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This paper gives new results that are useful in estimation of eigenvalues of Schrodinger's equation.
Numerical applications are made for the helium atom, an anharmonic oscillator, and a radial Schrodinger
equation.

I. INTRODUCTION

A LTHOUGH a given quantum mechanical eigen-
value problem may not have known solutions, it is

often possible to 6nd similar problems which can be
solved exactly. In this paper we show how such informa-
tion can be used to estimate numerically the eigenvalues
in the initial part of the spectrum of the given problem.

Our procedures determine lower bounds to eigen-
values. Upper bounds can be obtained satisfactorily by
the well-known Rayleigh —Ritz procedures; however,
without lower bounds no rigorous estimate of the
accuracy of the calculation can be made.

The procedures that we give are based on the method
of intermediate problems originated by Weinstein' and
extended and developed by Aronszajn. ' Some of our
results have features in common with recent work of
Weinberger. '

The theoretical foundations of our work are given in
Sec. II. In Secs. III—VI various procedures are developed
for obtaining lower bounds through solvable algebraic
problems. In Sec. VII numerical applications are carried
out for the helium atom, an anharmonic oscillator, and
a radial Schrodinger equation.

We consider Schrodinger's equation

HP= EP; (2.1)

here II is a Hermitian operator4 with respect to the
inner product (4I0,$) given by (i0,p) =f@*/dr We.
assume that all continuous energy levels of H are
higher than the discrete energy levels which we wish
to estimate. We regard these lowest eigenvalues of H
as ordered in a nondecreasing sequence,

~ ~ ~ (2.2)

in which each degenerate energy level appears the
number of times of its multiplicity. An eigenfunction P;
corresponding to 8; satishes

(2.3)

where 6,; is Kronecker's delta.
We assume that the Hamiltonian II can be written

as the sum of two parts H' and H' such that H' has
known eigenvalues and eigenfunctions and II' is positive
definite' (but not necessarily small). That is

H =H'+H',
and

II. INTERMEDIATE HAM. ILTONIANS

In this section we introduce the procedure of
Aronszajn for the construction of intermediate Hamil-
tonians. This construction forms the basis of our
procedures for determining lower bounds given in Secs.
III—VI.

Further we assume that EP has ordered discrete energy
levels

(2 6)g,o(g,o(

below its continuous spectrum. We denote the corre-
sponding orthonormalized eigenfunctions by tt,o, and
thus we have* Part of this research was started while the authors were in

the Institute for Fluid Dynamics and Applied Mathematics,
University of Maryland, and was summarized in American Mathe-
matical Society Notices 6 (1959) and in the expository lecture of
A. Weinstein, Proceedings of an International Conference on
Partial Differential Equations and Continuum Mechanics,
Madison, Wisconsin (1960). Also, parts were reported by the
authors to the International Summer Symposium on Quantum
Chemistry, Vppsala, Sweden (1960).This work was supported i
part by the Department of the Navy under contract with th
Bureau of Naval Weapons.' A. Weinstein, Mem. sci. math. Xo. 88 (1937).2¹Aronszajn, Proceedings of the Oklahoma Symposium o
Spectral Theory and Differential Problems, 1959 (unpublished)

H. F. Weinberger, Institute for Fluid Dynamics and Applie
Mathematics, University of Maryland, Technical Note BN-18
1959 (unpublished},

HO/ 0 —Ii .0$ 0 Q, 0
Q 0) —g (2.7)

Since II'(II, ' it follows that

(s = 1,2, . ), (2.8)jV,o( jV.

n 4 We actually require that H have a unique seU-adjoint (hyper-
e maximal) extension in our Hilbert space. See T. Kato, Trans. Am.

Math. Soc. 70, 195 (1951).
5 The case that H' is positive but not definite requires only a

n slight extension of the theory.' H'& H means (Q,IPQ) & (P,II&}for every P in the domain of H.
d 7 These inequalities can be traced back to H. Weyl, J. reine
3 angew. Math. 141, 1 (1912).See also T. Kato, Trans, Am. Math.

Soc. 70, 212 (1951),
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H'&H~&H~+'& H (2 9)

and hence their eigenvalues give intermediate lower
bounds to those of H.

To dehne the Hamiltonians H~ we temporarily
introduce the scalar product Q, q] given by

$f,p]= (P,H' p) = )~PH'q dr (2.10)

for every pair gpss for which H'p and H'P are defined.
I.et pi, ps, , be a sequence of linearly independent
functions in the vector space with inner product I P, q j.
The projection P~ of an element p in this space on the
span of pi, p&, , pz is given by

Ic

P"y=Q trap; (2.11)

where the constants ei must satisfy the equations

and consequently the eigenvalues of H' give rough
lower bounds to those of H.

