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In this paper we derive an approximate analytical formula for the continuous absorption coefficient of
the hydrogen negative ion. This formula gives results comparable to those obtained by Chandrasekhar,
who used an eleven-parameter ground-state function and the dipole velocity matrix element. Our numerical
results are compared with the corresponding numerical calculations of Geltman.

T is well known that the continuous absorption
coefficient of H~ is of great astrophysical interest.
This coefficient has been calculated by several
authors,'™2 the most accurate numerical calculations
being those of Chandrasekhar and of John. The
previous theoretical calculations have been carried out
with many-parameter ground-state wave functions:
e.g., Chandrasekhar and Elbert used a Hart and
Herzberg 20-parameter ground-state wave function and
a Hartree approximation for the continuum wave
function. The simplest calculation concerning the total
continuous absorption coefficient «, for H™ are given by
Geltman,® but Geltman’s considerations do not give an
analytical formula for «,. The purpose of this note is
to derive without much trouble, by a simple assumption,
an approximate analytical formula for «,. It is known
that the total continuous absorption coefficient «, for
H-, according to Geltman, can be written in the form

kR
f eox172dr
0

where @, is the Bohr radius, « is the fine structure
constant, and ¢, is the normalized ground state function
which fulfills the following Schrodinger equation:

[V2—2V (r)+2Eq]0e=0, 2

where V (r) is the spherical potential and 2Eo=%k¢; Eo
is the bound state having an energy equal in magnitude
to the accepted electron affinity of the hydrogen atom.
k? appearing in Eq. (1) is k2=2E;, where Ej; is the
continuum state energy.
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Between the frequency », Eo, and E, as is known,
there exists the relation E¢— E,=hv. The Schrodinger
equation given by (2) is written in atomic units for
length (Bohr radius) and energy (2 rydberg units).
The continuum wave function ¢, as we know, may be
expanded in terms of Legendre polynomials as

» 11(20141)
o= ;} TPz(cosﬁ)Xl(r,k). 3)

The partial wave X; in Eq. (1) is the wave which
contributes to the dipole matrix element in the p wave.
In order to obtain an analytical expression for x, we
must have an analytical function for ¢o and X;. There-
fore, we adopt for V(r) the following potential

e—ar

V(n=—b—y (4)
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where b and a are constants. Our potential is compared
in Table I with the Hartree field,

Va(r)=—e?(1+1/r). ®)

Table I shows that our resultant potential (4), if we
adopt for the constants b, ¢ the values ¢=2.3 and
b=2.5, agrees well with Vu(r) if 7 is not too large.

Our approximate potential ¥ (r) has the advantage
that with it one can solve exactly the Schriodinger
equation (2) and obtain the ground-state wave function
¢o and its eigenvalue Eo. For ¢, we obtain

@o=(No/2¢/m)e " [1—e"]/r, (6)
where N is the radial normalization constant,
AT()= [2k0(ko+d) (2k0+d)]&/d. (7)

The eigenfunction ¢, for the ground state corresponds
to an eigenvalue Ey, where

2b—a\?
k02=2lE01=( ) , ®)
2a

The best value for the electron affinity of the hydrogen
atom is the Pekeris®® value. As we want to compare
our considerations with the corresponding results of

13 C, L. Pekeris, Phys. Rev. 112, 1649 (1958).
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Geltman, we adopt for the electron affinity of the
hydrogen atom Henrich’s® value 0.747 ev. The Pekeris
value for the electron affinity of the hydrogen atom
will change our absorption coefficient negligibly. Using
Henrich’s value as the binding energy of the 1s level in
the Schrédinger Eq. (2) for our approximate potential
(4) we see from Eq. (8) that if 5=2.5 the constant a
must change its value slightly, from 2.3 to ¢=2.01407.
If we adopt the values ¢=2.01407 and =2.5, we have
the advantage that we obtain exactly Henrich’s value
for the electron affinity of the hydrogen atom, 0.747 ev.

