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Monte Carlo Calculation of the Order-Disorder Transformation in
the Body-Centered Cubic Lattice
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The order-disorder transformation in the body-centered cubic structure was investigated by a Monte
Carlo method. A critical temperature was observed at the point (s/hT) = —0.315.The results of the calcu-
lation are in close agreement with the best analytical approximations. The calculated variation of order
with temperature is in good agreement with experimental data on O brass and P-AgZn. Some information on
the kinetics of the transformation was obtained. It appears likely that the rate-limiting process for diQ'usion

in the ordered structure is jumping of vacancies to second neighbor positions.

INTRODUCTION

HE order-disorder transformation problem has
been solved exactly only for the one-dimensional

case, and for certain two-dimensional cases. No com-
plete analytic solution for any three-dimensional lattice
has been obtained, although a variety of approximate
results exist. Since there are several recent reviews of
this 6eld, no extensive discussion of analytic methods
will be given here.

The Monte Carlo method' is useful for studying this
problem for several reasons. In addition to providing
quite accurate numerical results for the equilibrium
state of the system, this method permits a study of the
kinetics of the transformation and of the detailed struc-
ture of intermediate states. Also, the introduction of
complicating factors such as oR-stoichiometric com-
position, or interactions with other than nearest neigh-
bors can be dealt with relatively easily.

The use of the Monte Carlo method for order-disorder
problems was suggested by Murray in 1952,' and ap-
parently first used by Fosdick for a two-dimensional
lattice. 4 We attempted a calculation for the body-
centered lattice of 250 atoms, using a Datatron com-
puter, ' but it soon became evident that crystal and
computer were both too small for satisfactory results.
The present calculation was carried out on an IBM 704
for a 2000-atom crystal. This structure has also been
studied by Fosdick' and Guttman~ using smaller
crystals and different jump procedures.

GENERAL THERMODYNAMIC CONSIDERATIONS

Before discussing the details of the calculation, it
will be well to consider briefly the thermodynamics of

'T. Muto and Y. Takagi, Solnt-State Physics, edited by F.
Seitz and D. Turnbull (Academic Press, Inc. , New York, 1955),
Vol. 1, p. 194;L. Guttman, ibid. 3, 146 {1956);C. Domb, Advances
ia Physics, edited by N. F. Mott (Taylor and Francis Ltd. ,
London), Vol. 9, p. 150.' See N. Metropolis es al , J. Chem. Phys. 2.1, 1087 (1953).' F. J. Murray, J. Operations Research Soc. Am. 1, 75 (1952).

4 L. D. Fosdick, Bull. Am. Phys. Soc. 2, 239 (1957).Also Phys.
Rev. 116, 565 (1959).

~ P. A. Flinn, G. M. McManus and J. Bardeen, Bull. Am. Phys.
Soc. i, 59 (1958).

e J. R. Ehrman, L. D. Fosdick, and D. C. Handscomb, J. Math.
Phys. 1, 547 (1960).

r L. Ciuttman, J. Chem, Phys. 34, 1024 (196l).

the problem. The parameters which describe the state
of order of the system are unusual in that they are
observable, but not directly subject to external manipu-
lation, as are the usual variables: temperature, pressure,
etc. They are, however, well de6ned functions of the
ordinary variables under equilibrium conditions. Two
types of parameters are useful: the n's of Cowley' which
describe the local structure of the lattice, and the
Bragg-Williams long-range order parameter, which we
shall denote by z, to avoid confusion with entropy.
These parameters are de6ned as follows:

cr;= 1—(pgn;/mg),

where p», ——probability of finding an A atom as the
ith neighbor of a 8 atom, mal=mole fraction of A atoms,
and

w = (rg —m~)/mn, (2)

where r~ is the fraction of A sites occupied by A atoms.
It may readily be shown that these parameters are not
independent; for example:

(cr )
)~w' for all n;

also
~~= 1, o.2=0 is impossible.

(3)g =—Qmgm~cM. l,

where .V=number of atoms in system, mg, m~=mole
fraction of components, c=coordination number, and
a=interaction energy, the change of energy when one
additional unlike bond is formed.