The procedure of intermediate Hamiltonians links
the base Hamiltonian H' to the given Hamiltonian H
by a sequence H~ of intermediate Hamiltonians. These
satisfy the inequalities

to obtain the ordered eigenvalues E;~ and the corre-
sponding eigenfunctions P," in the lowest part of the
spectrum, we would have from (2.9)

E'&P. ."&E'+'(E; (i, k=1, 2, ). (2.19)

Although the solution of this problem can be accom-
plished quite generally, ' the form of the result is not
suitable for most applications. The remainder of this
paper is devoted to procedures which overcome the
difhculties in the applications.

III. METHOD OF TRUNCATION FOR
INTERN'EDIATE HANILTONIANS

In this section we introduce new Hamiltonians H' ~

which for each / are smaller than the corresponding
intermediate Hamiltonians H~. These Hamiltonians
increase whenever the index l or k is increased and thus
give smpromble lower bounds for the initial eigenvalues
of the given Hamiltonian H. Furthermore, these new
Hamiltonians have the important property that their
eigenvalues and eigenfunctions are determined from
the solutions of algebraic problems that involve only
the known eigenvalues and eigenfunctions of H' and
the arbitrarily chosen functions p, .

First define the Hamiltonians H' by

(j=1,2, , k). (2.12)
(L = 1, 2, ). (3.1)

Since the Projections P become larger as k is in- These Hami]. tonians, called the trlncatioms of H' o
order /, satisfy the inequalities

o&L~P'v 3&L~,P'"v j&I:~,v],
(k= 1, 2, ), (2.13)

or equivalently, in our original space,

o& (v,H'P"
v ) & (~,H'P""~)& (v,H'v ),

(k=1, 2, ).

By combining (2.11) and (2.12) we may write

H' '&H'+" (H', (/=1, 2, ). (3.2)

These inequalities are easy to verify if the spectrum
of H' consists of bound levels only that diverge to
inhnity with no finite limit points, for then we have

k

H'P y= Q (H' P;,p)b;;H'P;, (2.15) i=i+2

where the numbers b;; are the elements of the matrix
inverse to that with terms Lp;,p;j. From (2.14) we have

H'P'&H'P"+'&H' (k=1, 2, ). (2.16)

Ke now define the intermediate Hamiltonians H~ by

H" =H'+H'Ps, (k = 1, 2, ). (2.17)

(l= 1, 2 ). (3.4)

In more general cases the proof follows'from the spectral
theorem.

The Hamiltonians H' "are now obtained in terms ofIt is clear from (2.16) that these satisfy the desired
inequalities (2.9). If we could solve the eigenvalue
problem for H~, i.e., For this and other mathematical details relating to Secs. II,

III, and V see the paper of the authors in J, Research Natl. Bur.
(2 ig) Standards 658, No. 2 (1961).
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B' ' and H'I'~. The de6ning equations are

H' "=H' o+H'P~, (lo, l=1, 2, ). (3.5)

According to (3.2) and (2.16) we have the inequalities

where the constants n; satisfy the conditions

Q n;(H' p;,p;) = (H' p;,p) (j=1,2, , k). (3.12)
i=1

and

H'~&H'+' ~&H~&H, t,'4, 1=1,2, ~ ~, ~3.7&
The eigenvalue equation for H'~ has the form

H' '&H'"+'&H"+H'&H (k, l= 1, 2, ). (3.8)
with fz given by

These imply that the lowest ordered eigenvalues of H'»~,

denoted by E ~, satisfy the parallel inequalities

E ~&E +"&E,j'&E;, (i, k, l=1, 2, ~ ~ ), (3.9)

H'op Ep—=fg

k

fl, =Q—a;H'p;.

(3.13)

(3.14)

E,l,k(E.l,&+1(E. (o P l 1 2 . . .) (3 10)

Ke now show how the eigenvalues and eigenfunctions
of B' ~ may be determined. Let us make the preliminary
observation that according to (2.11), (2.12), and (3.5),
H'~ is given by

f. Z(4—',f~)4'
& (II',f )4" +

v=1 +l+1G
(3.15)

The complete solution of H'"P=EP is obtained in the
following steps.

First, if E is not an eigenvalue of H' then the solution
to (3.13) is given by

H' "p=H' op++ n;H'p;, (3.11)
When the expression (3.14) for fo is inserted, we have

(y o ypp, )p o H P' Z(4' ~H P )4''
4= —Z~' Z +

jV„G—jV +l+1
(3.16)

The constants n; are now determined by substituting this expression for |P in the relation (3.12). This gives the
set of k homogeneous equations for the a' s,

, (~ o H p.)(H p ~ o)
(H'P~, H' P') Z(A'H'P')—(H'P~ &')

2 ~' (P,H'P')+2, +
i=1 v=1 jV o jV jVl

=0 (j=1,2, , k). (3.17)

In order that (3.17) have a nonzero solution it is necessary and suf5cient that E be a solution of the equation

, (poH p )(H p ~o) (H. P,HP') E(4",Hp' )(H—p 4")
det;, H';

v=1 jV„o jV

=0 (3.18)

For each such solution E of (3.18) that is not equal to Ep, Eoo, , E&+p, there are I linearly independent sets
of n s which satisfy (3.17), where n is the nullity of the coeKcient matrix displayed in (3.17) at the root E. From
Eq. (3.16) these yield e linearly independent eigenfunctions of H' ".

