order parameter, P, which
is a function of coordinates, magnetic field, and tem-
perature. However, if zf/X((n —'=10, where d is the
thickness of the specimen and K is the nonlinear coupling
constant of the theory, then f (and X) is independent of
coordinates. Thus, if we restrict ourselves to this condi-
tion, the dependence on coordinates is eliminated and
the field dependence of the penetration depth may be
expressed as

Thus the problem of finding the field dependence of X

reduces to solving the GL equations for P(T,H)/zIr(T, O)

for a specific geometry and specific boundary conditions.
There is evidence' that X(T,O) increases as the thick-

ness decreases, and Tinkham4 has suggested a sim-
plified way of calculating this increase. In Sec. IIA a
more fundamental calculation of this effect will be
presented. The field dependence of the penetration
depth for equal and unequal values of the field on
opposite sides of the film will be considered in Sec.
IIB.In Sec. III comparison of these results with an ex-
periment of Garwin, Erlbach„and Sarachik'will be made.

' %V. B. Ittner, III, Phys Rev. jI19, 1591 (1.960).' iM. Tinkhani, Phys. Rev. 110, 26 (1958).
"" E. Erlbach, R. L. Garwin, and M. P. Sarachil. , IBM f.

l~esesrch Develop. 4, 116 (1960'),


