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Phase Separation in He'-He' Mixtures near Absolute Zero
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Phase separation in liquid mixtures of He3 and He4 at temperatures close to O'K is discussed on the basis
of the isotopic impurity models of Pomeranchuk and Zharkov and Silin. It is predicted that for He'-rich
mixtures the phase separation line is asymptotic to the temperature axis as T —+ 0, so that phase separation
should occur in extremely dilute solutions of He' in He at relatively high temperatures. For example, 0.003%
of He' in liquid He' should begin to separate at about O. i'K. The phase separation curve for He'-rich
mixtures near O'K is dif6cult to predict with the data available at present. One possibility is that dilute
solutions of He' in He4 may be stable at O'K.

'T has recently been shown by De Bruyn Ouboter,
~ ~ Taconis, I e Pair, and Beenakker' that the thermo-
dynamic functions and phase diagram for liquid
He'-He' mixtures above 0.4'K are in good agreement
with the theories of Pomeranchuk' and of Zharkov and
Silin, ' provided that the concentration of one of the
components is not too large. Since both theories are
intended to apply to dilute mixtures at temperatures
close to O'K, they may be used with some conMence to
discuss the form of the phase separation line at very low
temperatures, i.e., below 0.4'K, the lowest temperature
at which reliable measurements have been made.

Phase separation in very dilute solutions of He4 in
He' is of some practical interest at the moment, since
a number of experiments on liquid He' at extremely low
temperatures have recently been made or are planned.
Many of these are concerned with properties of the
liquid which may be modified by the small amounts of
He4 impurity which are usually present in "pure" He'.
For instance, at very low temperatures the mean free
path of the quasi-particles may be limited by collisions
with He' atoms, which may affect the experimental
values of the transport coefficients or may inhibit the
transition to the recently proposed superQuid state. 4

Alternatively, phase separation of the He4 impurity
may produce small anomalies in the apparent thermo-
dynamic functions of the "pure" liquid. ' It is shown in
this note that according to the theory of Zharkov and
Silin the phase separation line at very low temperatures
lies much closer to the temperature axis than might be
expected from presently available experimental data,
so that phase separation at very low concentrations of
He' will take place within the experimentally accessible
temperature range. However, the phase separation may
have favorable results in some experiments by purifying
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the He'-rich phase, although the presence of a small
volume of the superQuid, He4-rich phase might be

objectionable.
For very dilute solutions of He' in He4, the theory of

Pomeranchuk indicates that the phase separation line
may not pass through the origin of the phase diagram,
so that a mixture of the isotopes may be stable at O'K.
It would be of some theoretical interest to discover
whether this possibility is realized experimentally.

In a phase-separated mixture of He' and He4 the
chemical potential of each isotope must be the same in
the upper and lower phases:

t, (Xt,T) =t, (X„,T),

tt4(xt, T) =tt4(X, T).

(Xt and X„are molar concentrations of He' in the lower
and upper phases. ) The experimental results indicate
that at suKciently low temperatures, Xt and (1—X )
become small enough for the He4 in the upper phase and
the He' in the lower phase to be treated as impurities
of very low concentrations. The chemical potentials
tt4(X, T) and tts(Xt, T) can then be calculated from the
Zharkov and Silin and Pomeranchuk theories. Both
theories treat isotopic impurities in helium as independ-
ent particles with energy-momentum relations of the
form

es ———Es+p'/2 *rrts(Pomeranchuk),

s4 = E4+p'/2rrt4* —(Zharkov and Silin),
(2)

@,z RT1 —2VE3,
U (kT)' 2(2rrnt *)'

p4 =RT ln
E(1—X„) k'

—ÃE4,
U„(kT)

**(27rtrt4*):

(3)

assuming that the concentrations Xt and (1—X ) are

' The additional factor of 2 in the equation for p3' accounts for
the spin of He'.

where —E3 and —E4 are the binding energies of the
impurity isotopes and m3*, m4* their effective masses.
The chemical potentials follow immediately from
statistical mechanics':
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sufficiently small for degeneracy and interaction effects
to be negligible. The volumes t/" and t/'~ are the molar
volumes of the upper and lower phases, X is Avogadro's
number, and the other symbols have their usual
meanings.

