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The orthogonalized plane wave method, in a perturbation approximation recent1y introduced by Bassani
and Celli, is used to compute the lowest lying conduction states in (fcc) solid argon at the symmetry points
I', X, L, and E.The Bs and 3p valence bands are treated by tight-binding theory. The potential used in the
computation consists of a sum of eQ'ective atomic potentials in which a free-electron-like expression is used
for the exchange contribution. The lowest conduction state appears to be s-like (Pq), lying 12.4 ev above the
highest valence state (P&5). The results of the computation are compared with present theoretical and ex-
perimental knowledge of the electronic structure of the solid rare gases.

I. INTRODUCTION

'HE thermal and mechanical properties of the solid
rare gases have been studied for many years,

but only recently has experimental investigation of
their optical properties been undertaken. ' These crys-
tals are expected to be excellent insulators and are
transparent to visible and near-uv light. We feel that
an investigation of their band structure along the lines
of the elementary one-electron approximation is of
interest because no comparable study has been made,
and because such a calculation might give some indica-
tion of the conduction band structure of more compli-
cated solids such as ionic crystals, which also consist
of closed-shell atoms. A calculation of the 3p valence
band of XaCl has been made by Casella, ' using a model
of an argon sublattice. More recently one of us' has
computed the exciton band structure of solid argon,
using the Frenkel model.

In the present paper we make an attempt to calculate
the electronic band structure of solid argon in the one-
electron approximation. We And it necessary to use
diferent methods for valence and conduction states.
For the former we use the tight-binding approximation;
the procedure and calculations are described in Sec. II.
For the conduction band we use the second-order
perturbation approximation developed in a series of
papers by Bassani and Celli. 4' This is related to but
simpler than the conventional orthogonalized plane
wave (OPW) method and usually gives equivalent re-
sults. The conduction-band calculation is described in
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Sec. III. Section IV contains a brief discussion of the
results as they relate to the optical properties of solid
argon.

II. VALENCE BANDS

The total one-electron Hamiltonian used in all parts
of this calculation was taken to be

II=p'/2nt+P. V.(r—R„),

in which V,(r—R„) is an e8ective potential due to a
single argon atom located at the lattice point R„, and
the sum runs over all lattice points. V consists of a
Coulomb part derived from the Hartree-Fock atomic
charge density' and an average exchange potential'
first computed for argon by Casella. ' Our valence-band
calculation is in fact quite similar to Casella's treatment
of a Qctitious argon crystal in connection with the
valence bands of NaCl; nearest-neighbor tight-binding
theory was used in treating the 3s and 3p bands, but all
bands lying below 3s were considered Rat. (In Sec. III
we shall refer to the former as the "valence" states and
to the latter as "core" states. )

It is convenient to work with explicitly normalized
valence band functions, e.g. ,

Ps, (k)=LXOs, (k)$ l P„exp(ik R„)us, (r—R„), (2)

where Ã is the number of cells in the crystal, us, (r—R„)
is the atomic Hartree-Fock 3s function centered at the
lattice point v, and

Os, (k) =P„exp(ik R„)(us, (r), u„(r—R„)). (3)

Similarly, for the p bands, we use normalized sym-
metry-adapted linear combinations

0» =L&O» (k)j-:2-c- (k)
&(P, exp(ik R,)us~(r —R.) (4)

in which the us„„, are the atomic p functions, Os„(k) is

'D. R. Hartree and W. Hartree, Proc. Roy. Soc. (London)
A166, 450 (1938).

s J. C. Sister, Phys. Rev. 81, 385 (1951).
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TA&LK I. Two-center integrals evaluated at a nearest-neighbor separation of 8=2 &a= 7.10e0. Here N,„~, is a Hartree-Pock
atomic function and V, is the effective atomic potential described in the text.

n2m (u„i„(r),u~i~(r —R) ) (u„i (r), V, (r)u„~~(r —R)) (u„~ (r), V, (r R—)u„im(r))

3$0
3po'

3P~
4so.

+0.00229—0.0269
+0.00438
+0.55

—0.00140 ry
+0.01554—0.00202

—0.0276 ry—0.0364—0.0252

again a normalization factor, and the coefficients c "()'r)
transform the unsymmetrized Bloch functions into
basis functions of the irreducible representation n of
the small group of k.

