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It is shown that if the acceptor binding energy be expanded in inverse powers of the strain amplitude,
lp (~) = l9 (o&)+Wi/e+, then the product ZsWi/e, where Es is the strain-induced splitting of the band
edge, may be equated to a certain (constant) quantity, Zo, which is readily calculable in terms of the infinite-
strain acceptor ground state. Zo is calculated for germanium with an uniaxial L100] compression. A provi-
sional value of g I, obtained from the existing data for this case, then gives the result b=2.9 ev for the
applicable deformation potential constant. An approach to the calculation of lV for arbitrary e is suggested.

Y has been shown by Pikus and Sir' that the de-
generacy at the valence band edge in the semi-

conductors typified by germanium is lifted by a shear
strain, the resulting energy functions being of the simple
"valley" type'. —srEs+sPPk y~ k,

+-,'Es+-,'A'k yn k,
E(k) =

for small k. The reciprocal-mass tensors yA and yB are
functions of the retati~e values of the strain components
e,j, and independent of the strain amplitude e. The
splitting Es is proportional to e (that is, Es is a linear
homogeneous function of the e,,). The result expressed
by (1) has been directly verified by observation of cyclo-
tron resonance in silicon. In germanium, the variation
of the Hall mobility, as a 'function of c, from the zero-
strain limit to the large-strain limit has been demon-
strated, and what appears to be most of the correspond-
ing curve for acceptor binding energy was also obtained. '
The scales of these two curves provide a very rough
measure of the applicable deformation-potential ele-
ment (the transition between the limiting small-strain
and large-strain values shouM occur at strains where kT
and the acceptor binding energy, respectively, equal
Es in order of magnitude), but there is no immediate
prospect of getting at all accurate measures in this way.
Even if data representing only acoustic-phonon scatter-
ing could be obtained, the theory of the mobility,
though simple in the large-strain limit, is very compli-
cated for zero strain' and a satisfactory theory for the
intermediate range would be even more complicated.
The situation is similar, though not as bad, for the
acceptor binding energy, t/t/'. It is shown below, however,
that for W the theory of the approach to (he large strain-
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where the strain terms are ~—,'Eq. Since the strain terms'
are independent of k, so is the transformation to (3).
HA, HB, and HA~ are diagonal in the new Bloch repre-
sentation (that is, their matrix elements vanish for
k'Ak")." Since Hzn may be neglected if E8 is large
enough, in diagonalizing (3), Hs(k) and Hn(k) are
identical with the second terms in (1). The next
approximation, analogous to (2), is

E(k)
',Es+H„(k) Z(k—)/-Es, —

+ ', Es+Hn(k)+Z(k)-/Es,

Z(1)= [H~, (k) )s.
s W. Kohn and J. M. Luttinger, Phys. Rev. 98, 915 (1955).'E. N. Adams, Chicago Midway Laboratories Report, CML-

TN-P8, 1954 (unpublished).
"Dresselhaus& Kip, and Kittel, Phys. Rev. 98, 368 (1955).

Also reference 9.
"The "two-by-two" form of (3) signifies division of the com-

plete function space into "A" and "B"spaces. There are two
independent states in each space for each value of k, in the Bloch
representation, since the Kramers degeneracy is not lifted by the
strain. The Z(h) are, precisely speaking, the eigenvalues of
HA&H&p, , which depend on lr, only (that is, they are doubly
degenerate). The eigenvalues of HA& HA& are equal, for each
value of k, to those of HAJ3HAB . (When we refer later to the
quantum operator Z, we mean H»HA&~ with reference to the A
space and HA~ HAp with reference to the B space. ) This de-
generacy complication is overlooked, for simplicity, in the deriva-
tion of (9). The latter is correct, all the same, with Z(k) defined
by (4) and with (8) referring equally to either one of the two sets
of Bloch states belonging to the A space. Similarly for (26) and
{28).