Second, we investigate whether H' ~ has any of the eigenvalues E1G, E&', -, El' of H'. For any one, suppose
E ' of multiplicity r, to be an eigenvalue of H' ~, we must have, in addition to (3.12) and (3.13), that f& be orthog-
onal to each eigenfunction of H' corresponding to E '. If for the moment we designate these eigenfunctions of
H' ' at E ' by q 1, q 2, , y„ then the orthogonality condition is expressed by

k

Z ~'(v»»'P')=o, (j=» 2 " r) (3.19)

If this condition is satisfied, then each eigenfunction of H'~ corresponding to E,' is of the form

l

(p 0 H~p. )p 0 H P' E(II~' )H P')4.—
~I= —Z~' 2' +

v=1 E '—EG

k+r
~iPi—kp

i=k+1
(3.20)
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where the sum P' is taken over all indices v for which E„"&E,'. For each such eigenfunction f, the constants
n, must satisfy the relations (3.12) and (3.19). In full, these are

gn;
i=1

(~, H p)(H p ~0)
(H' P, ,

H' p') E—'(O', H' P' )(H'P 4')
(p,H'p')+2' +

v=1 E„0 E,0
+ 2 n'(H'P t, ~'-.) =o,

(j=1,2, ~ ~ ~, k), (3.21)

g n;(p; i„H'p;)=0, (j=k+1, k+2, , k+r).
i=1

(3.22)

Thus the necessary and sufficient condition for E,' to be an eigenvalue of H' ~ is that

I

(p 0 H p,) (H p. p 0) (H'P~, H' P') Z'(O'—,
H' P') (H'Pr P")

(P;,H'p')+2' + ~ (H' p, , ~, ~)
EO EO 0 E 0

(~~-~,H' p' )

=0. (3.23)

The number of linearly independent solutions of Kqs.
(3.21) and (3.22) is just the nullity of the matrix dis-

played in (3.23). It has been shown8 that linearly
independent solutions of these equations yield linearly
independent eigenfunctions (3.20) of H' ". Thus by
examination of each distinct eigenvalue in the sequence
El', E2', , E~' we determine those which are also
eigenvalues of H'~ and the corresponding eigen-
functions.

So far we have determined all of the eigenvalues of
H'~ that are not equal to E~+l'. These are, of course,
finite in number and multiplicity.

We observe that all of the eigenfunctions of H' ~

corresponding to eigenvalues different from E~&' are
given by (3.16) and (3.20), and these are linear corn-

binations of the functions ip„o (v= 1, 2, , t) and H' p,
(i = 1, 2, , k). As a consequence there can be at most
1+k such eigenfunctions.

Finally, we note that by the application' of a theorem
of H. Weyl, H' ~ can have no continuous spectrum, and
further it must have E~+1' as an eigenvalue of infinite
multiplicity. The eigenfunctions corresponding to E&+l
are all functions orthogonal to the eigenfunctions of the
form (3.16) and (3.20).

SUMMARY

The eigenvalues and eigenfunctions of II'~ are found
in terms of the quantities (P„O,H'p;), (p, ,H' p,),
(H'p;,H' p,) and the functions H'p, and $„0 (i, j=1, 2,

, k; v= 1, 2, , t). The procedure is as follows:
(1) Calculate the roots of the determinantal equation

(3.18). For those which are not eigenvalues of H"
calculate the linearly independent solutions of (3.17).
By means of (3.16) calculate the corresponding eigen-
functions of H' ~.

(2) If there are less than k+3 eigenfunctions deter-
mined by (1) then for each distinct eigenvalue of H'

that is not equal to E~&' check to determine whether

(3.21) and (3.22) have nontrivial solutions. For those
for which nontrivial solutions exist, compute the corre-
sponding eigenfunctions of H' " by (3.20).

(3) Note that Zt~ro is an eigenvalue of H'" of infinite

multiplicity and has every function orthogonal to
those eigenfunctions found in (1) and (2) as an eigen-
function.

To obtain the lower bounds, order the eigenvalues of
H' ~ that lie below E~+&' in a nondecreasing sequence:

E ' I &E '~(. . . &E i, I t&l (3.24)

in which each eigenvalue is repeated according to its
multiplicity. These then give lower bounds by the
fundamental inequalities

and

E, , QEi (i~1, 2, , t) (3.25)

«pro(E, , (t= t+1, t+2, ). (3.26)

—(&—«+r')4'=0 (3.27)

The procedure just given is not the only one available
for determining the eigenvalues and eigenfunctions of
H'~. Another equivalent procedure is based on the
observation of W. Borsch-Supan that the Gnite-dimen-
sional space OR generated by the eigenfunctions $„0

(v=1, 2, , t) and the functions H' p; (i= 1, 2, , k)
reduces the Hamiltonian H' ~. This allows determina-
tion of the eigenfunctions of H' ~ lying in 5K from a
linear algebraic eigenvalue problem of order k+/ for
one symmetric indefinite matrix relative to another.