We have evaluated matrix elements of II between
all pairs of states of the form (2) and (4), neglecting
three-center terms and two-center terms involving
other than nearest neighbors. Also evaluated were the
overlap terms (Ps, ~,fs„),which are of great importance
in connection with mixing of the 3s and 3p bands.
Lattice sums necessary for these calculations have been
published by Slater and Koster'; numerical values of the
two-center integrals used are shown in Table I. A
lattice constant (cube edge) of a=10.05as ——5.33 A,
corresponding to a density at 20'K of 1.764 g cm ' as
measured by Dobbs et a/. ,

' was used. The small overlap
between wave functions on second-nearest neighbors
justifies our nearest-neighbor approximation. For ex-
ample, the 3po.-3po. overlap at A= a is —0.0021,' com-
pared with the nearest-neighbor value —0.0269.

The results of the valence-band calculation are listed
in Table II and sketched in Fig. 1. As expected, the
computed 3p bands closely resemble Casella's bands';
however, they are slightly narrower in spite of the
slightly smaller lattice constant of solid argon compared
with that of XaCl, because we have included overlap
in our calculation. As pointed out below, mixing be-
tween the 3s and 3p bands was found to have a negli-
gible effect on their energies. Hartree-Fock eigenvalues'
have been used in positioning the 3s and 3p valence
bands in Table II and Fig. 1, and in locating the core
bands in the OPW formalism (Sec. III). We have thus
assumed that the Hartree-Fock functions are good
eigenfunctions of our effective atomic Hamiltonian,
with the Hartree-Fock eigenvalues. Although this is
certainly not the case with our choice of effective ex-
change potential, "we feel confident that the error thus
introduced will be small. This is justified by the follow-
ing considerations. We have veri6ed that coupling be-
tween the 3s and 3p bands is negligible along all lines of
high symmetry and at the point E, where the possi-
bility of mixing between the two E& levels exists. Let
us however compute the matrix element responsible for
the mixing at the point E in two ways using the Her-
mitian property of II and using the assumption men-

tioned above, i.e., that the Hartree-Fock functions are
eigenfunctions of p'/2m+V, . We obtain

X I'

—4r&)Xyl'

-.5—
Lpl CS a~ rr —6 Css.

r

rvr

-1.48—

-1.50-

-1.52
X5&

-1.54

Xyt

-1.56—

KI
Ky

-2.88—
XI

-2.89

KI

-2.90—

where 2, 8, and C are various linear combinations of
overlap and other two-center integrals involving the
effective potential, a 3s function at one center, and a
3po function on the other. The two forms have com-
puted values —0.0207i and —0.0203i, respectively; we
take this close agreement as an indication that the
potential seems fairly accurate for computing two-center
integrals in the valence-band structure calculations.

The spin-orbit term of the Hamiltonian has been
ignored, as in earlier calculations of chloride valence
bands. The most noticeable effect of the spin-orbit
interaction will be a splitting of the 3p valence band at
I' into two bands (I's and I's), separated by about 0.1
ev. The limited objectives of the present work do not
warrant a specific calculation of this effect.

At an early stage of this work an attempt was made

(0.0.0) p (1,0.0) (0,0,0)
s J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).'E. R. Dobbs, B. F. Figgins, G. O. Jones, D. C. Peircey, and

D. P. Riley, Nature 178, 483 (1956).
"See, e.g., D. R. Hartree, Phys. Rev. 109, 840 (1958).

FIG. 1. Band structure of solid argon. Energy is in rydbergs,
measured relative to the energy of an electron at rest at ininity.
Note changes of scale between bands.
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TasLE II. Computed energies (in rydbergs) at the symmetry points 1', I, I., and E in the reciprocal lattice of fcc argon (cube
edge=10.05ao). Eigenvalues for the 1s, 2s, and 2P core states are —237.2, —24.65, and —19.15 ry, respectively. Also included are the
normalization coe%cients O„&(k) for valence-band Bloch states. Notation for the symmetry types is that of Bouckaert, Smoluchowski,
and Wigner. '

Band
3$
3p

Cond.

03s
037

r,—2.894
~ ~ ~

—0.597

1.027

F2

+0.152

I'15

—1,506
+0.414 —0.031

~ ~ ~

0.927

X1—2.884

—0.243

0.991

X4.