To complete Eqs. (1) we need the chemical potentials
of the concentrated components p~" and p4'. If the im-

purity concentrations are low enough, the ideal solution
form is sufficiently accurate:

ps(X, T) =Gse(T)+RT lnX,
p4(Xt, T) =G4'(T)+RT ln(1 —Xi),

where G~' and G4' are the Gibbs potentials of the pure
phases. The lowest temperature at which precise meas-
urements of the phase separation concentrations have
been made is 0.39'K (Roberts and Sydoriak, ' De Bruyn
Ouboter et al. '). In this range X~ and (1—X„) are large
enough for significant, deviations from (4) to occur. To
compare the theory with the experimental results, we
therefore modify (4) to the empirical "regular solution"
form
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p, (X„,T) =Gse+RT lnX„+1.57R(1—X„)',
5

p4(Xt, T) =G,4'+RT ln(1 Xt)+1.57—RXP.

Substitution of Eqs. (5) into (1) now give simultaneous
equations from which the X~ and X„can be determined
to give the phase separation line. We do not give the
complete expressions here but only their limiting form
at low temperatures, i.e., when terms involving (1—X„)'
XP, lnX„, ln (1—Xt), etc., can be neglected and V„=Vss,

V& V4 y G3 L G4 L4 ~
where L3 and L4 are

the latent hearts of the pure isotopes at the absolute
zero. The limiting forms are

Xi= I 2 (27rms*kT) **V4e/1Vh'I

(6)
Xexpt (XEs—Lss)/RT],

(1—X ) = {(2~m *1 T) *V,s/Na-'}

XexpL(XE4 —L4')/RT j.
It will be noticed that unless the expressions in square
brackets turn out to be zero, the temperature variation
of the concentration along the separation line is pre-
dicted to be exponential at sufficiently low temperatures.

The value of the binding energy per mole for He4 in
He', XE4 in the Zharkov and Silin theory, has been
determined by de Bruyn Ouboter et a/. ' from specific
heat measurements on a 95.4% He' mixture. Their
value is 53.6 j/mole so that (1tIE4 L4')/R= (53.6—
—59.50)/R= —0.71'K. The effective mass, m4*, has
not yet been measured experimentally; its value has
therefore been determined at 5.3 m4 by fitting the more
exact form of the theory [using Eqs. (1), (3), and (5)]
with the experimental values of X~ and X„at 0.5'K.
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Izo. 1. The phase separation line for He'-rich mixtures. Q,
Roberts and Sydoriak~; +, de Sruyn Ouboter et al. '; ———,

, theory.

With the above values for the constants we obtain the
full curve shown in Fig. 1 for the phase separation line
in He' rich mixtures. The broken line represents the
limiting form of the theory, valid when T —+0, given

by Eq. (6), or numerically,

(1—X ) = 1.13T**expL —0.71'K/T].

It is indistinguishable from the more exact form below
0.3'K. Some predicted values of the He' concentration
in the upper phase at very low temperatures are: 0.2'K,
0.3%; 0.1'K, 0.003%; 0.05'K, 10 s%. However, these
figures depend critically on the small difference between
XE4 and L4', and it is possible that E4 depends appreci-
ably on concentration (see below). On the other hand,
it is encouraging that the agreement between experi-
ment and theory as shown in Fig. 1 is quite good over a
substantial range of He4 concentration.

