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tions of He' in He4 would not separate into two phases
at O'K. In mixtures containing enough He' for phase
separation to occur, the equilibrium concentration of
He' in the lower He'-rich phase at O'K would then be
determined by higher order terms in the free energies
which have not been included in (6).

On the other hand, the experimental values of LES
appear to vary approximately linearly with concentra-
tion and are not inconsistent with the hypothesis that
EE3—+ J3' as X—+0. This hypothesis removes any

unusual behavior from the separation line near absolute
zero, but it is difficult to accept. from another viewpoint:
It implies that the binding energy of He' does not
depend at all on whether its neighbors are He' or He4.
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The development of a quantum-mechanical formalism for systems with dissipation that was presented
in an earlier article, and intended mainly for application to the electromagnetic Geld in a cavity, is extended.
The problem of the harmonic oscillator with dissipation is shown to be the same as that of a harmonic
oscillator coupled to a thermal reservoir, and the need of the formalism to contain the appropriate statistical
mechanics is discussed. The derivation of relationships which permit the calculation of all moments of the
oscillator coordinate and momentum provides the necessary extension of the theory. The formal resemblance
of the completed theory to that of classical Brownian motion, some differences due to quantum mechanics,
and the fact that certain fundamental relationships which are assumed in the latter are derived in the
present analysis, are pointed out. The application of the theory is illustrated by the consideration of three
problems: the proof of Ott s formula, and the derivation of both the probability density and energy distri-
bution of the oscillator in equilibrium with a thermal reservoir.

INTRODUCTION
' 'N the first article on the present subject' (hereafter

& ~ referred to as I), a quantum-mechanical theory of
the harmonic oscillator with dissipation was developed.
The motivation behind this theory was its application
to the electromagnetic radiation field in a resonant
cavity, and for this purpose, the analysis was carried
su%ciently far. Recently, the theory has been applied
to an entirely different subject, ' and some questions
arose which were not treated in I. In view of this and,
possibly, other applications not yet envisaged, it is the
purpose of present article tq extend the above theory.

The results of I will be summarized for the sake of
intelligibility. They will be presented in a modified
notation, the modification having no other significance
than the simplification of the appearance of analytic
expressions.

The new notation is defined, essentially, by the
statement that the part of the total Hamiltonian which
refers to the harmonic oscillator alone (and not to the
coupling between it and the loss mechanism or possible
driving mechanism) is given by

H„.=~skoi(q'+ p'),
' I. R. Senitzky, Phys. Rev. 119, 670 (1960).' T. J. Krieger, Phys. Rev. 121, 1888 (1961).

with

We will refer to q and p as coordinate and momentum,
respectively. Comparing'Pq. (1) with the analogous
expression for the electromagnetic field of a mode of
(angular) frequency &o in a resonant cavity, or with that
for a mechanical oscillator, we can obtain immediately
expressions for the electric and magnetic field strengths
or for the coordinate and momentum of the mechanical
harmonic oscillator. ' The loss of the oscillator is
described, as in I, by the constant P which is the
reciprocal relaxation time of the oscillator. (Energy
other than thermal or zero-point energy decays as
exp( —Pt). For the resonant cavity, P=ce/Q, Q being
the quality factor. ) It is assumed throughout that

P/~((1.

The results of I are contained, essentially, in the
following two relationships:

3The electromagnetic Geld of a cavity mode is given by F.—(4s her)&p(t)u(r), H= (4rc'tl/co)&q(t)p'Xu(r), where u(r) is a
normalized function describing the spatial dependence of the
cavity Geld. The coordinate and momentum of a mechanical
oscillator of mass m are given by q = (it/mu&)&q, p = (Au&m)&p.
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q=q"'e &~'+, dtt W(ti)e &~'~"'cosxo(t —Ii), (4)
"o

t

P=P"'e **~' =—dtr W(tx)e **e&=' "' sinxo(t —tr), (5)
dp

where q'oi and P&'& are the coordinate and momentum
of the lossless uncoupled oscillator, and obviously
contain the initial values of q and p. For W we have

where Ii is an operator that refers to the loss mechanism
only and describes the effects of thermal and zero-point
fluctuations of the loss mechanism, and m refers to
classical and/or quantum-mechanical systems coupled
to the oscillator. The properties of Ii are given by two
expectation values, '

(I )=0,

(I'(~ )J'(t ))