13

limit is straightforward and quite tractable and that,
at least on the basis of the effective mass approxirna-
tion, ' the results may be used to derive the deformation-
potential elements from suitable data. What is calcu-
lated is the second term of the expansion

W(e) = W(~)+Wi/e+
The effect of the strain is' to add to the Shockley

matrix terms proportional to the 6'j The complete
matrix of the band-edge part of this system (i.e., after
the usual separation of the band split off by spin-orbit
coupling" ) may then be transformed so that the strain
terms are diagonal":
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where the sum is to be understood as including the
nonbound states in the B space. It is now evident that
the second term of (2) is to be obtained by replacing
the denominator of (6) by Es. Then

W1/2 (O'Ap I
H@aH IPJ4o)IEsz (7)

where dg is the identity operator of the B function

space. Let
(g)i(An Pk azkPAk

Then the numerator on the right of (7) becomes

Zk I aok I'IH»(k) I'.

Therefore, by (5),

W2/o= (1/Es) Zk Z(k) I aok I'

~ P. J. Price, Phys. Rev. 104, 1223 (1956).

The acceptor bound states are the eigenstates of
H+U(r), where U(r) is the acceptor ion potential.
We now establish as basis states the eigenstates of
H+ U subject to the constraint that their wave functions

(22= 0, 1, 2 . .) are linear combinations of the
Bloch state functions p» of the "A" space only, and
similarly f&„ for the "B"system. (That is, tp&p mini-
mizes the expectation of H+U subject to the con-
straint, P4, ~ minimizes it with the additional restriction
of being orthogonal to f~p, and so on. ) Let the station-
ary energies be —2Es—W~„and +-', Es Wa . T—he

p~„, 4pa„, W~„, and Wa„will all be independent of
strain and E8. We are completely neglecting the in-
fluence of all other bands (i.e., their coupling to the
system by matrix elements of U), and therefore the
4p~„are eigenfunctions of H+U, and the W~„corre-
sponding binding energies, in the limit of large e and
Es In part. icular, W(oo) = W+p.

The present procedure is analogous to that in the
author's theory of the strain dependence of the donor
ground state in germanium and silicon, " but the cir-
cumstances are different here. The matrix elements of
H~r4 (between the P~ and the Pa) will be comparable
with the matrix elements of H4.+U and Hr4+U, and
the eRect of the former is small only because (and
when) Es is large compared with them. On the other
hand, the AB matrix elements of U (the equivalent of
which have a dominant role in the donor case") may be
expected to be small compared with those of Hp, B

when, at the large-strain limit, the "chemical shift"
deviation of the binding energy W(oo) from the value
calculated by the effective mass approximation' is frac-
tionally small. The AB elements of U are neglected
below.

We now include the effect of H&& by second-order
perturbation theory. The change in the acceptor bind-

ing energy is, to this order,

(tp-pl HIP. -) Q.-IHIP'-)
W(o) —W(~) ~Q , (6)

Es+W4.p
—Wa

To include the eRect of AB matrix elements of U (asso-
ciated with the "chemical shift" effect, ' and coming
from the neighborhood of the acceptor atom), one
should replace H in (6) and (7) by H+U.

In the effective mass approximation' one describes
the bound states by slowly varying "envelope wave
functions, " 4'(r), which are the eigenfunctions of an
eRective Schrodinger operator obtained by replacing k in
U+E(k) by —iV. Accordingly, in the present case, one
calculates the binding energy for the effective Schrod-
inger operator

U(r)+Hg( —i'7) —LZ( —iV)]/Es (10)

to first order ir4 thefir4at term The W. 2 coe&cients for
the excited states of the A system may evidently be
obtained in the same way with (10). The reader is
reminded that Z(k) is given by the asymptotic energy
functions (4).

As an example, we take the case of a uniaxial stress
along the L100$ axis:

ozz po ooo ozz +rpo
g,„=. ~ ~ =0,

where p=+1 for compression, —1 for tension. r is the
Poisson s ratio. On substituting (11) into Eq. (14) of
reference 1, and suitably expanding the radical in the
latter, we find

Es= 2b(1+r) o, (12)

H~(k) = (g+pIl)k 2+(g ——'pg)(k 2+k 2) (13)
and

Z(k) =382(k„2+k,')
I k,2+4' (k„'+k.') $

+C2(k 'k„'+k„'k.'+k, 'k '). (14)

3, 8', and C' are the coefficients of the usual expression"
for the energy function at zero strain:

E(k) gk2~I +2k4++2(k 2k 2+k 2k 2+k 2k 2)j—,
'

and b is one of the three deformation potential elements,
in the notation of reference 1 (see also references 9
and 5).