—1.550—0.422

~ ~ ~

1.108

X5

—1.526

~ ~ ~

0.983

E1—2.884—1.536—0.439

0.992
1.028

~ ~ ~

—1.522

~ ~ ~

0.966

E4
~ ~ ~

—1.544—0.415

~ ~ ~

1.073

L1—2.886
~ ~ ~

—0.268

1.000

L2

—1.552—0.553

~ ~ ~

1.125

—1.514

~ ~ ~

0.937

a L. P. Bouckaert, R. Smoluchowski, and E. P. Wigner, Phys. Rev. 50, 58 (1936).

to compute the obviously tightly bound 3s and 3P
valence bands using the OPW formalism of Sec. III.
This attempt failed, predicting metallic argon at the
normal lattice spacing.

III. THE CONDUCTION BAND

The energy levels of the conduction band cannot be
calculated in the tight-binding approximation, because
the argon 4s atomic function is greatly extended in space
relative to the valence wave functions" and the overlap
of these functions centered on different atoms is very
large (0.55 for nearest neighbors!). This is not surpris-
ing, since from the high ionization potential of atomic
argon (15.8 ev) we expect a rather large energy gap for
solid argon and consequently a nearly-free-electron
wave function for the conduction band.

To calculate the energy levels of the conduction
band we expand the wave function in crystal symmetry
combinations of plane waves (CSCPW) belonging to a
given row of a given irreducible representation of the
small group of k, with the additional requirement that
the final wave function be orthogonal to the states of
lower energy. The Schrodinger equation is then solved
for the energy by second-order perturbation theory'
rather than by the variational theorem as in the com-
plete orthogonalized plane wave (OPW) method. 's

As discussed in reference 5, the unperturbed states
are the solutions of the "empty lattice" problem. The
corresponding eigenfunctions are CSCPW's denoted by
S~, as described in the Appendix, and the correspond-
ing eigenvalues are taken to be

(k+h, j'+v(o), (6)

where U(0) is the space average of the crystal potential
and h; is any reciprocal lattice vector of the set from

which 5„ is constructed. An effective perturbation
potential E. can be written as an operator on any set of
plane waves and in our case it also includes terms due to
orthogonalization to the valence as well as to core
states. We have

V.=E.V.(r—R.), (8)

and P„are eigenfunctions of the core and valence
states, respectively, with eigenvalues E, and E„ the
first summation extends over the core states and the
second over the valence states, and E is the desired
eigenvalue.

Matrix elements (S, ,RS~ ) are used in the perturba-
tion approach; they are evaluated to first order by
letting E =Ep where Ep is the unperturbed eigen-
value (6), and to second order by letting E~=Es +E&,
where E& is the erst-order correction to the energy.
A formula is given in the Appendix to express (Sa,g„)
X (P„,S„)in terms of the standard" orthogonality co-
efficients A„t(~ k+h, ~).

The calculation has been done at the points I', I, L,
and E of the reduced zone. The CSCPW's for the fcc
lattice have been obtained, in the way described by
Herman"; typical such combinations of plane waves
have been given by Casella. "We use only those sets of
unperturbed states having energies up through 11(2sr/a)'
+V(0) and then obtain, to second order of perturba-
tion theory, explicit expressions for the energies. For
example, the energy of the lowest conduction state so
computed is

RS„.=—LV,—V(0)jS,"+P,(E~—E,) (Q,~,S, )if,
+Z.(E" E.)(0. —S'o )4 (&)

where V, is the total crystal potential Lcf. Eq. (1)j

E(r,)= v(0)+ (p„LV(o)—E„,]o„, 'IA-. (0) I') {1+&.o. ~A„,(0) ) )—8
~
V(3)+Q LV(0)—E,70, 'A, (0)A, (3) ~'/3(2sr/a)'

—6
~
V(4)+Q„(v(0)—E„,jO„,—'A „,(0)A „,(4) ~'/4(2sr/a)'

—12' V(8)+Q [V(0)—E,jO, 'A, (0)A„,(8) i'/8(2sr/a)'
—24~ V(11)+Q„(v(0)—E„,]O„, 'A„,(0)A„,(11)~'/11(2z/a)'. (9)

