
P H YSI CAL REVI EW VOLUME 124, NUMBER 3 NOVEM B ER 1, 1961

Charged Boson Gas*
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The ground state energy and elementary excitations of a charged gas of bosons at high densities are exam-
ined by use of the method developed by Bogoliubov for boson gases. It is conjectured, but not herein
established, that this method yields exact results in the high-density limit analogous to those obtained by
Gell-Mann and Brueckner, and by Sawada, in the corresponding case of a charged fermion gas. The ground
state energy is essentially correlation energy, and is therefore negative, and its magnitude varies as the
one-fourth power of the density at high densities. The elementary excitations have for low momenta the
energy appropriate to plasma waves, and for high momenta the energy appropriate to single-particle
excitation. There is therefore an energy gap, suggesting that the gas is both a superQuid and a superconductor
at low temperatures. At low densities the behavior of a charged gas is independent of statistics; hence,
such a gap must disappear as the system is expanded.

ECENTLY much attention has been devoted to
the study of the low-lying states of systems

composed of many identical particles in view of appli-
cations to such physical systems as superAuids, super-
conductors, normal metals, and to the nuclear many-
body problem. ' While many of these investigations
have been directed towards models which may be
considered representative of real physical situations
such as those described above, there are also virtues in
studying certain systems for which no analogous
physical system is known in view of the insight such
investigations yield into the behavior of many-body
systems in general. It may be remarked that in the
case where the forces between the particles are of a
Coulomb character, one is dealing with a particularly
simple situation in that the ground state of the system
is characterized by a single parameter, namely the
density of the system, or more precisely by the ratio of
the mean particle separation to the Bohr radius, since
the potential in this case has no intrinsic range. The
electron gas, in particular, has been studied' because of
its application to electrons in metals, but the charged
boson gas seems to have been largely neglected since
no known system corresponds to it. Schafroth, ' however,
made an exploratory survey of the properties of such
a system on the basis that it may be a suitable model
for a superconductor. His investigation is based on the
assumption of an ideal gas (which corresponds to a
self-consistent fie1d approximation), and primary atten-
tion was directed to the phenomena associated with the
Bose-Einstein condensation. In particular, he found
that for the ground state the system has zero energy in
this approximation since there is neither a Fermi
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' For general reference, see The Many Body ProMem edited by
C. DeWitt (John Wiley R Sons, New York, 1959).' M. Gell-Mann and K. Brueckner, Phys. Rev. 106, 364 (1957);
K. Sawada, Phys. Rev. 106, 572 (1957). A more comprehensive
review may be found in reference 1.' M. R. Schafroth, Phys. Rev. 100, 463 (1955), also J. M. Hlatt
and S. T. Butler, ibid. 100, 476 (1955).

energy nor an exchange energy (at least at high
densities) for a charged Bose gas.

In studying Bogoliubov's method' as applied to a
low-density system of bosons interacting with short-
range forces, the author noted that the basic validity
condition for the approximation could also be satisfied
when the system was at suKciently high densities that
there were many particles in a sphere whose radius is
the range of the force. It was, therefore, natural to
examine the case of the long-range Coulomb force. One
finds here that the validity condition is satisfied when
the density is so large that there are many particles
within a sphere whose radius is the Bohr radius. In
this situation there is a qualitative change from the
behavior of a free gas since the Coulomb force leads to
an irregular perturbation on the free system. Appli-
cation of the Bogoliubov method leads to the result
that the ground state of the system has a negative
correlation energy whose magnitude increases with the
one-fourth power of the density at high densities.
Perhaps more interesting is the fact that the elementary
excitations of the system have, for small momenta,
energies characteristic of plasma oscillations (or waves)
which pass over smoothly for large momenta to the
energies characteristic of single particle excitation.
Since one would intuitively expect such a character for
the excitations of a dense charged gas, one is led to
conjecture that the Bogoliubov method leads to the
exact solutions in the high-density limit. A similar
conjecture would follow from the similarity of the
"diagrams" which are taken into account in the
Bogoliubov method for the Bose gas and those taken
into account by Gell-Mann and Brueckner, and
Sawada' in their exact calculation of the correlation
energy of a charged fermion gas in the high-density
limit. I'urther investigation is planned to determine if
this conjecture is in fact true, but the present results
are published without this verification having yet been
performed.