To demonstrate this we start from an expression of
the eigenvalue equation for H' ~ in terms of the vectors
|t„o and H' p;,

l A:

Z(4'A)(&' «+i')4'+ 2 (H'P—'A)b' H'P~
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Take inner products with the functions f„e and H' P, ,
let Q„',f)(EP E—~~/)=y„(v=1, 2, , l), and let
Q; g (H'p, ,g)b;, , g=y, (v=i+1, l+2, , l+k). The
resulting system of equations has the form

we have the corresponding inequalities for the ord'ered
eigenvalues E12 ~ E2'~, of H' ~, namely,

E.O(E,l,k(E,E,k+1(E, (s—1 2 . . . )) (4 5)

&+2

2 v.{c"—(E—«+i")D")=o,
v=1

where
(p=1, 2, , k+3), (3.28)

44', H' p. ~) &

(C„)={
'

{, (3.»)
& (H'p„„p;) (H'p„„H'p„,) i

t'~u I(E' E~+~')—
(D,.)=

{
0

0
~. (3.3o)

(H'p. ~ p.-~) &

For the eigenvalues E of the problem (3.28) which
are not equal to Ez+1', the corresponding eigenfunctions
of H' s are obtained from (3.27) by solving for f. The
resulting expression is

v=1 v=2+1

IV. ANOTHER METHOD OF TRUNCATION

The procedure of Secs. II and III may be modified
in the following way. We observe that under the
assumptions (2.4) and (2.5) the Hamiltonian H can
be written as

H=H' '+ I H H"), (/=1, 2—, ), (4.1)

One can show that (3.31) gives a one-to-one corre-
spondence. As before, Ez+1' is an eigenvalue of infinite
multiplicity.

Still other procedures for the solution of the eigen-
value problem for H' ~ can be found by considering the
eigenvalue equation in the form

H'P P+ (E(pP E)f= (E(pg—' H")f) (3—.32)

and then inverting the Harniltonian H' P' +E~+P E. —
The resulting matrix problems are similar to (3.17)
but of order t. Details of these procedures will not be
given here.

for v&l. Thus the only inner products that must be
computed in order to determine the eigenvalues and
eigenfunctions of H' " are ({H H'')p {—H—H''}p, ),
(P {H—H''}P;), and (f„s,H' P;) for sj =1, 2,
and v=1, 2,

The Hamiltonians H' s (and also the H" of Sec. II)
have the property that they agree with H on the span
of the functions p~, ps, , ps, that is,

FI'sP, =HP, , (s=1, 2, k). (4.8)

Thus if an eigenfunction p„of H is one of the p, 's (or
included in their span) then it will be an eigenfunction
It' " of Ft s with E„as the corresponding eigenvalue.

There is in general no guarantee that E„will be the
vth ordered eigenvalue of Hz ~. Nevertheless, one can
show that if H is a Hamiltonian having bound states
only and E„ is less than the 6rst limit point of the
spectrum of H', then there exist intermediate Hamil-
tonians H's (of suKciently high order / and k) which
have

and
(; 1 2 . . . „)

8' '=E,, (s= 1, 2, , v).

(4 9)

(4.1o)

The same results hold for the Hamiltonians H~ of
Sec. II.

E) P=E' '=E' "+'(E (~=l+I, /+2, ). (4.6)

As in Sec. III, the eigenvalue E2~1' appears as an eigen-
value of H'~ with inhnite multiplicity.

The procedures for finding the eigenvalues and
eigenfunctions of Hz ~ are identical with those of Sec.
III. In fact, one may simply replace H' by H —HZ ',
wherever it appears in the final formulas of that section.
We observe, however, that

(~I' { — ")P ) = (O'' H'P )+({H' H")0—' p )

V. LOWER BOUNDS BY CHOICE OF ELEMENTSwhere the difference H —H' ' is positive. This difference
provides a means to construct Hamiltonians inter-
mediate between H' ' and H.

Following the development of Sec. II, we introduce
the scalar products [P,q$q (3=1, 2, ) given by

We introduce another method for determining the
spectra of the operators H~ previously defined. This
method depends on special choices of the elements p;
that determine the Hamiltonians H'P~ and generalizes
an earlier method' so that it applies to a far wider class
of problems.