(6)

(P 1=—i —+2~S(t,—I,) -+
~ 2 ea.i» j, (7)

dtr W(tr)e '~&' '» co—sxo(—t—t,),

t

P= — I Cht W(t&)e
—'~&'—'» sin&o(t —t&). (9)

As discussed in I, the process of taking expectation
values with respect to the loss mechanism involves two
types of averaging. One type is the usual quantum
mechanical averaging and the other is an averaging
over a thermodynamic (canonical) ensemble at ternper-
ature T. The nature of the systems which are coupled
to the oscillator determine zv, but for present purposes
we have no interest in this aspect of the theory, and will
not define m further. '

Before turning to the main questions of the present
article, we consider a slight modification of Eqs. (6)
and (7). In deriving the above results, it was assumed
that the coupling to the lossless oscillator of the loss
mechanism and the other systems are turned on at t =0.
It may be more convenient (and is actually more
realistic) to consider the loss mechanism to be coupled
to the oscillator from t= —~.We therefore transfer the
time origin to —~. The transient terms in Eqs. (4)
and (5) drop out, and we have

If the coupling to the systems other than the loss
mechanism begins at some prescribed time, we let te(t)
vanish prior to that time. For purposes of the present
article, we consider w(t) to be zero for all t, and W will
be assumed to be replaced by Ii in all further discus-
sions.

In I we considered linear, bilinear, and quadratic
expressions in q and p; we calculated the expectation
values of q and p, their commutation relationships,
and also the expectation values of the energy. All the
physically meaningful results, even if they were in
operator form as far as the oscillator is concerned, were
expectation values in the loss mechanism space. Thus
Eqs. (6) and (7) were completely sufficient for our
purposes, since F (t) occurred only in linear and bilinear
expressions.

Let us shift our point of view somewhat and consider
a lossless oscillator in contact with a thermal reservoir.
Equations (4) and (5) apply equally well in this case.
The reservoir absorbs energy from the oscillator (as
well as transmits thermal energy to it), and acts as the
dissipation. One does not usually think of a dissipation
constant in connection with a thermal reservoir; there
exists, however, a thermal relaxation time, determined
by the coupling between oscillator and reservoir, and
this serves equally well to define P.' The thermal
reservoir, therefore, is the dissipation mechanism, and
alternately, the dissipation mechanism may be regarded
as a thermal reservoir.

Since Eqs. (4) and (5) Lor (8) and (9)j are explicit
expressions for the coordinate and momentum operators
of the oscillator coupled to a thermal reservoir, they
must contain the statistical mechanics of the harmonic
oscillator as well as its quantum mechanics. We should
therefore expect to be able to obtain directly from these
equations a thermal (simultaneously with a quantum-
mechanical) distribution function for position, energy,
or any other function of the coordinates. It is evident
that this calculation will involve the evaluation of mo-
ments of q and p higher than the second, which in turn
will require expressions for

X.=—(F(t,)F (&,) J7(t.)), (10)

with m) 2. Thus, to describe completely all aspects of
the behavior of the oscillator, we must add an expression
for (10) to Eqs. (6) and (7). It is the purpose of the
present article to do so, and then to illustrate the
application of the theory by considering several specific
problems. Expressions for X„will be derived in Part I,
and the specific problems wiH be considered in Part II.

As mentioned previously, F (t) is an operator referring
to the loss mechanism. It corresponds to the dynamical
variable through which the loss mechanism couples to
the oscillator, but it is the expression for the uncoupled
operator, describing the fluctuations of the loss mecha-
nism in its free state. LIn the case of the resonant cavity,

4 Equation (7) corresponds to Eq. (I, 74) with P = (4rxcm/M') &D. —
The sign of the principal value term in the latter equation is
wrong due to a regrettable misprint.