"R.S. Knox, Phys. Rev. 1101 375 (1958}.
's C. Herring, Phys. Rev. S7, 1169 (1940); T. O. Woodruff in Solid State Physics, edited-by F. Seitz and D. Turnbull (Academic

Press, Inc. , New York, 1957), Vol. 4, p. 367.
' F. Herman, Phys. Rev. 93, 1214 E', 1954).
'4 R. C. Casella, Phys. Rev. 109, 54 (1958).
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TABLE III. I'ourier coefficients of the crystal potential in rydbergs. U(p) is de6ned in connection with Eq. (10) of the text.

v(p) —1.578 —0.432 —0.366 —0.242

11

—0.200 —0.189

16

—0.158 —0.141

20

—0.136

TABLE IV. Selected values of orthogonality coefficients. A„&(p) stands for A„&(~ k+h;
~ ) in the case

~
k+h; ~'= p(2ir/o)'.

p

A ,(p)
A2, (p)—iA „(p)
A .(p)—iA»(p)

0.01252—0.09847
0

0.6026
0

0.01242—0.08878
0.03636
0.2072—0.3867

0.01238—0.08582
0.04059
0.1497—0.3245

0.01225—0.07516
0.05041
0.0373—0.1680

0.01215
—0.06825

0.05390
0.0054—0.1078

The summations extend over all core and valence states
of symmetry I'i (s-like). For convenience we have used
the abbreviation V(p) to stand for the Fourier coefficient

U(h)=Q ' V, (r)e '"'dr

in the case h'= p(2ir/a)'. In Eq. (10), 0 is the volume
of the unit cell and the integral extends over the whole
crystal. A similar abbreviation is used in A &(p).

The Fourier coefficients V(p) were evaluated from
the analytic approximation to V, (r) given by Casella
and are listed in Table III. The orthogonality coe%-
cients were obtained by numerical integration directly
from the atomic functions, ' and are listed in Table IV.
They have been calculated at other points but these
results are not tabulated because for all practical pur-
poses they can be reproduced from Table IV by in-
terpolation and extrapolation. The energies of the core
states are taken as the Hartree-Fock eigenvalues but
the energies of the valence states and their normaliza-
tion constants are taken from the valence-band calcula-
tion of Sec. II and can be found in Table II. It is
understood that 0~,=02.=02„=1.

The results for the lowest conduction band levels are
included in Table II and Fig. 1. The minimum of the
conduction band appears to be at the center of the
reduced zone and corresponds to a totally symmetric
state I'i. At the points X and I, however, the p-like
states I.2 and X4 are lower than the s-like states X~
and I&. The forbidden energy gap for solid argon is
smallest at the point I' and is about 12.4 ev. The "elec-
tron affinity, " or depth of the conduction band mini-
mum below the vacuum, is about 6.6 ev.

It is very dificult to estimate the accuracy of our
results because of the approximations involved in the
perturbation procedure and because of the approximate
nature of the potential chosen. In the perturbation
calculation the second-order terms arising from the
matrix elements (S, ,RS„~) with gAp are very small
compared with the energy denominators and this points
to good convergence. The reason lies in a cancellation
between the Fourier coefficients of the potential and the

terms which arise from orthogonalization to the inner
states, as recently pointed out by various authors. ' "'
This is particularly true in the case of the lowest con-
duction state I'~, but for higher states the cancellation
becomes much less effective. A greater source of error
lies in the choice of the potential which is only approxi-
mately consistent with wave functions and eigenvalues
of atomic argon, as discussed in Sec. II. However, we
are dealing with a closed-shell atom and expect the
approximation to exchange to be much better than in
the case of metals and semiconductors, where it was
previously used. "The value of V(0) obtained by direct
integration of the potential appears to be reasonable and
not too large by a factor of about 3 as it has been found
to be for open-shell atoms (see Woodruff, reference 12).
A better approximation to the potential may decrease
the value of V(0) by as much as 20% and produce an
increase in the energy gap of the order of 2 ev, but we
do not expect it to change the details of the band
structure.