The entropy of the system will not, in general, be
simply a function of e&, since e& does not completely
determine the con6guration. If, however, we specify
that the higher n's be such as to maximize the entropy
for a given ni, that is, that the structure be as random
as possible, then the entropy will be well de6ned. When

' I, M, Cow&ey, Phys, Rev. 77, 669 (1950).

A complete description of the interrelations has not
been obtained, however, and the problem of obtaining
one appears to be of the same order of difhculty as the
Ising problem itself.

Since we wish to consider only nearest neighbor inter-
actions, the energy of our system will depend only on
n~, in fact,
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we speak of the entropy as a function of n&, this condi-
tion is implied. This condition will, of course, be satisfied
when the system is at equilibrium.

The equilibrium value of n~ is a function of tempera-
ture and interaction energy; this dependence can be
expressed in terms of the single parameter ri/kT, which
we will denote by P . .Once the dependence of 0.& on X is
determined, the energy as a function of temperature can
be obtained from Eq. (3) and then any desired thermo-
dynamic quantity can be calculated by using the ap-
propriate classical thermodynamic identity.

METHOD OF CALCULATION

In our system, the energy of any given configuration
is equal to the number of unlike bonds present in that
state multiplied by e, the energy per unlike bond. The
corresponding probability for that state is proportional
to the Boltzmann factor:

Ce—nsX

which satisfies condition (5). We now test to see if
condition (7) is satisfied:

Zv'p'=-Z. +v p
g iwi 1+e—5miix

Ce—n~'), Ce ""
e "i"——

8 '~&' 1+e g i+i 1+e 5n;ix—

The transition probability is one-eighth of this, since the
probability of picking this particular direction is one-
eighth. Hence we have:

p . , —s e 6n, gi x/—(1+e 6—n ii x)

and the probability of no jump occuring on this par-
ticular try is:

p'*=1 Z—p,i'

P; q,P;, =q, for all j. (7)

A variety of jump procedures can be devised which
satisfy the above requirements. If, however, one wishes
to study the kinetics of the transformation as well as
the equilibrium states, it is necessary to approximate
the physical process by which the transformation
occurs, presumably vacancy motion. We use the follow-
ing procedure: consider a vacancy at a given lattice
site, and the possibility of a jump to one of the neigh-
boring sites (considering only nearest neighbors at the
moment). We pick one of the eight possible jumps at
random and consider the change in the number of
unlike bonds which will result if that jump occurs. The
probability of the jump is taken to be:

e
—nn;q4/ (1+e-km. ;ix) (g)

9 W. W. Wood and F. R. Parker, J. Chem. Phys. 27, 720 (1957).

where q, =probability of the ith con6guration and
n, =number of unlike bonds present in the ith con-
figuration. If the Monte Carlo process is to generate a
Markov chain which will converge to the small canoni-
cal ensemble (the states of the system will occur with
frequencies proportional to q;), three conditions must
be satisfied by the transition probabilities. The first is
that they be normalized:

p; p;, = 1 for all i,
where p,, is the transition probability that carries the
state i into the state j.This is simply the requirement
that all states terminate by a transition to some other
state of the system. The second condition is the ergodic
requirement: all states of the system must be accessible
by some route. Finally, the pii must satisfy the condi-
tion of microscopic reversibility

q;p, ,=q;p, .alii, j.
Using (5), this is seen to be equivalent to the condition

as required. The condition of accessibility is satisfied as
long as nearest neighbor jumps are permitted. Second
neighbor jumps alone, however, would not be adequate,
since the vacancy would be con6ned to a simple cubic
sub-lattice.

In a reasonable time it is possible to traverse only a
small fraction of all possible configurations, even for a
small number of atoms. What we do is to proceed far
enough to destroy the inQuence of the starting con-
figuration; that is, to approximate equilibrium, and
then to average over a su%cient number of steps to
reduce the statistical fluctuations to an acceptably
small value. The test for approximate equilibrium is the
usual one: we approach the Gnal state from both sides;
from a completely random structure, and from a
perfectly ordered structure.