~ For a treatment of speci6c problems in which both classical
and quantum-mechanical systems are coupled to the harmonic
oscillator, see, for instance, I. R. Senitzky, Phys. Rev. 121, 171
(1961).
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for instance, it may be the operator corresponding to
the current (in suitable units) in the cavity walls. 7 In
general, each X has a value determined by the dynamic
properties of the specific loss mechanism under con-
sideration and there need not be any simple relationship
between the X„'s for various n. Without knowing the
microscopic details of the loss mechanism, we would
therefore need a different parameter to specify each X„.
We know from the discussion in I, however, that the
concept of dissipation (or thermal reservoir, for that
matter) involves suKcient assumptions, approximation,
and averaging (over the thermodynamic ensemble) in
the description of the loss mechanism so that this
description is contained completely, at a given temper-
ature, in a single loss constant. We conclude, therefore,
that the simplifications involved must permit the

specification of the X„'s in terms of X2, and that such
an approximate specification exists in general. As soon
as we assume the existence of a relationship between
X„and X2 which is independent of the individual
characteristics of the loss mechanism, it becomes easy
to 6nd this relationship. We merely consider a loss
mechanism which is specialized to a sufFicient extent to
make this relationship obvious.

We show first, quite generally, that when n is odd,
averaging over a thermodynamic ensemble of loss
mechanisms gives X =0. Since the initial state of the
loss mechanism is described (see I) by a diagonal
density matrix, only diagonal matrix elements of the
product F(t)) F(t ) occur in X„.For I odd, we must
have at least one factor in each term of the sums that
constitute these diagonal matrix elements which is
either a diagonal matrix element of F, and therefore
vanishes, or is an off-diagonal matrix element of Ii not
multiplied by its complex conjugate. Now, the phase
of an off-diagonal matrix element is determined by the
phases entering into the description of the initial state
of the loss mechanism, and is a random variable in the
thermodynamic ensemble. ' Averaging will therefore
yield X„=O for n odd.

We proceed now to consider X„for n even. Consider
a loss mechanism which may be regarded as being
composed of X (macroscopic) subsystems, X being
large compared to unity, where the coupling between
subsystems is negligible when the loss mechanism is
free. ' We can then set

F=P . F(i)

' If the initial state is represented as a superposition of energy
states, then the phases of the superposition constants are random
variables in the thermodynamic ensemble. See, for instance, R.
C. Tolman, Princi p/es of Statistical 3feclzanics (Oxford University
Press, New York, 1938).

7This is the specialization previously mentioned. It is not
readily apparent to what extent we are restricting the class of
loss mechanisms by this requirement, since it is difficult to
envisage a speci6c loss mechanism for which this requirement
does not hold. After all, a tightly coupled system could hardly
behave like an average loss mechanism described by a single
dissipation constant. However, this question will not be pursued
further.

where F(&) refers only to the jth subsystem, and where
the F(»'s are independent of each other .(In the case
of the cavity where the loss mechanism is the cavity
wall, the subsystems may be small wall areas. ) The
same reasoning which led to the relationship X,„=-O for
n odd likewise yields

(F(i) (~ ). . .F(i)(~ ))—O

for n odd.
Let us consider first the expression for X4. We have

X —P (F(4) (~„)F (i) («)F (~) (),,)F(&) («) )

P (F(4) (~ )F (o (~ ) )(F(() (~ )F (l ) (~ ) )

+Z(F" (~ )F"()'))(F")(~ )F'"(«))

+g (F ((& (('))F (~& (] ) & (F(l) ([~)F (&) (( ) )

+Z( "( ) "(~) "(~) "()')) ( )

Use has been made of the fact that F(') commutes
with Ii&&) for i&j; we must bear in mind however that
F('&(«) does not commute with F(o(t2). Since the
number of terms in each summation is large compared
to unity, we can neglect the single summation compared
to the double summations. Noting that

2'(F" ()'))F"(«)&=(F (~ )F0 ))

we see that

X4=(F(4)F(t2)&(F(«)F («)&+(F(«)F («)&(F(«)F («)&

+(F()' )F(«)&(F()' )F(~ )& (1~)

We thus have an expression for the expectation value
of a fourfold product as a sum of products of the
expectation value of twofold products. Each term in
the sum is obtained by pairing the factors in X4, the
order within each pair being the same as in X4, and
then replacing each pair by its expectation value. The
terms of the sum correspond to the different ways of

pairing. It is obvious that the above reasoning leads to
the same rule for any X„,n being even. Thus, for even e

(F(~))F(~.)" F(~-))
=P(F (~,,)F(~,,)& (F(~.. .)F(~;„)&, (16)

where j» &(j», and where the summation is taken
over all the different arrangements into pairs; and, as
we have shown previously, for odd n

(F(t))F(«) F(t ))=0.