Ke may evaluate 5'& for this case, on the effective
mass approximation, with the customary approxima-
tion' for the ground-state envelope function:

( x2 y2+s-'p '
0'o ——(or a„a42)—'* exp —

I

— +
I

. (15)
(a~~ a4 J

For a„=a,=a, the expectation of d4/Ch4, etc. , would
be 1/a4, and that of d4/Chodyo etc. , would be 1/3a4. We
need only lnodify these results by the appropriate scale
factors (a/a„)' and (a/a, )' for each double derivative.
Then

Zo—= (+o I
Z( —i~)

I
+o)

(1 1 l (1 2=»'I —+, , I+-'&'I —+
Ea4 aiPa4 ) Ea4 aii az )
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TABLE I. Data and derived quantities for germanium
with a L100j compression.

Dielectric constant
A
8
C

~i/m((
Cy

Cl 1

W(~)
~0

Atomic units

13.2
+8.9
10.6

174
242

3.15X10 4

3.48X10 '

16.0

2.52

4.28X10 ' ev
64.3 X(10 ' ev)'

W= W(~)+Zo/(Es+W), (20)

"The values of A, 8, and C are the 6nal ones in reference 10.
The results of R. W. Keyes, IBM J. Research Develop. 5, 65
(1961),were used to calculate etl, eq and W(cc). With the values
of A, 8, and C given by R. R. Goodman, Phys. Rev. 122, 397
(1961),we obtain 4.25 instead of 4.28 for IV(co) and 63.3 instead
of 64.3 for Z0. (These revised values were computed by Mr. Hall. )
The changes are not significant here."J.J. Hall (private communication). The value of W(ao) is
uncertain by about $ milli ev. A comprehensive experimental in-
vestigation of the phenomenon has been initiated, and it is hoped
to obtain definitive values of W& and W(~) for both $100j and
I 111)compressions.

'o M. E. Fine, J. Appl. Phys. 26, 862 (1955).

It is of interest to apply the result (16) to the case
for which Koenig and Hall give experimental data
(reference 4, Fig. 2). Following Koenig and Hall, we
assume the sign of 8 for which, in their experiment
(i.e., for compression), mi)res~~. The values used and
the results obtained are given in Table I."

Hall has reanalyzed the data for the sample repre-
sented in Fig. 2 of reference 4. A plot of logLa (e)/o (0)j
against 1/e shows a good straight line for the largest
strains, yieMing the provisional experimental values"

W(oo) =4.6X10 ' ev,

Ws ——8.7X10-' ev.

In view of the uncertainty in the masses used" for the
theoretical value of W(oo), and the present uncertainty
in the experimental value, "the chemical shift could be
anything from negligible to about 15%. Applying the
above values of Zo and 8 I to the relation

b= Zp/2(1+r) Wi,

with" r=0.27, we obtain the provisional result

b=2.9 ev.

This value is of course of the expected order of magni-
tude, though somewhat higher than past estimates
(e.g., reference 1). The corresponding calculation and
data for a L'111j compression should provide the value
of the deformation potential constant d. (The third
constant, Pikus and Sir s a, is associated only with the
dilation and the resulting equal shift of all levels. ')

Review of the analysis leading to (9) and (18) sug-
gests that the formula

might be a not too bad approximation at smaller strains.
The extreme, and presumably least accurate, applica-
tion of it would be to zero strain, Es=0, for which (20)
gives

2W(0) =W(~)+ LW(~)s+4Zo7:—. (21)

With the values for W(oo) and Zp given in Table I we
have, from (21), W(0) = 10.4X10 ' ev, compared with
Schechter's calculated value 8.9)&10 ' ev for the same
case."