It became apparent in the course of the calculation
that equilibrium could not be reached in any reasonable
time with only nearest neighbor jumps when the equi-
librium state was one with long range order. The di%-
culty lies in the fact that after the vacancy jumps so as
to put an atom in a wrong site, the probability is over-
whelming that on the next move it will go right back.
As a result of this eGect, a vacancy is almost completely
immobile in the presence of long range order in this
structure. To enable the calculation to proceed, the
program was changed so that in addition to the eight
nearest neighbor jumps, the six neighbor jumps were
also considered for each step, to make a total of four-
teen choices. Since second neighbor (cube edge) posi-
tions lie on a sublattice of atoms of the same kind in
the ordered structure, the vacancy can move freely,
without putting atoms into wrong sites. Quite aside
from considerations of physical plausibility, this change
was necessary to get equilibrium results, which, as dis-
cussed above, are independent of mechanism. The
model, however, is not completely unreasonable for a
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TABLE I. The calculated short- and long-range order parameters.
Ã is the number of jumps to equilibrium.

I 1 I I 1 I

0.10 0.054&0.002
0.20 0.115~0.002
0.25 0.155~0.002
0.30 0.237&0.002
0.325 0.379&0.003
0.35 0.540&0.003
0.40 0.766~0.002
0.50 0.918+0.002

0.012~0.002
0.034&0.002
0.078&0.002
0.160~0.002
0.317~0.003
0.500&0.003
0.751~0.002
0.915~0.002

10 'S
~ ~ ~ 53
~ ~ ~ 49
~ ~ ~ 118
~ ~ 303

0.470&0.005 446
0.673~0.004 180
0.864&0.002 178
0.957&0.002 69

a

1.0—
9—
8—
7—

4—

02

real crystal. This will be discussed further in the section
on kinetics.

The calculation was carried out for a crystal of ten
unit cells on an edge, a total of 2000 atoms. A sort of
cyclic boundary condition was used: the atom at the
end of each row was joined to the first atom of the next
row; the last row of each plane joined to the erst row
of the next plane of the same sublattice; and the last
atom of the top plane of each sublattice to the first
atom of the bottom plane of the same sublattice. This
was used in preference to conventional cyclic boundary
conditions primarily for computational convenience.
At the start of each calculation the lattice was filled
with equal numbers of A and 8 atoms (1's and 0's), at
random, perfectly ordered, or according to the results
of a previous calculation. The number of A atoms as
first and second neighbors of each point was computed
and stored. A vacancy was then introduced into a
location selected at random, and allowed to jump. A
random integer from 1 to 8 (or 14) was generated and
used to specify the neighboring site to be considered.
The probability given by (8) was computed, and com-
pared with a random number between zero and one.
Whenever the random number was less than the proba-
bility for the jump, it was made; otherwise not. n&, n2,
and m were cumulatively averaged for 1000 jumps, then
printed, and a new average started. Each 1000 jumps
required approximately 20 seconds of machine time.
About 1.5)&10' jumps were required for the entire
calculation.

The pseudo-random numbers required were generated

I,O
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—v/kT
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Fro. 2. The short-range order parameter ns versus v/kT

EQUILIBRIUM RESULTS

The numerical results for n~, n2, and m are given in
Table I, and nt is shown as a function of (v/kT) in
Fig. 1.

Also shown in Fig. 1 are the curves for the approxi-
mate analytic solutions valid in the limiting cases of
almost perfectly ordered, and almost random structures.
The Bragg-Williams (B-W) approximation is equivalent
to assuming that n~=m', so that above the critical tem-
perature the structure is completely random, and below
it the structure is as random as possible consistent with
the long range order present. Thus the 8-W curve lies
below the true curve, approaching it asymptotically in
the limit of perfect order, as nt approaches tv'. For (—X)
greater than 0.4, the difference between the two curves
is quite small, and the 8-W approximation was used in
the calculation of thermodynamic functions.

In the limit of almost random structure, the one-
dimensional result becomes a valid approximation. The
well-known result may be expressed as

nt = tanh (v/2k T), (9)

which may be approximated by

nt v/2k T—— (10)

by Lehmer's method, ' i.e., by multiplying the pre-
ceding number by 3125 and taking the remainder
modulo 2i5

.6——QI 5—
4
.3—

Monte Carlo
Brogg-Williams

a, = /2kvT
o Domb

I I I I I

.I .2 .3 .4 .5 .6 .7 .8 .9 I.O

The approximation (10) is actually closer to the Monte
Carlo curve than is (9) because (10) curves downward,
while the Monte Carlo function curves upward. Also
shown in Fig. 1 is the short range order at the critical
point, as determined analytically by Domb. " His
results give A, = —0.315 and n~. = —0.268, in excellent
agreement with the Monte Carlo values. Domb's high-

—v/k T

FIG. 1. The short-range order parameter n& versus v/kT, together
with the various analytical approximations.