It can readily be seen that the number of terms on the
right side of Eq. (16) is

(-;n)!2i'"
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Equations (16) and (17) thus supplement Eq. (7) so as
to permit the calculation of any physically meaningful
result. It is to be noted that Eq. (6) is a special case of
Eq. (17) '

~t pt
(q")=)! dti dt (F(t ) F(t ))e

—&&&'—'»

Xe &~&' «& cosa&(t —ti) cosine(t —t ). (21)

We apply the above theory to several specific
problems. The results to be obtained are not new, but
the method of solution will given an insight into the
significance and potentialities of the theory.

The first problem we consider is the proof of Ott's
formula, ' which states that for a thermal distribution
of harmonic oscillators

From Eqs. (16) and (17),

(q")=p
for e odd, and

X(F(t;„ i)F(h, ))e '*e(& —n). .—.e ie(~—«)—

(22)

(exp (i)%.q)) = exp (——',X'(q')). (19)

This theorem is important in the theory of x-ray and
neutron diGraction, and will be used to show that the
eigenvalues of q have a Gaussian distribution. We have

(2P)

Equation (8) gives us q for a harmonic oscillator in
thermal equilibrium with the loss mechanism (or heat
reservoir). It yields

for e even. Now

Xcosce(t—ti) cosa&(t —t„) (23)

Each term in the summation of Eq. (23) is therefore
(q')'", and using (18), we have

~t ~t
dtjr dtjryi(F(hjr)F(tjr+i))

J „J„
XexpL —sP(t —t;„)g expL —sP(h —h, „+,)g

Xcosa&(t —tj,) cosce(t —tj„+i)=(q'). (24)

e Equations (16) and (17) are identical in appearance to
relationships found in the classical theory of Brownian motion
Lsee, for instance, the review article by Ming Chen Wang and
G. E. Uhlenbeck, Revs. Modern Phys. 17, 393 (1945)) and,
indeed, the present theory may be regarded as a study of certain
aspects of the Brownian motion of a quantum-mechanical har-
monic oscillator. It is therefore appropriate to place in perspective,
at this point, the relationship of the present analysis to other
work on Brownian motion. Equation (I, 72), which is equivalent
to Eq. (5), is the quantum mechanical version of Langevin's
equation in the theory of Brownian motion. The latter is always
assumed in the classical theory. Likewise assumed are the proper-
ties of F(t), which, in the classical theory is a random variable
de6ned by Eqs. (16), (17), and the additional equation,

(F(4)F(t,))= const XS(h —t,), (7a)

instead of our Eq. (7). Equations (7a), (16), and (17) are equiva-
lent to the statement that F(t) is a Gaussian random variable.
)See, also, N. Wiener, Cybernetics (John Wiley tk Sons, Inc. , New
York, 1948)). The essential difference between the present work
and the classical theory is not only the consideration of a quantum-
mechanical rather than a classical system )thus, F(t) is an
operator, F(t&) and F(ts) do not commute, and therefore Eq. (7)
has an antisymmetric part in contrast to Eq. (7a)) but also the
fact that we are deriving, rather than assuming, the quantum-
mechanical version of both Langevin's equation and the properties
of I'(&).

Since the publication of I, two articles have appeared on the
Brownian motion of a quantum mechanical oscillator: C. George,
Physica, 26, 453 (1960); and Julian Schwinger, J. Math. Phys.
2, 407 (1961).Both of these treatments likewise start from fun-
damental principles, rather than from the assumptions made in
the classical theory, but the methods used are entirely different
from that of I and the present article. An interesting characteristic
of the present methods is their formal resemblance to the classical
theory.' Equation (19) is referred to as Ott's formula by Born and
Sarginson (reference below). Independent proofs of this equation
have been given by: H. Ott, Ann. Physik 23, 169 (1935); M.
Born and K. Sarginson, Proc. Roy. Soc. (London) A179, 69
(1941/42); A. C. Zemach and R. J. Glauber, Phys. Rev. 1.01, 118
(1956);Julian Schwinger, reference 8.

(qn) — (qs)-,
' n

(-,'e)!2'" (25)

Substituting from Eqs. (22) and (25) into Fq. (2p),
we obtain

(i)I,)"
(exp(i)I, q)) = P (qs)i

n even (&~)!2fe

(—)')
(q')"

p f22'

= exp( —s) '(q')), (26)

and

(exp(iraq)) = dq' exp (iraq') D(q'),

1
D(q') =— d)I. exp( —i)iq')(exp(iraq))

2~ J-.