This small change of the constant ¢ does not change
appreciably the values of our potential given in Table I.
As k¢? is very small, the 1p phase shifts 7, will be very
small, so we do not make a great error if we adopt for
X1 the solution of the Schrédinger equation for V=0,
which is known and can be written in the following

form:
sinkr

kr

xX= —coskr. 9

Substituting ¢, given by Eq. (6) and X; given by the
last formula in the expression for the total continuous
absorption coefficient «,, Eq. (1), we obtain after simple
calculations the following analytical formula:

64r fao\? k 8
K,,=—Ot(~") ko(ko—l‘d) (2ko+d)< )
3 a ko +k?

k02+k2 22
X[l— (————) ] . (10)
(kot-a)*-&?
Since in atomic units the unit of energy is ¢?/a,=27.23
ev, in our case k?=0.054866. Taking into consideration

the corresponding values of our constants, we can write
&, as follows:

3
k= (10717 cm?) ><0.44137( -—)
0054866+ %2

0.054866+ 4%\ 2
i (LT
5.05488+£*

Tasre I. Comparison of the potential given by Eq. (4) with
the Hartree potential of the hydrogen atom.
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TasLe II. Comparison of our continuous absorption coefficient
of H-, Eq. (11), with the corresponding numerical results of
Geltman.

&y (10717 cm?)

k2 AA) Our values Geltman’s values

0 16533 0 0

0.005 15158 0.727 0.69
0.01 13994 1.617 1.54
0.015 12996 2.378 2.26
0.02 12131 2.975 2.83
0.03 10706 3.750 3.57
0.04 9581 4134 3.95
0.05 8669 4.242 4.09
0.06 7916 4.278 4.10
0.07 .- 4195 ‘e
0.08 6774 4.066 391
0.10 5875 3.758 3.62
0.12 5204 3.420 3.31
0.16 4236 2.839 2.76
0.20 3572 2.373 2.31
0.30 2566 1.607 1.58
0.40 2002 1.177 1.15
0.60 1391 0.714 0.69
1.00 864 0.354 0.33

o 0 0 0

In Table IT we have a comparison of our x, with the
values of «, obtained numerically by Geltman, with the
corresponding wavelengths given. Table IT shows that
our values for k), agree well with the corresponding
results of Geltman. Our results are a little larger than
Geltman’s results and therefore correspond better to
Chandrasekhar’s results as shown in Fig. 2 of Gelt-
man’s® paper.

Smith and Burch! have shown in TFig. 3 of their
paper that Geltman’s numerical results are in good
agreement with the experimental results. The results
of Geltman agree better with the experimental results
the longer the wavelength, but deviate at shorter
wavelength. The same sort of accuracy holds for our
formula (11). If we take into consideration the more
recent experimental and theoretical results of John,!
given in Table I and Fig. 1 of his paper, we see that

TasLe III. Comparison of the values of ¢o(7) in our Eq. (6)
with Geltman’s numerical values.

e (14+-1/7) bemor/(1—eor)

~

0 + ~+
0.1 9.006 12.354
0.3 2.378 2.511
0.5 1.104 1.157
0.8 0.454 0.472
1.0 0.271 0.279
1.2 0.166 0.169
1.5 0.0830 0.0862
1.8 0.0425 0.0405
2.0 0.0275 0.0254
2.5 0.00943 0.00798
3.0 0.00330 0.00252

@o(r)
7 Our results Geltman’s results
0 0.4562 0.428
0.5 0.2546 0.266
1.0 0.1553 0.171
1.5 0.1007 0.108
2.0 0.06964 0.0689
3.0 0.03722 0.0364
4.0 0.02218 0.0216
6.0 0.009260 0.00903
8.0 0.004347 0.00425
10.0 0.002343 0.00210
12.0 0.001136 0.00109
14.0 0.0006139 0.000584
16.0 0.0003337 0.000321
20.0 0.0001046 0.000100




ABSORPTION COEFFICIENTS OF

Geltman’s maximum of «\ is more accurate than our
corresponding maximum given by Eq. (11).