We suppose that it is possible to choose elements p;
(s=1, 2, , k) such that the relations

[It', Io3~= (It' {H H") ~ )~—(4.2)

N

H'P'=2 P'4. , (s=1, 2, , &) (5.1)
Since

We let P2~ denote the projection with respect to these
scalar products on the span of the arbitrary functions
pq, ps, . , Pq. New intermediate Hamiltonians H'"
are given by

FI' "=H"+{H H' ')P"—(4.3)

H l,0(Hts(+l, I'a+1 (H, (4 4) s N. Bazley, Phys. Rev. 120, 144 (1960).
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are satisfied; that is, functions p, can be found such
that each of the quantities H' p; can be expressed in
terms of a Qnite number Ã of eigenvectors of H'. The
number N must, of course, depend on k.

Using the expressions (2.15) and (2.17) and the
relation (5.1), a Hamiltonian H" takes the form ,o=E Q 0 (q=1, 2, ) (6.2)

each of which has bound states before the appearance
of continuous spectrum, it is quite easy to use the
methods of the previous sections singly or in combina-
tion to obtain lower bounds. Here we have

H'iP,'=E,'iP, (i =1, 2, ). (6.3)

Equation (5.2) permits the determination of the eigen-
values and eigenfunctions of H~ by inspection. In fact,
if f is such that Q „',P) =0 (i = 1, 2, , i7) then from
(5.2), HQ=H f. This shows that each eigenfunction
iP.' of H' not used in the relations (5.1) is an eigenfunc-
tion of H~ with the same energy E,'. The remaining
eigenfunctions of H~ must be of the form

(5.3)

When this expression for ip is inserted in (5.2), the
equation HQ=EP leads to the equivalent algebraic
system,

We suppose that El') 0."
A 6rst procedure uses the method of truncation of

Sec. III without modification. We take p; =f,'
(i=1, 2, , k). Then since H'P;=H'P =E,'iP,', the
only terms to be computed in (3.18) and (3.23) or
(3.29) and (3.30) are

Q,o,g ), (i=1, 2, , k; i =1, 2, , l). (6.4)

A second procedure depends on truncating both H'
and H'. That is, we replace B by the sum of the trun-
cations of H' of order / and of H' of order k. This will
always give better bounds than those of the procedure
just outlined. After truncation the eigenvalue equation
becomes

(H"+E&+i')O' E0= Z &i(H' Esyi')4—'~' (6.5)

Thus the determination of the eigenvalues and eigen-
functions of the Hamiltonian H~ is reduced to a matrix
eigenvalue problem.

When all of the eigenvalues of H~ determined above
are ordered in the usual way according to magnitude
and multiplicity, then the lower bounds are obtained
from the inequalities

E,"&E;, (~=1, 2, ). (5.5)

Often relations (5.1) are obtained with p, =f,o from
a recursion relation among the functions $,0. In these
cases the Nth order Rayleigh —Ritz upper bound com-

putation based on the trial functions Pio, $20,

leads to an eigenvalue problem closely related to that
stated by (5.4). In fact, the coeKcient matrix displayed
in (5.4) differs from that of the Rayleigh —Ritz matrix
only in the terms for which p and v are both greater
than k.

The method of this section is applicable in the
estimation of the eigenvalues of the spheroidal wave
equation' anharmonic oscillators, " and many other
similar examples.

VI. SUP/I OF TWO SOLVABLE HAMILTOMANS

In those cases in which H is decomposable into two
Hamiltonians,

where the constants ni satisfy the equations

H„'p, =P;o, (i=1, 2, , k). (6.8)

In fact, the elements p; are given by

0 I p /

cr=l

(j=1, 2, , k). (6.6)

These equations are of the same form as (3.12), (3.13),
and (3.14) and thus can be solved by the techniques of
Sec. III. Again the only inner products to be calculated
appear in (6.4). We note that E~i +Ei,~i' appears as
the eigenvalue of infinite multiplicity.

A third procedure uses truncation in order to obtain
a special choice. We replace the Hamiltonian H by the
sum of H' and the tsth order truncation of H', which for
convenience we designate by H„'. The eigenvalue
problem

(6.7)

in which E is the projection on the span of p, , p.. .p„
with respect to the inner product Lg, pj„=(P,H„'~),
gives lower bounds. It is now easy to use the special
choice

H=H'+H', (6.1) (6.9)
'0 Numerical applications in this case have been made by W.

Borsch-Supan.
"See Sec. &II.

"IfEI'&0, we replace H' by FI' —c and H' by H'+c, where c
is a real constant greater than —AI', and proceed as above.
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The solution of the eigenvalue problem for H„~ is then
obtained from the results of Sec. V. Here X=k and
P,„=8;„(i,2 = 1, 2, . . . , k). Those eigenvalues that cor-
respond to eigenfunctions f of the form

the Laplacian operator in the coordinates r; (6 1, 2).
The lowest part of the spectrum of H consists of ordered
bound states)' Eg&E2,& .