If in fact the Bogoliubov method does yield a correct
picture of the high-density charged boson gas, then

4 N. N. Bogoliubov, J. Phys. (U.S.S.R.) 11, 23 {1947).
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since the excitation spectrum has a finite energy gap
given by the plasma frequency, one would anticipate
that such a gas behaves both as a superconductor and
as a superQuid at suKciently low temperatures. In
this case it would provide one of the simplest models
on which these peculiar phenomena may be quantita-
tively studied. Without further ado, we present a
summary of the Bogoliubov method applied to such a
charged boson system,

where
to ——A'kz/2m go =4zre'/k'

and ai,~ and ak are creation and destruction operators
for particles of momentum Ak, satisfying the usual
commutation relations for bosons. The prime on the
summation indicates that the term with k=0 is to be
omitted; the absence of this term is the consequence
of the assumed background charge. The approximations
of Bogoliubov are then: (1) the dropping of those
terms in the second sum in the above Hamiltonian
which contain fewer than two creation or destruction
operators for particles of momentum zero; (2) the
replacement of ao and ao~ in the remaining terms by
the c numbers Eo', where Eo is the mean occupation
number of the zero-momentum state and is assumed
to be very large.

Bogoliubov has discussed these approximations and
given arguments to support their validity in the case
where the system contains a large number of particles,
and the major fraction of the particles are contained
in the state of zero momentum. We shall find u posteriori
that the latter condition is satisfied in our case in the
high-density limit. The second approximation above
forfeits the constancy in number of particles so that the
total number of particles E is to be identified with

N =No+(Z k' czk'czk), (2)

where the second term represents the expectation value
of the number of particles in states other than the
zero-momentum state.

With these approximations the Hamiltonian takes
the form

We consider a gas of spinless bosons each with a
charge e contained in a volume 0 (periodic boundary
conditions) with a uniform rigid background canceling
charge distribution. The Hamiltonian in second-
quantized representation for the system is then

1
H ptkcktGk+ Q Q Q gkGk" —k Gk'+k tzk" Qk') (1)

2Q&" &'

with

SI, [(t——k+nogk eo)—/2e&„jl, .

ck ——[(4+npgk+ ek)/2ekjl,

ok= [2npgktg+tkz7'=A[co '+Azk4/4m'jl

a&, = (4zrnoe'/m) l,

(6)

(7)

(8)

the plasma frequency of the system, at least insofar as
the actual density,

n=N/n, (10)

can be approximated by no.
Under this transformation, the Hamiltonian then

takes the form
H Uo+Qk ekczk &kq (11)

where the ground-state energy of the system Vo is
given by

Up=+'(ek t. —nogo—) =
0

(eo tz nogk)—k'dk—; (12)

here the last step follows on allowing the volume 0 to
become infinitely large while maintaining n fixed.

Before discussing the transformed Hamiltonian, we
derive Bogoliubov's validity criterion by calculating
the expectation value of the number of particles in
states of nonzero momentum:

(N No)/N p (n——np)/np ————
2~'no ~ o

s 'k'dk. (13)

Transforming the variable of integration to

one obtains

where

and'

$= (A'/4ocmnpe') lk,

(n —rzp)/np ——Qr, p&,

r p= (3/4zr) mme'/(5'no'),

(14)

1 t 1) ' t
" (4+2

Q= —
i

—
i

—P d$=0.2114. (16)-I» " -(v+4)-:

Thus we see that most of the particles are in the
zero-momentum state at high densities (small r,p) and
that the fraction in this state approaches unity in the
high density limit. The rms fluctuation in the number

' The precise values of the constants Q and S are

1
Q =—(-,')&F(o./2, 1/K2),

3'

This Hamiltonian is diagonalized by the canonical
transformation,

cg= cko'g sko' —g &

where

Qk [(4+npgk)+k o'k+snogk(+k& —k+izk iz—k )j (3)

where
np=Np/Q.