A formal theory for the acceptor energy levels at
arbitrary strain, involving operations in the A space
alone (together with the corresponding analysis for the
8 space alone, if required), may be approached as
follows: We first replace U(r) by the operator, U, ob-
tained by setting all AB matrix elements of U equal to
zero. After this approximation, we express the complete
perturbation-theory series" for the eth A level in the
form

where

G"nPJG yjy2 G"P,&

X (22)
(W~n —W~yi) (W~a —W~y, )

(4~, [&~s~fs )(its ~&~sting~, )

~s+W~.—Ws,.
=G"(&s+W~.)„, (23)

(&J+U—G"(&s—&))4J =&4~. (24)

(If the approximation for U had not been made, Ef~s
in (23) would be replaced by Hzs+U but the term U
in (24) would be unchanged. ) The eigenfunctions of
(24) belong entirely to the A space, but of course the
"dressed" states which they represent belong partly to
the 3 space.

The operator G" may be represented symbolically as
follows:

(Pyrf, + U)
We may write

&=4~+4's,

(23)

"W. Kohn and D. Schechter, Phys. Rev. 99, 1903 (1955).The
diGerence between the values of A, 8, and C used by Schechter
and those used in the present paper" presumably makes the dis-
agreement between the two values of lV(0) appear slightly less
than it actually is.

» P. M. Morse and H. Feshbach, Methods of Theoretical I'hysics
(McGraw-Hill Book Company, Inc. , New York, 1953), $ec. 9.1.

Again, the summations in (22) and (23) are to be under-
stood as including the non-bound states. In (22) the
primes signify as usual that the nth level is excluded
from the summations. From (22) it may be inferred
that the energy levels —8'+„are the eigenvalues E
in the equation
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(HJ+U)4~+H~s Ps=Ed~,
(Hs+U+I")4'B= —H~st f~.

If we write the second of these two equations, sym-
bolically, as PB

——. . by inverting the operator H&

+U+Il, and substitute for Pii in the first equation, we

obtain (24). Similarly, Ps is an eigenfunction of
Hs+ U G( E—) wit—h the eigenvalue E—E,q.

One might try the approximation of replacing Ha+ U
in (25) by XHii, the result being an operator diagonal
in the Bloch representation:

(26)

The virial theorem suggests the value —1 for the con-
stant A. On the other)hand, for the highest energies
(non-bound states) contributing to (23) the value +1
would presumably be the appropriate one. Therefore,
it is proposed to drop this term altogether and use
the approximation

G"(F)~ Z/F, (27)

in (24). That is, to approximate acceptor energy levels

by the eigenvalues, E, of

H~=H. +U Z((E, E—). —(28)

On approximating the effect of the final term in (28)
by erst-order perturbation theory, for the ground state,
we obtain (20). The condition for validity of this last
approximation /not necessarily the condition for (20)

separating the A-space and 8-space parts of the wave
function. Then

to be applicable] is presumably that W —W(~) be
small compared to W(~). It should be noted that this
derivation of (20) does not entail neglecting the chemi-
cal shift effects, but only setting H&+U equal to zero
in (25) and the application of first-order perturbation
theory to (28). One might regard W(~) and Zo as
empirical constants to be obtained by fitting the data
for W(e) near the large-strain limit.

On neglecting chemical shift eQects, one may apply
the effective mass approximation to (28), as in (10),
by expressing H~ as H~( —iV') and Z as Z(—fV') and
by reverting to U(r) instead of U. The binding energy
as a function of strain might be obtained by mini-
mizing the expectation of (28), with a suitable trial
function, for 6xed Eg—E and then adding the latter
to the minimum (E;„)obtained, thus getting Es for
that value of W= —E,„;„.In applying (28) to calcula-
tion of S' for smatl strains, we would be depending on
the absence of an unforeseen crossing of levels derived
from the A system at large strains with those derived
from the 8 system at large strains. "
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"The acceptor ground state at zero strain is fourfold {rather
than doubly) degenerate according to W. Kohn, in Solid-State
Physics, edited by F. Seitz and D. Turnbull {Academic Press, Inc. ,
New York, j.957}, vol. 5, p. 257. Crossing of "A" bound levels
and "3"bound levels, in addition to the obvious crossing of the
3 bound levels with the A continuum levels, is an evident possi-
bility; but the two lowest levels still need not cross, or meet at
zero strain.


