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A left-right asymmetry in the Compton scattering cross section is found for the case when only the
target electron is polarized. The incident photon is unpolarized and the polarization of the outgoing photon
and electron are assumed not to be measured. This asymmetry results from a radiative correction. It is
found that the maximum asymmetry is about one part in a thousand.

I. INTRODUCTION

S CATTERING asymmetries for polarized particles
are well known in Mott scattering' and nuclear

scattering. Recently similar asymmetries have been
predicted for the leptonic scatterings' '

p,—t,, e —e, and
e —e+. In this paper we And a similar spin-dependent
left-right asymmetry effect for Compton scattering.
We consider the case where unpolarized incident
radiation strikes a free polarized electron, the polar-
izations of the recoil particles not being observed. The
possible interaction of the electron with a nucleus to
which it may be bound is not taken into account.

II. CALCULATION OF CROSS SECTION

The spin-sensitive correction to the Klein-Nishina
formula was calculated by the standard Feynman
method4 described in many books on quantum electro-
dynamics. Essentially, the calculation is a modi6cation
of that of Brown and Feynrnan' (hereafter called BF),
who found the lowest order radiation correction to the
Klein-Nishina formula. We adopt their notation by
choosing qi, qs, Pi, and ps as the initial and final four-

momenta of the photon and electron, respectively. In
the rest frame of the target electron the necessary
modification of the unpolarized case consists of inserting
into the Dirac traces, which occur in that case, the spin
projection operator, —', (1+tr s). Here s is a unit vector
in the direction of the electron spin, and c has as its
three components the four-by-four Pauli spin matrices.
In terms of Dirac y matrices,

O'' S= ~ZClmnS +meany
~ —1

where e& „ is the antisymmetric three-index symbol
and repeated Latin indices are to be summed from 1
to 3.' In the lowest order calculations the only imagi-
nary part is the pure imaginary e s. Therefore, the
traces involving this factor either vanish or cancel each

(a)
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'N. F. Mott, Proc. Roy. Soc. (London) A124, 425 (1929);
A135, 429 (1932).' A. O. Barut and C. Fronsdal, Phys. Rev. 120, 1871 (1960). (b) (c)' C. Fronsdai and B.Jairsic, Phys. Rev. 121, 916 (1961).

4 R. P. Feynman, Phys. Rev. 76, 749, 769 (1949). FIG. 1.Diagrams contributing to spin-dependent asymmetry.

and Fields (Row, Peterson and Company, Evanston, Illinois,
1956), Vol. I. 'The metric used is gpp=1, g11=g22=g33= —1. Also units are

'L, M. Brown and R. P. Feynman, Phys. Rev. SS, 231 (1952). chosen such that A=c=1.
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other, since otherwise they would contribute a purely
imaginary part to the cross section. Thus, the lowest
order in which e s gives a contribution results from the
interference between the matrix elements proportional
to e' and e4. An argument similar to that above shows
that in the resulting e' order trace, only the imaginary
parts of the radiative correction integrals give non-
vanishing terms. This is in contrast to the unpolarized
case treated in SF where only the real parts of the
integrals contribute. These integrals were calculated
in general in SF and we have abstracted the necessary
imaginary parts from them. The sign of the imaginary
part is determined by the requirement that for purposes
of integration the electron and photon masses be given
a negative imaginary part. Fortunately the imaginary
parts involve no divergences. As a check, we have also
calculated the imaginary parts by the method of
residues used for t. —e+ scattering. ' As emphasized in
that paper, the only diagrams which can give rise to an
imaginary part for the integrals are those which can be
cut by a horizontal line into two parts such that each
part corresponds to a real process. The relevant radi-
ative correction diagrams for this process shown in
Fig. 1 are examples of this.