' See O. Taussky and J. Todd in Symposium oe Monte Carlo
Methods, edited by H. Meyer (John Wiley 5z Sons, Inc. , New York,
1956), p. 15.

"See Domb, reference 1, p. 288.
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and low-temperature expansions" give results in close
agreement with the present results in the range —X(0.3
and 0,4(—),.

The results for n2 are plotted in Fig. 2. It is apparent
that n2 varies parabolically with X near the origin. This
is to be expected from the one-dimensional case, for
which

Q7t = Qy

The calculated values for long-range order as a
function of the reduced temperature, along with ex-
perimental results for P brass" and P-AgZn, '4 are shown
in Fig. 3. The agreement with the experimental results
is satisfactory.

From the experimentally observed critical tempera-
tures for P brass and P-AgZn, we can compute the
interaction energy for these alloys on the basis of the
result v= —0.315 kT„and find for p brass w/k =232'K,
for P-AgZn s/k=172'K. Using the observed heats of
solution for these alloys, calculations on the basis of the
quasi-chemical theory'5 give 484' and 365'K, respec-
tively, for p brass and p-AgZn.

It appears that only about one-half of the heat of
mixing of these alloys is associated with nearest neigh-
bor interaction, a result which is not surprising, con-
sidering the failure of the simple quasi-chemical ap-
proach in other systems. "
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FIG. 4. The entropy of mixing versus s/kT.

so that the plot of 0.& against ) is essentially also a plot
of energy against X. To obtain the entropy as a function
of X we use the thermodynamic relation:

dS= (1/T)dZ (dV=0). (12)

After differentiating 11, substituting in 12, dividing by
k and integrating, we find

THERMODYNAMIC RESULTS

We may rewrite Eq. (3) in the form:
(1/k)

~X
d5= —2~V ~ ) do. g.

X=o
(13)

I.O

.8—

(E/Xs) = 2crr, —
At the lower limit the structure is random, so that

S/1Vk = ln2,
and thus

S(X)/iVk = ln2— (14)
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Fro. 3. The calculated and experimental long range order
versus the reduced temperature.

"C.Domb and M. F. Sykes, Phil. Mag. 2, 733 (1957); Proc.
Roy. Soc. (London) A235, 247 (1956)."D. Chipman and B.E. Warren, J.Appl. Phys. 21, 696 (1950).

&' L. Muldawer, J. Appl. Phys. 22, 663 (1951)."L.Kaufmann (to be published)."R.A. Oriani, Acta Met. 1, 144 (1953).

The integral was evaluated by graphical integration of
the curve of Fig. 1 and the result is shown in Fig. 4.
The entropy at the critical point is in agreement wtih
the value obtained by Domb, 5,=0.586 Ek, and with
the experimental value of 0.54 Ek.'" The limiting
value of the integral in Eq. (14) provides an additional
check, since 5 must vanish in the limit of infinite X

(zero temperature).
Since we now know 5 as a function of X, and n~ as a

function of X, we can determine 5 as a function of O.J.
This relation is shown in Fig. 5. The important feature
of the curve is the extended region which is almost
linear. Since the energy is a linear function of o.&, we may
expect that in some temperature range the free energy
will be almost constant over a wide range of o.~. This
occurs, as it must, in the region of the critical tempera-

"H. Moser, Physik. Z. 37, 737 (1936).
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FIG. S. The entropy of mixing versus o.&.
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Fxo. 7. The excess specific heat versus the reduced temperature.

ture, as shown in Fig. 6, in which the quantity,

F/Nk T= 2Xn—g (S/—Nk),

is plotted as a function of n~ for various values of P.
This insensitivity of the free energy to the degree of
order near the critical temperature leads to large fluc-
tuations in order and slow attainment of equilibrium
in this temperature range.