It is much more difficult to make any definite pre-
dictions for the left-hand corner of the phase diagram,
i.e., for small concentrations of He' in He4, owing to the
small value of (XEs Lss). The exPerimen—tal values of
ÃE3 obtained by de Bruyn Ouboter et al. between 0.6'K
and 1'K range from 23.8 j/mole at X=0.1 to 21.8
j/mole at X=0.02, which may be compared with
Lss=21.2 j/mole. Using these data, de Bruyn Ouboter
et a/. have calculated a separation curve for tempera-
tures above 0.3 K which is consistent with extrapolation
of the known experimental curve. But a value of XE~,
larger than L~' and independent of concentration, would

imply from Eq. (6) that, T-+0, Xt does not tend to
zero but actually begins to increase with decreasing
temperature, This means that sufficiently dilute solu-
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tions of He' in He4 would not separate into two phases
at O'K. In mixtures containing enough He' for phase
separation to occur, the equilibrium concentration of
He' in the lower He'-rich phase at O'K would then be
determined by higher order terms in the free energies
which have not been included in (6).

On the other hand, the experimental values of LES
appear to vary approximately linearly with concentra-
tion and are not inconsistent with the hypothesis that
EE3—+ J3' as X—+0. This hypothesis removes any

unusual behavior from the separation line near absolute
zero, but it is difficult to accept. from another viewpoint:
It implies that the binding energy of He' does not
depend at all on whether its neighbors are He' or He4.
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The development of a quantum-mechanical formalism for systems with dissipation that was presented
in an earlier article, and intended mainly for application to the electromagnetic Geld in a cavity, is extended.
The problem of the harmonic oscillator with dissipation is shown to be the same as that of a harmonic
oscillator coupled to a thermal reservoir, and the need of the formalism to contain the appropriate statistical
mechanics is discussed. The derivation of relationships which permit the calculation of all moments of the
oscillator coordinate and momentum provides the necessary extension of the theory. The formal resemblance
of the completed theory to that of classical Brownian motion, some differences due to quantum mechanics,
and the fact that certain fundamental relationships which are assumed in the latter are derived in the
present analysis, are pointed out. The application of the theory is illustrated by the consideration of three
problems: the proof of Ott s formula, and the derivation of both the probability density and energy distri-
bution of the oscillator in equilibrium with a thermal reservoir.

INTRODUCTION
' 'N the first article on the present subject' (hereafter

& ~ referred to as I), a quantum-mechanical theory of
the harmonic oscillator with dissipation was developed.
The motivation behind this theory was its application
to the electromagnetic radiation field in a resonant
cavity, and for this purpose, the analysis was carried
su%ciently far. Recently, the theory has been applied
to an entirely different subject, ' and some questions
arose which were not treated in I. In view of this and,
possibly, other applications not yet envisaged, it is the
purpose of present article tq extend the above theory.

The results of I will be summarized for the sake of
intelligibility. They will be presented in a modified
notation, the modification having no other significance
than the simplification of the appearance of analytic
expressions.

The new notation is defined, essentially, by the
statement that the part of the total Hamiltonian which
refers to the harmonic oscillator alone (and not to the
coupling between it and the loss mechanism or possible
driving mechanism) is given by

H„.=~skoi(q'+ p'),
' I. R. Senitzky, Phys. Rev. 119, 670 (1960).' T. J. Krieger, Phys. Rev. 121, 1888 (1961).

with

We will refer to q and p as coordinate and momentum,
respectively. Comparing'Pq. (1) with the analogous
expression for the electromagnetic field of a mode of
(angular) frequency &o in a resonant cavity, or with that
for a mechanical oscillator, we can obtain immediately
expressions for the electric and magnetic field strengths
or for the coordinate and momentum of the mechanical
harmonic oscillator. ' The loss of the oscillator is
described, as in I, by the constant P which is the
reciprocal relaxation time of the oscillator. (Energy
other than thermal or zero-point energy decays as
exp( —Pt). For the resonant cavity, P=ce/Q, Q being
the quality factor. ) It is assumed throughout that

P/~((1.

The results of I are contained, essentially, in the
following two relationships:

3The electromagnetic Geld of a cavity mode is given by F.—(4s her)&p(t)u(r), H= (4rc'tl/co)&q(t)p'Xu(r), where u(r) is a
normalized function describing the spatial dependence of the
cavity Geld. The coordinate and momentum of a mechanical
oscillator of mass m are given by q = (it/mu&)&q, p = (Au&m)&p.