IV. DISCUSSION

Very little experimental information on the optical
properties of solid argon is available. The work of
Schnepp and Dressier' supplies some clue as to what
one can expect, however. They 6nd no optical absorp-
tion in argon whatsoever up through photon energies
of 10 ev, but in two other rare gas films (Kr,Xe) strong
absorption bands are observed at wavelengths corre-
sponding very nearly to the energies of the first excited
states of atomic Kr and Xe. It is probable that these
bands can be attributed to exciton absorption and that
a similar phenomenon will be observed in solid argon,
i.e., exciton absorption will occur somewhere in the
vicinity of 1.1.5 to 12.0 ev. Clearly, experiments are
necessary to confirm this extrapolation which is not
inconsistent with our band gap of 12.4 ev. Traditionally

"E.Antoncik, Czech. J. Phys. 4, 439 (1954); J. C. Phillips
and I,. Kleinmann, Phys. Rev. 116, 287 (1959);M. H. Cohen and
V. Heine, ibid 122, 1821 (1961). ."See J. Callaway, in Solid-State I'hysics, edited by F. Seitz and
D. Turnbull (Academic Press, Inc. , New York, 1958), Vol. 7,
especially pp. 107—108.



R. S. KNOX AN D I . BASSAN I

the rare-gas solids have been regarded as "tightly
bound" crystals, even in discussions of exciton states.
However, it is not yet known decisively whether tight-
or weak-binding exciton theory is appropriate. '

At higher photon energies strongly allowed band-to-
band transitions can take place, giving rise to an ab-
sorption edge and accompanying photoconductivity.
It is of course easy to suggest many standard experi-
ments to verify the argon band structure but it will be
hard to convince experimentalists of the ease of perform-
ing them at the wavelengths involved ( 1000 A).

We feel that calculations of effective masses directly
from the band structure would be unreliable at the
present stage since they are too sensitive to the details
of the E versus k curves near the extrema. However,
one may roughly guess from the widths of the bands in
the (100) direction that the 3p valence-band effective
masses are 1.8 and 4 electron masses. In the conduction
band, the (100) e8'ective mass, as estimated using a
nearly-free electron approximation, is roughly 1.0 to 1.5
electron masses.

Besides the specific predictions of the energy gap and
band structure of argon, our results indicate that a
similar attempt might be made with some chance of
success in ionic crystals, and we are now planning work
along these lines. Our experience with argon suggests
that the lowest conduction state as computed by the
OPW method will also be the s-like state F. This would
be in agreement with the only available calculations on
ionic crystal conduction bands, both done by the
cellular method (LiF "and NaCl ").We are aware that
the polaron effect will be important in ionic crystals,
but feel that an attack on the "bare" particle states is
essential in view of the general lack of knowledge in
this area.

Note added ie proof Subsequ. ent to preparing this
manuscript, the authors located two more calculations
pertaining to conduction bands in ionic crystals.
Kawamura" computed the eigenvalue and deformation
potential at F in KC1 by the cellular method and
Tolpygo and Tomasevich" treated the lowest conduc-
tion band in XaCl by the tight binding method. Because
of difficulties generated by large overlapping of wave
functions in each of these calculations, we still suspect
that an OPW calculation will be of considerable
interest.
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APPENDIX

Let a crystal symmetry combination of plane waves be

5„=(NQ) ' P; a»" expLi(k+ h;) . r]. (A1)

The index o. refers to a given column of a given irre-
ducible representation of the small group of k and the
coefficients a» are determined by group theory with
the condition Q;ia» i'=1. 0 is the volume of a unit
cell and E is the number of unit cells; the function is,
therefore, normalized over the volume of the crystal.

The wave function for a valence state is written

P„i (k, r) =
I NO„i (k)]—l

XQ ci„P„exp(ik R„)u i (r—R„). (A2)

0 i (k) is a normalization factor which is equal to 1 in
the case of nonoverlapping core states. The coefficients
c& are determined by symmetry at special k points or
by solving a secular equation; except for the numerical
factor LO & (k)] l they define a unitary transformation
from the unnormalized wave functions

P„i„(k,r) =N—l P„exp(ik R„)u„,„(r—R„).