The specific heat (both pressure and volume are
constant in our system) can be obtained by using the
relation:

C= dE/dT,

which is readily transformed into the result,

C/Nk =2M(dn/dX).

The derivative was evaluated graphically from the
curve of Fig. 1, and the result is shown in Fig. 7. This
curve is not in very good agreement with the experi-
mental results of Moser, " however, since the lattice

.2

.-3

~
4-

.5

F .6
NkT

contribution to the specific heat is not known, and an
adequate comparison with experiment is not possible.

KINETICS OF ORDERING

The approach to equilibrium for various values of
(v/kT) not too close to the critical value is shown in
Figs. 8 and 9. No simple rate law is obeyed, but it is
clear that about 20 000 jumps, or ten jumps per atom,
are sufhcient to reach approximately the equilibrium
degree of order. The kinetic behavior for a value of
(v/kT) close to the critical is shown in Figs. 10 and 11.
Again ten jumps per atom bring the system fairly close
to equilibrium, but the final change in the degree of
order close to the critical value is very sluggish. Par-
ticularly interesting is the long persistence of a meta-
stable state with o.~ about —0.35 during the approach
to equilibrium from a state of long-range order, as seen
in Fig. 11. This behavior is, of course, to be expected,
since the flatness of the free energy curve in this region
means that there is very little driving force for a change
in order. The curves for values of (—X) above 0.3 were
obtained allowing second neighbor, as well as nearest
neighbor, jumps. since, as mentioned earlier, in the
presence of long-range order, nearest neighbor jumps
alone were singularly ineGective in attaining equilibrium.

It is difficult to construct an alternative mechanism
in this structure. Divacancy motion as a unit is not
possible, since two atoms which are nearest neighbors
of a given atom are not nearest neighbors of each other.

.8
~5i I I I I I I I I I

I.O

Equilibrium a I'I

I I I I I I I I t

0 .I .2 .3 .4 .5 .6 .7 .8 .9 I 0

X= 0.25 0.20 0.10

I I I I I

O.l0 0.20 0.25

Fro. 6. The free energy versus nq for various values of s/kT.
FH",. 8. The approach to equilibrium for T)T.. Each

point represents 1000 moves.
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I.O

.8

I I I I, , I ordering"; above the critical temperature the activation
energy is that for nearest neighbor jumps, and below
it, that for second neigbor jumps.

CONCLUSIONS

.6-al'

I

0.50 0.40
3

02

0.35

c9

0.35 0.40 0.50

The results of this Monte Carlo calculation are in
quite good agreement with the results obtained by
Bomb by analytic methods. Unfortunately, no sufh-
ciently accurate experimental data seem to be available
to provide a critical test of the adequacy of the nearest
neighbor approximation. Higher neighbor interactions
can readily be introduced, but there seems no great
need to do so until better data are available. Other
generalizations which may be of considerable interest

0 I I I I I I I

N

FxG. 9. The approach to equilibrium for T&T,. Each
point represents 2000 moves.

1.0

0.8—
v = -0.3 kT

Second neighbor jumps, however, although certainly
requiring a larger activation energy than nearest
neighbor jumps, and occurring much less frequently,
may very well occur to some extent. The second
neighbor distance is not much greater than the nearess
neighbor distance, and the lattice distortion required it
not enormously greater. If second neighbor jumps do
occur, they will be the rate-limiting process in diGusion,
since nearest neighbor jumps contribute almost nothing
to vacancy travel. This effect may well explain the large
increase in activation energy observed in beta brass on

0.6

p 4 —'~~
i0~ ~&r"v4'g%i~

v'~0.2—

0 I I I I I I I I I

0 20 40 60 80 I 00 I 20 140 I 60 I 80 200
Moves x IO

FIG. 11.The approach to equilibrium from order
for v= —0.3 kT.

are the case of off-stoichiometric composition, and the
case of clustering (X)0), which has received relatively
little attention.

0.4—
~ = -0.3kT

e+ se,+s gW~~i Q 1+ ~ OQ Oe

~ ~ g ~g i~e ~ ~ ~ Mio~ 0 '~
~ g ~ '+~

~ eze~O
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FIG. 10. The approach to equilibrium from disorder
for v = —0.3 kT.
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