The calculation was greatly simpli6ed by 6nding the
traces before doing the integrations. Thus, the worst
integral encountered was

J,=2iir ' k d4k/D

D= (k' —2Pi k)(k' —2Ps k)(k' —2Ps k+2Pi qr)k', (3)

ps pi+ q1 1

instead of the integral

J.,&=2is. ' k k k),d4k/D

which would have been necessary if the integration
were performed first. The very great simplification
involved may be appreciated by consulting the Ap-
pendix of BF.As indicated previously, another simplifi-
cation was obtained by taking the target electron at
rest. The eight relevant Dirac traces were easily
calculated by machine using a computer program
recently developed by the authors to obtain general
Dirac traces. ' The output gave the traces, combined
over the common denominator (pi q,)'(pt qs)D, in

terms of symbols representing the following independent
quantities: m, pi qi, pi qs, s (uiXus) s'(ulXk),
s. (usXk), and the factors of D. Here ui and us are
unit vectors in the directions of qi and q2, respectively.
After the integrals over k and the proper factors' are
supplied, the spin-dependent part of the differential
cross section is found to be'

do, /dQ= ,'rrrssp'—P —4Xs (uiXus),
where

4

X= —d '8 csch&L12P'+ 28P'+ 12P' —(12P4+ 16P'

+12P')y+4P'y'j+d ' ln(1+2P) [12P4+16P'+3P'
—(2P'+4P)v+ (2P+1)v'$+ (1+2P) '(~4P4+22P'

+6P'+ (4P'+6P'+2P)v7, (3)
with

.2

0

P= (P, .q,)/m', d=P —y —2',
y= (pt. qs)/m', 8=cosh '(1+p—y).

(6)
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Fro. 2. The ratio of spin-dependent to spin-independent
differential Compton cross section as a function of incident
photon energy for the lower energy region.

In Eq. (4) ot is the fine structure constant and rs is the
classical electron radius. Equation (4), valid in the
laboratory system, will apply to a more general Lo-
rentz frame if s (utXus) is replaced by (m'pp) '
Xdet{s,qi, qs,pt), the four-by-four determinant formed
from the vectors s, qi, qs, and pi with s now the covariant
spin vector. " Using the substitution symmetry of the
traces under interchange of ingoing and outgoing
particles, one can easily modify Eq. (4) so that it
applies to the case where the target electron is unpolar-
ized but the polarization of the recoil electron is
observed.

S. C. Miller and R. M. Wilcox (to be published).' Pote added in proof. Similar calculations were reported by G.
V. Frolov, JETP 12, 1277 (1961).A number of terms given there
agree with those of Eq. (5) but others disagree. His cross section
does not reduce to the simple nonrelativistic form of Eq. (7) and
it appears to approach & ~ for small scattering angles.

~o See, e.g. , C. Fronsdal and H. Uberall, Phys. Rev. 111, 580
(1958},and other references given there In onr me. tric s'= —t.



LF FT —RI GHT ASYM METRY I N COM PTON SCATTERI NG 639

At low energies Eq. (4) reduces to the simple form,

d~ /dQ= —-'pro'(), /X)'s. (u, X 2), ( )

where A, is the Compton wavelength and ) is the wave-
length of the incident radiation.

III. RESULTS

The ratio of the cross section in Eq. (4) to the
unpolarized Compton cross section, I' = (do,/dQ)/
(da.o/dQ), has been plotted in Figs. 2—4. We have taken
the case of maximum asymmetry by choosing s normal
to the scattering plane with
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s (uiXu~)/~uiXu2~ =1.
For various fixed angles Figs. (2) and (3) give I' versus

FIG. 4. The ratio of spin-dependent to spin-independent
differential Compton cross section as a function of angle. The
two energies used correspond to those that give the maximum
effect for each sign.
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P, the incident photon energy in units of the electron
rest energy. Figure 4 gives this as a function of scat-
tering angle for two energies. The maximum effect
occurs for an angle of 12.3' with P=9.7. The smaller
but broader maximum of opposite sign occurs at about
97' with P=0.6. The scattering asymmetry is nowhere
very large as was also the case with the leptonic
scat terings. ' '
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FIG. B. The ratio of spin-dependent to spin-independent
differential Compton cross section as a function of incident
photon energy for the higher energy region.
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