As is well known, the lowest ordered eigenvalues of
Ho are given by

v=1
E,'= —2(1+I/62), (6=1, 2, )

with the corresponding eigenfunctions,

(7.3)

are obtained from the solution of the algebraic problem ~. 0 lg /4 xg f~ xg f~ ~

Q y„{(E„E)5„—„+b„„)=0, (Ig= 1, 2, , k) (6.11)
v=1

p,'= (1/42»V2)L&g(»1)E, g(»2)+E16(»2)&,g(»1)$,
(2= 2, 3, ),

(7 4)

where b,„ is an element of the matrix inverse to that
with terms (P„g,p„). These inner products have the
form

b.„p 1 1
(~. ,~.)= '-",+ziE.„' .=1&E.' E„„']

where R,o is the normalized hydrogen radial wave
function for zero angular momentum. Between —2 and
zero, H' has infinitely many bound states in addition to
continuous energy levels which extend from —2 to
infinity.

We consider first the lower bounds given by the
operator IP' for two choices of p1. For p, given by

(v, @=1,2, ~, k). (6.12) P=('/) (7 5)

-'n' —5'-&& 2"Ln'/(2+n) "]
=0. (7.6)———E5

VII. APPLICATIONS

We note from this that the only inner products to Eq (318) becomes

enter the computations are (P„g,g,') (o =1, 2, . . ., n;
2 =1, 2, , k). Further, each p„ for r) k remains as an 5 5'&&2"L~'/(2+62)"1
eigenfunction of H„with the corresponding eigenvalue
E,', and the continuous spectrum of H„~ is the same
as that of H'.

In this section we present several examples that
illustrate the methods of Secs. III and V. The calcula-
tions are of quite limited scope, for the most part having
been carried out by the authors on a desk calculator;
nevertheless, the numbers may have some interest of
themselves.

The lower bound for E&, given as the smallest root of
(7.6), is maximized for n near 1.5. For n=1.5 we have

—3.29&E1, —2.5 &E,, (6= 2, 3, ). (7.7)

For p1 given. by

A. Helium Atom P1——(Pg/m)r12e e(~1+~2)— (7.8)

The procedures of Secs. III and IV can be used to
obtain lower bounds to ground- and excited-state
energies in many-electron atomic systems. However,
here we limit ourselves to a simple hand computation
for a lower bound to the ground-state energy of the
helium atom. Our result gives the best lower bound so
far obtained directly by intermediate problems.

We restrict ourselves to S states of parahelium. The
Hamiltonians H' and H' in atomic units are given by

Eq. (3.18) becomes

35 216[P6/ (2+P)12) 1 216LP6/ (2+P)12]
0=- + + (7 9)

16p —4—E

Here the optimum lower bound is found near P=+5.
For P=+5 we find

—3.03&E1, —2.50&E; (6=2 3 ). (7.10)

and

&'~I = (1/» )0, (7.2)

+gp = '25gp ', A2ip (2/r—,)—II —(2—/-»2)p, —(7.1) We improve these bounds by solving the eigenvalue
problem for the Hamiltonian H22=II' +H'P2, where
P2 denotes the projection (2.11) on the span of the two
vectors

p, = $(1.5)6/2»fe '""1+"2& (7.11)
where r~ and r2 denote the position vectors of the
electrons, r, = ~r;~ (6=1, 2), r12 ——~r1—r2~, and A; is p2 = [5+5)/2» jr12 expL —(5) l (r1+r2)$. (7.12)
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Equation (3.18) becomes
t

I

t

l

0.439983816 i

+ l—20/9 —E
i

I

I

I

1

0.013788862 ~

I

—20/9 —E

1.057078102 0.002938082
0.937500000+ ———E5

2

1.018593688 0.004393440
0.888014669+

~

5—4—E 5

1.018593688 0.004393440
0.888014669+ +

E 5 p

0.013788862
+ —20/9 —

Lj

0.981510355 0.006569699
0.978279740+ +

E ———E

0.011919946
+ —20/9 —E

=0 (7.13)

We determine the lower bound to El as the first root
of (7.13) and obtain

The generalized special choice,

—3.0008&El. (7.14) H' P,=Q P;„iP„', (i=1, 2, . . .
, k) (7.22)

The combination of (7.14) with a well-known upper
bound gives

—3.0008 &El& —2.9037.

In order to obtain a useful lower bound for E2 it. would
be necessary to consider at least the Hamiltonian H' '.