(27)

1
dX exp( —i)~q') exp( —-', )i'(q')). (28)

2m~

which is Ott's formula. An alternative proof, based
directly on Eq. (11) rather than on Eqs. (16) and (17)
Lwhich were derived from Eq. (11)] is given in Ap-
pendix A.

We consider next the following question: What is
the distribution of the oscillator coordinate in thermal
equilibrium? Let us denote the eigenvalue of q by q',
and the probability of finding this eigenvalue by D(q').
Then
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(q')=-'+( ""'"—) '=-'( (T) (29)

D(q)=L~p(T)] 'expL —s (T)q') (3o)

(e'"" )=2-—(~&)"((~*~)") (40)
so that

A straightforward evaluation of ((a*())") based on
Eqs. (33) and (34) together with the rule for evaluating
X„ is dificult. We proceed therefore in a somewhat
indirect manner. %'e show first that

We see that this is a Gaussian distribution function
that coincides with the ground-state harmonic oscillator
wave function at absolute zero, and widens as the
temperature increases. "

The last problem to be considered is that of the
oscillator energy distribution. For this purpose we
define the non-Hermitian operators,

(41)

Equations (33) and (34) yield

~t t

(31) (~*"~")= (2)" dt's «»(F(t)) F (t~u))g= 2 *'(q—+-ip), a*=2—
l(q —ip).

The value of (q') may be derived easily from Eqs. (24) We must now evaluate
and (7), and is shown in Appendix 8 to be given by

The Ha, miltonian of Eq. (1) is then

H.„=(()*a+-',)A~.

From Eqs. (8) and (9) we obtain

(32)

0 0

XexpL ——,'p(2pt —t)— —t2„)]

XexpL —i~(t)+ +t~ t„+, — —t—»)]. (42)

t

a=2 *' I dt) F(t))e l~" ")e ™~1~

Using the rule of Eq. (16) for expanding the expectation

(33) value of the 2p-fold product in the integrand into a
sum of products of expectation values of twofold
products, we have

/*=2 x I dt F(t )e wP(& &1)e&m(& &1)

J
) ()

and from Eqs. (31) we have

((,,a*]= 1.

(34)

(35)

(~ "~)=Z(-,)~ «) «»(F(tt))F(t~. ))
0 0

X(F(tj2y —1)F(6„))exp) —s'p (2pt —t)— —t2„)]

E„=(n+-', )A(0.

From Eqs. (37) and (38) we obtain

(38)

Sco
D(E„)= dP,(exp(AH))—e '" "

2% ~/ It(g

The expectation value of a*a is shown in Appendix C
to be given by

(a*a)= Lexp (A(u/k T)—1]—'.

For later use, we also write this expression in the form

(a*a)=s(1—s) ' s=e', x= duo/kT. (36—a)

Just as in the case of the probability distribution for
the coordinate, we have for the (discrete) probability
distribution of the energy D(E„),

(exp(il(H)) =P„exp(il)E„)D(E„), (37)

where E„ is the eth energy eigenvalue of the lossless
harmonic oscillator:

XexpL —ko(t +. +t —t ~ — —t )]. (43)

Each term in this sum can be written as a product of

p twofold integrals, each integral being

~t
dt dt„(F(t„)F(t„))

0 ~0
Xe kp(2t tm )n)e (m—(atm—+—cm—&n) (44)

(a*a)= (1—s) (sd/ds) (1—s)—'

and Eq. (41) shows that

(45)

where e and e„each stand for ~1, the sign depending
on the index. If e is positive and e negative, then
expression (44) is equal to (a*a). If e and e both have
the same sign, the integrand is oscillatory and the
integral is negligible. (There cannot be a situation in
which ~ is negative and e„positive, since our rule for
expanding X» requires e)m. ) Thus, the only signifi-
cant terms in Eq. (43) will be those for which 1 & m & p,
p+1&&e&&2p. There are p! such terms. We therefore
obtain Eq. (41), which was to be proved.

From Eq. (36a) it follows tha, t (a*a) may be expressed
as

dX(exp(il) a*a))e—~".
2' J

(39) (.*")=p."(1-)-,
= (1—s) (s"d'/dz") (1—s) '. (46)

' Equation (30) has been derived by the following: F. Sloch,
Z. Physik 74, 295 (1932); R. Kronig, Physica 9, 113 (1942);
Julian Schwinger, reference 8.