32
5=—(so) &PF (o /2, 1/V2) —2'�(o/2, 1/v2) g,
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where F and E are complete elliptic integrals of the 6rst and
(4) second kinds, respectively.
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2 r
S=—(3)' P'(4+ j') l—&4 —2jd&= —1.606. (18)

~()

We may rewrite this result in terms of the more custom-
ary variable

r.= (3/4 )pr&me'/h'm~

since from (14) we have

m/mp = 1+Qr,p',

(19)

r, = (mp/m)&r. o=r.o[1+Qr,p') & (20)

which determines r, o implicitly in terms of r, . For
suSciently small r,o, we have

and
r, p

=r,+-sQr, '~4, (21)

mp ——Sr, &—(5/4)SQ= —1.606r, '+0.424. (22)

It is not clear from our analysis that the constant term
in (22) is correct or even that Np possesses an expansion
in powers of r,& as this equation would suggest, since
the order in r, in which the present calculation is valid,
in view of the first Bogoliubov approximation, is not
obvious. A more intensive analysis of the problem is
necessary for clarification of this point. On the other
hand, there is no particular reason to suspect that the
erst term is not correctly given by the analysis here
presented, and that it represents the analog in the
boson case of the 6rst term in the correlation energy
of the charged fermion gas at high densities as computed
by Gell-Mann and Brueckner, and by Sawada. In the

of particles in states of nonzero momentum is easily
determined to be of the same order as the mean occu-
pation number of these states. This indicates that the
validity criterion is not upset by Quctuations and at
the same time shows why occupation numbers of states
of low momentum, which can have a large average
value for a large system, nevertheless cannot also be
treated classically as c numbers.

Turning now to the ground state energy, one 6nds
on making the same transformation of the variable of
integration in (12) that the energy per particle in
rydbergs is given by

Np
——Vp/NRIr =S(mp/m)r, p (17)

where'

boson case, there is of course no Fermi energy nor
exchange energy, so that the energy computed above
may be regarded as correlation energy.

Turning finally to the second term in Eq. (11),
which describes the elementary excitations of the
system, it is clear from the excitation energies as given
in Eq. (8) that for small it these must be of the nature
of plasma oscillations or plasma waves with a specific
dispersion relation. The fact that there is a finite
energy gap, at least in the approximation here con-
sidered, suggests that a charged boson gas at high
densities is both a superQuid and a superconductor. It
is perhaps interesting that there is a continuous change
in the energy of the elementary excitations, as the
momentum of the excitations increases, from that.
appropriate to plasma waves to that appropriate to
single-particle excitation.

We remark finally that in the low-density limit, a
gas of charged particles has a behavior independent of
the statistics and hence is the same for a gas of fermions
and a gas of bosons. As Wigner' has pointed out, in
this limit the particles crystallize in a body-centered
cubic lattice in the uniform matrix of opposite charge.
The energy of the system is given by the Coulomb
energy of such a crystalline array, and the next-order
correction term is simply the zero-point vibrational
energy of the lattice. The energy is then given by

up= —1.792r, '+ (2.55+0.30)r, ', (23)

in the same notation as that employed above. The
coefficient of the second term has here been determined
by estimating the mean vibrational frequency of the
lattice from the mean square and mean fourth power of
the frequency which can easily be calculated. Since
the low-lying excitations consist of phonons, which,
when transverse, can have arbitrarily low energy, one
sees that the energy gap must disappear as the boson
gas is expanded.
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