In an earlier paper' the solution of a third-order
intermediate problem by use of a special choice of the
elements p; gave the poorer estimate —3.0637 &Ei. One
expects that calculations using the method of Sec. IV
will yield further improvements.

x'P,'= (2i—2) (2i—3) (2i—4) (2i—5) (C,/C, ,)P, P
+(2 —2)(2 —3)(4 —5)(C;/C;-)0, '
+ 4 (8i' —12i+5)P;0+ i~ (4i—1)(C,/C~, )1t,.+,0

+—:.(C'/C~. )a~", (7.23)

so that X=k+2. The p,„matrix of (5.1) is symmetric
and is given for i,v= 1, 2, ~, 5 by

'
3 K2 2+6 p p

6v2 39 2843 6g] p

P,,= ~ 2+6 28&3 123 22+30 4+1P5 (7 24)
0 6/10 22+30 255 60+14

0 4+105 60+14 435

B. ADharmonic Oscillator

We treat the well-known problem of estimating the
eigenvalues of an anharmonic oscillator. Our procedure
here is the generalized special choice of Sec. V. We
consider the ordinary differential equation

can be satisfied by taking p;= p,o and using a recurrence

(7 15) relationship among the Hermite polynomials. In fact,
we have

H'iP= ex+. (7.18)

The even solutions of HOQ=EP are the well-known

linear oscillation eigenfunctions

P;O=C, exp( —x'/2)H2, ~(x), (i= 1, 2, .), (7.19)

where C,=2 "[(2i—2)!j 4 ' and H„(x) is the nth
Hermite polynominal. The corresponding eigenvalues
are

(7.20)(i=1, 2, . );E =4i —3,

d'ip/dx'+x'—$+ex+ =Ep, (7.16)

where e)0 and f is square integrable on the infinite
interval —~ &x & ~ . For simplicity we restrict our
attention to the symmetry class of even solutions.

Ke take
H'tP= dQ/dx'+x'tP—

For k=3 the lower bounds are determined by (5.4)
from the eigenvalues of the linear system

+ 'Y.((4~—3—E)~.v+«,„}= 0) (@=1,2, 3, 4, 5) (7.25)
v=1

w~ere
3 6&2 2+6 0 0

6v2 39 28V3 6+10 0
(t„„)= ~ 2+6 28v3 123 22+30 4+105 . (7.26)

0 6+10 22+30 192 24+14
0 0 4+105 24+14 48

E,'&E,, (i=1, 2, ). (7.27)

When the eigenvalues of (7.25) are ordered with the
eigenvalues 21, 25, 29, . which persist from ~' to
form the ordered sequence El'&E2', we have the
inequalities

so that we have the rough lower bounds

4i—3&E,, (i=1, 2, ).
Upper bounds given by the Rayleigh —Ritz procedure

(7.21) based on the trial functions bio, ip~', , g~' are the



EIGENVALUES OF SCHRODINGER'S EQUATION

ordered eigenvalues of

TABLE I. Upper and lower bounds for eigenvalues of an anhar-
monic oscillator. For each value of e from 0 to 1,0, the Rayleigh-
Ritz upper bounds are listed above and our lower bounds below.
The lower bounds marked with an asterisk are those which persist
from the base problem.

0.0 1.000000 5.000000 9.000000 13.000000 17.000000
1.000000 5.000000 9.000000 13.000000 17.000000

0.1 1.065286 5.748178 11.10038
1.065278 5.746596 10.95333

0.2 1.118293 6.278820 12.48016
1.118255 6.260404 12.22585

0.3 1.164055 6.708557 13.67853
1.163987 6.655885 13.25990

0.4 1.204848 7.075869 14.82828
1.204738 6.979830 14.03037

0.5 1.241957 7.400376 15.96821
1.241746 7.258083 14.55430

17.51524 30.94592
16.17279 21.00000*

21.87339 45.99933
16.90845 21.00000*

26.41021
17.64313

31.03013
18.63119

61.16365
21.00000*

76,36088
21.00000*

35.69220 91.57225
19.88068 21.00000*

0.6 1.276195 7.694107 17.11054 40.37815 106.7910
1.275773 7.505763 14.90630 21.00000* 21.31832

Q tr, {$4v—3—E]II,„+eP,„}=0, (tt= 1, 2, 3, 4, 5).
v=1

(7.28)

We note again that the Rayleigh —Ritz matrix differs
from the matrix displayed in (7.25) by the 2-by-2 lower
right-hand corner only.

Our numerical estimates for the first five eigenvalues
are listed in Table I.

Figure 1 shows our estimate for E1 together with
those of first and second order perturbation theory. "

/~'~ I+ ~„6

M + Result of this popes
t'

I.I

0 0.1 02 0.5 0.4 0.5 0.6 0,7 0.8 0.9 I.O

Et M')

1.2

F1G. 1. Estimates for the 6rst eigenvalue of
an anharmonic oscillator.

t=2nx, I (t) =t—:It(t),

so that (7.29) becomes

(7.30)

We consider the equation

y/dxr &k(1 —&=*)/x—)0=E0 (7.29

on the interval 0(x(~ for n and s real and positive.
The potential —z(1—e "*)/x behaves like the Coulomb
potential —s/x for large values of x, while near the
origin it approaches —nz. Furthermore, the potential
differs from that of the hydrogenic wave equation by
the positive term se '/x.

In our treatment of (7.29) we are interested in the
bound states only. We 6x the energy E. and take the
charge s as the eigenvalue. The numerical results of such
calculations (done in sufficient detail) may be inverted
to give energy eigenvalues as a function of charge. The
advantage of taking s as the eigenvalue is that it
eliminates the continuous spectrum.