From Eqs. (A1) and (A2) we obtain

(p„t,5„)=LO„i (k)]-lg, a,'P ci„

X e' & +"& i'u„i~(r)*dr. (A3)'

The integral can be evaluated in terms of orthogonality
coefficients A«(ik+h, i) by expanding the exponential
in spherical harmonics and by using the orthogonality
of the associated Legendre functions; one obtains

Q„t,S )=LO„i (k)]—i+, a„, L4ir/(23+1)]l
c Vi (8,,$,)A„[(ik+h;i). (A4)

The angles g, and 8, refer to the vector k+h;. The
expression for the orthogonality coefficients is"

A„i(ik+h, i)

=z' rj &(~ k+h, ~r)P„&(r)dr. (A5)
(2l+1)Q ~ 0

P„i(r) is the usual radial part of the atomic wave func-
tion multiplied by r. The quantities which are needed
to obtain the matrix elements are

(5', 4-i )(4-i P. )
=LO.i (k)] 'P;P, o„'*ii»'

Xa.,(i l+h, [)*a„,([kyh;[)
XL4g/(21+1)] Q ci~ *Vt~(8;,y,)*

Xg,„ct„.V&„(8,, p,). (A6)
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Ke can formally add to this expression all analogous
terms arising from the other symmetrized valence wave
functions P ~ with PWn since their cross product with
S, is zero, and then because of the unitary property of
the transformation on the I'~ 's this last equation can
be written

(~ A' ) (ll' s ")
=Lo.g (k)Q

—'P, Q, a„'"e„A„qA q(l k+h, l)*
XA ~(l k+h~ l)L4z/(2t+1)]

XQ Yi (&,, q, )*Yi (&,, p,). (A7)

From the addition theorem of spherical harmonics this
becomes

(s. ,4' t )(4' ~
4' )

=LO.,-(k) l-r p; p; ~„-*~„-
+A„t(l k+h;l)*A„~(l k+h, l)Pr(coscd). (AS)

In (AS) ce is the angle between k+h; and k+h;.
Formula (AS) has been given by Herring for the

particular case of nonoverlapping core states (O(k) = 1$.
The present derivation makes use of the symmetry

of the lattice from the beginning and allows one to
treat orthogonalization to valence states in the same
way as orthogonalization to nonoverlapping core states.
This procedure can be made more general to include the
case of mixing of wave functions with different angular
quantum numbers in the valence states.
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A Magneto-Stark Effect and Exciton Motion in CdS*
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J. J. HOPFIELDt
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Exciton absorption occurs, for weak exciton lines, at an energy
which is the energy of an exciton having a wave vector equal to
that of the light in the medium. These excitons have a Gnite wave
vector, and therefore, a Gnite velocity. In a uniform magnetic Geld,
the Lorentz force on the electron and hole due to the center-of-
mass velocity produces a magnetic perturbation in addition to
those ordinarily considered. The measurement of such a perturba-
tion measures the velocity of an exciton of known wave vector,
and therefore determines the total exciton mass. In addition, the
measurement of this effect which depends on the exciton velocity
provides a positive distinction between exciton absorption lines
and absorption lines due to impurities. It is shown that this

perturbation can be measured by the measurement of the Stark
effect on excitons in the presence of a uniform magnetic Geld. The
exciton mass for the n= 2 states of excitons formed from the top
valence band in CdS was measured by this technique, and found
to be 0.92%0.18 in reasonable agreement with the mass calculated
from independent experiments. The Stark eRect in the absence of
a magnetic Geld was also studied to ensure an understanding of
the eRect in the presence of a magnetic Geld. The stark eGect in a
magnetic Geld sometimes exhibits peculiar behavior which was
attributed to an extraneous Hall Geld. This interpretation gives
an estimate of ~,r„=2 for electrons in "good" CdS crystals at
1,6'K and at 31 000 gauss.

I. INTRODUCTION

'HE optical absorption of insulating crystals having
a direct band gap is often dominated, at energies

near the band gap, by the absorption due to excitons.
These bound electron-hole pairs cause a series of dis-
crete absorption lines below the band gap. Many ex-
periments have been performed to try to demonstrate
exciton motion or the current-free transport of energy
by excitons. These experiments have, by and large, been
marginal and ambiguous.

Recent work by Hop6eld and Thomas' ' in CdS and
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by Gross' in Cu20 has shown that the Rnite wave vector
of light having band-gap energies can produce easily
observed effects on the selection rules for exciton transi-
tions. Although both experiments could be most easily
interpreted on the basis of exciton states, the finite
wave vector of the light can produce similar effects on
the absorption due to impurity atoms.

The present experiments describe the measurement
of the velocity v of an exciton of known wave vector. The
possibility of such experiments' and early experimental
work' ' has been previously reported. The experiments
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