In Table III we have a comparison of our bound-
state function ¢, Eq. (6), with the corresponding
function of Geltman. Table III shows that crudely the
results are similar. We see that the above given con-
sideration gives just the value of the electron affinity
of the hydrogen atom given by Henrich, while the
analytical formula obtained for the total continuous
absorption coefficient is very simple and its degree of
accuracy in comparison with Geltman’s results is a
good one.

Geltman has simplified extensively the calculation of
Chandrasekhar by adopting the cut-off Coulomb po-
tential but the solutions obtained for the discrete and
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continuous spectrum do not give an analytical expres-
sion for the total continuous absorption coefficient.

Concerning Eq. (1) we must make it clear that this
equation implies the use of a special form for the bound
and continuum two-electron wave functions, as well as
the dipole length form of the matrix element. Since
the continuum functions used in this paper do not
satisfy the Schrodinger equation with V(r) given by
Eq. (4), different results will be obtained with the
dipole velocity and acceleration forms of the matrix
element. A check on the self-consistency of this calcu-
lation would be the spread in results with all three
forms of the dipole matrix element. The other two
could also be obtained analytically without much
trouble.
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The theory of beta-decay processes in which an electron is created in a bound atomic state is developed
in the allowed approximation. The correlations and total decay rate are calculated with the renormalized
V —A theory and the results are valid for atoms of arbitrary electronic configuration. The relative prob-
ability of bound-state to continuum-state decay is shown to be independent of nuclear matrix elements;
some bound-state decay rates are presented that were calculated by making use of this fact. The possibility
of experimentally detecting bound-state decay is also briefly examined. The beta decay of nuclei in stellar
interiors is discussed and a number of examples are presented for which bound-state decay is more likely
than continuum-state decay under the conditions that obtain in stellar interiors.

I. INTRODUCTION

HE usual theory of beta decay assumes that the
transformation of a neutron into a proton is
accompanied by the creation, in continuum states, of
an electron and an antineutrino. This assumption
ignores decays in which an electron is created in a
previously unoccupied bound atomic state.

We shall develop, in the allowed approximation, the
theory of the usually ignored decays in which a neutron
transforms into a proton, an antineutrino is produced
in a free state, and an electron is created in a bound
atomic state.! It is important to realize that the bound-
state decay process does not take place through the
capture into an atomic orbit of an electron initially
created in a continuum state; the direct creation of an
electron in a bound state is more probable than the
capture process.

The relative frequency of bound-state to continuum-
state decays can be estimated with a phase-space
argument that does not depend on the formal theory of

* Supported by the National Science Foundation.

1In terrestrial experiments, the daughter atoms are almost
always neutral and hence difficult to detect.

weak interactions. The phase-space volume available
for continuum state decays is represented by the
function f(Z,W,),? where the dependence on Z indicates
that the Coulomb correction has been included. For
bound-state decays, the analogous corrected phase space
volume is the square of the neutrino’s momentum times
the square of the modulus of the electron’s wave func-
tion evaluated at the nuclear surface. The relative
frequency of bound-state to continuum-state decays is
approximately equal to the ratio of the phase-space
volumes when these volumes are corrected for the
electron density at the nuclear surface. Thus the relative
frequency of bound-state to continuum-state decays is

Ts/Te~@ ¥ (R)|¥/f(Z,W0)
~ (Wo—=1)2(aZ)?/nf(Z,W ). )

This ratio depends sensitively on the nuclear energy
release, Wy; the atomic number, Z, of the daughter
nucleus; and the principal quantum number, #, of the
lowest unoccupied atomic orbit.

The possibility of bound-state decays was first

2 We use here units in which Z=m=¢=1. The function f is
most familiar in the combination log f.