Now, a product containing a's and a*'s in any order
may be reduced, by means of the commutation ru/e
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for a and a* LEq. (35)j, to a sum of terms in each of
which the a*'s appear to the left of the u's. Likewise,
a product containing (d/ds)'s and s's in any order may
be reduced, by means of the commutation rule for d/ds
and s, to a sum of terms in each of which the s's appear
to the left of the (d/ds)'s. Since

where e; is a c number that is small compared to unity.
This change merely has the purpose of bringing out
explicitly the smallness of P"' compared to Ii. From
Eq. (8), we have

t

g= I dt F(t,)p(t —»,)
La,a*3=L(d/«), s1,

it follows from Eqs. (45) and (46) that

(47)

(48)

t

=2' ~ « f'"(»)0(»—t), (A3)

(exp (isa*a)) = (1—s) exp(Asd/ds) (1—s) '. (49)

From the definition of s in Eq. (36a), we have

d
s—f(s) =—fLs(~) j,
ds dS

where

I» (7)=—exp( ——,'Pr) cosset.

Substituting from Eq. (A3), we obtain

where f(s) is an arbitrary function of s. We therefore Since the f&')'s commute with each other, we can write
have

(exp(il).a~a))= (1—s) exp~ iX
~
(1—s) '

dx)

1—exp(x)

1—exp (x+iI),)

= L1—exp (x)7 Q e'"& +'"'

where note has been taken of the operator form of
Taylor's expansion. Substituting from Eq. (51) into
Eq. (39), we obtain

pt
(ee')=(n exp p;~ tt, f~" (t)4(t —t), '(At)

2 —00

and since the f&"s refer to different systems, we have

pt
(e'"&)=Q exp il)e; dtg f'&)(tg)P(t —tg) . (A6)

—00

Ke therefore obtain

(f(t))—0 (A7)

In view of the fact that e;((1, we expand each expo-
nential and retain only the lowest order terms. From
Eq. (12) we have

D(It ) = L1—exp(x)gg„exp(ttx)»t„
= L1—exp(x) g exp(mx),

where, it is recalled,

x= —Ace/l» T.

t t

(52) (e'"')=g 1—-', l),'ep " dt, dt,j—00 —00

X(f"(t )f"(t,))P(t—t,)It (t—t,), (A8)

This is precisely the normalized Boltzmann distribution
for the harmonic oscillator. It is interesting to observe
that Eqs. (7) and (16) contain sufficient statistical
mechanics to give us this result.
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APPENDIX A

We prove Ott's formula directly from Eq. (11). We
first set

and, to the lowest order in e,

t t

(e'" )=g exp —-'Ve»2) dt, )t C»,
—00 —00

X(f"'(t&)f")(4))4 (h,
—t, )I» (t—«,)

t t

= exp ——,'l).'pe»2 Ckt) dt,
e7 00 —00

X(f")(tt) f&"(»2))I) (»—4)p(t —»2) . (A9)

so that

P(t') = e f(t'). (A1) Now, because of Eq. (A7) and the independence of the
)s

1t —Q . ef(t').(A2) p;.p(ft')(t, )f&')(»2)) =(F(t,)~(t,)). (A10)
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We have, thus,

(e'"&)=exp ——,'X' «i
—00 —00

Substituting into Eq. (A12), we have

(A13)

= exp( ——,'X'(q')), (A11) =kv(T), (A14)

which was to be proved.

APPENDIX B

We derive here Eq. (29). From Eq. (24), we have

~t pt
(q2) =-', «, «,((F(~,)P (4)))

&&4 (~—~i)4 (~—~~), (A12)

(p') =(q').

APPENDIX C

(A15)

The value of (a*a) may be obtained directly from
Eqs. (33) and (34) together with Eq. (7). However,
it is simpler to use the relationship

where we have dropped an oscillatory term in the
integrand. It is easy to see, by comparing Eqs. (8) and
(9), that the same result is obtained for (p'), so that

where the symmetrized product L(A,B)=AB+BAj
may be used, since tj and t2 are variables of integration
with the same limits. From Eq. (7) we obtain

a*a= ,'(q'+-p' 1), —

together with Eqs. (A14) and (A15), to obtain

(a*a)=-'Lv (&)—13= (e"""'—1) '.

(A16)

(A17)