We put E= —~' and introduce the transformations

0.7 1.308110 7.965074 18,25889
1.307324 7.732038 15.15526

45.07885 122.0141
21.00000* 22.87292

d f dftpl t'+1——
(

t—(+ q=t (I o «»s)~ —(7-31)
dt E dt ) 4t

0.9 1.366442 8.459408 20.57519
1.364349 8.141353 15.49781

54.50637 152.4676
21.00000* 25.00000*

0.8 1.338096 8.218847 19.41390 49.78925 137.2399
1.336760 7.942661 15.34432 21.00000* 24.49895

where
H'q =Is(I E)p, —(7.32)

where tt =s/2'. Equation (7.31) is an eigenvalue problem
of the form

1.0 1.393371 8.689663 21.74203 59.22833 167.6966
1.390301 8.330586 15.62953 21.00000* 25.00000*

d tr dfp) t +1
H'cP= ——

i
t i+ ftP,

dt I dt ) 4t
(7.33)

To the scale of this graph our upper and lower bounds
are indistinguishable. Figure 2 shows our upper and
lower bounds for E2.

C. Radial Schrodinger Equation

As our final example we give an application to a
radial Schrodinger equation. Our example demonstrates
a useful modification' of the method of truncation
developed in Sec. III.
"See, for example, E. C. Titchmarsh, Eigenfttncti on ExPansions

Assoczated with Second-Order Differential Equations Clarendon
Press, Oxford, (1958), Part II.

9.0 .

Upper Bound~ ~~~
~ Lower Bound

.r~

0 GI 0.2 03 04 0.5 0.6 Oe7 O'S Oi9 I 0

8.0

Ee(0
7.0

Fro. 2. Upper and lower bounds for the
second eigenvalue of an anharmonic oscillator.
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TABLE II. Lower bounds for eigenvalues of a radial
Schrodinger equation.

TABr.z III. Upper bounds for eigenvalues of a radial
Schrodinger equation.

p.~, ~ (~&4) P,1 4 P2 4

1 0
1 1
1 2
2 0
2
2 2
3 0
3 1
3 2

1.000
1.234985
1.251726
1.000
1.248252
1.258266
1.000
1.249540
1.258725

2.000
2.000
2.000
2.000
2.358910
2.363134
2.000
2.380424
2.394445

2.000
2.000
2.000
3.000
3.000
3.000
3.000
3.349294
3.420742

2.000
2.000
2.000
3.000
3.000
3.000
4.000
4.000
4.000

1.259005 2.416443 3.557628 6.091083

v=1

and find, by analogy with (3.5), (3.11),and (3.16), that

' (c.',K~")~.'

A 8/2K p (7.34)

K~"—Z (c.',Kc ")c '
v=1

1+1—p,

(7.40)

A suitable family of functions on which to define (7.31)
are those functions which vanish at the origin, are
square integrable, and for which H'q is square integrable.

We note that 0& (g,Kq) &1 for normalized rp; also,
H' has known eigenvalues and normalized eigenfunc-
tions,

(~=1 2

Here the values of o.; and p, are found as solutions of the
algebraic system

i (c',Kv")(Kv,', v.")
0=2 ~'' (v;,Kc')+I 2

v=1

(7.41)
+V

where I. is the first derivative of the ith Laguerre
polynomial. Equation (7.31) has a pure point spectrum
pl& p,2, diverging to infinity, and it satisfies

v.o&v; (~=1 2 ). (7.37)

AVe may proceed in direct analogy with our previous
theory and introduce the eigenvalue problems

H"y=v, (I KQ') y, — (7.38)

(i=1, 2, . ), (7.3V)

where H' has been previously defined by (3.1) and Q"
denotes a projection on arbitrary vectors pi, p&, ~, p„
with respect to the inner product [1t',v)=(p, Kp). If'
we denote the ordered eigenvalues and eigenfunctions
of (7.38) by p "and p ", respectively, we have

As before, the lnultiplicity of each root is just the
number of linearly independent solutions to the alge-
braic problem (7.41), and @~+i"appears as an eigenvalue
of infinite multiplicity.

For our example we have fixed the value of o. and
chosen a=n/2 so that E= —n'/4. We have computed
our lower bounds from (7.41) for several values of l
and k. Since, in each case considered (7.41) has f+0
distinct solutions, there is no need to consider the
equations analogous to (3.20) and (3.23), which would
tell when a value p;0 persists as an eigenvalue of (7.38).
The computations, carried out on a desk calculator,
yielded the results given in Table II.

Upper bounds obtained by solving a fourth-order
Rayleigh-Ritz problem based on the trial functions pl',
p2, q 3', and q 4' give the values listed in Table III.

The lower bounds p ' and the Rayleigh-Ritz upper
bounds provide the following estimate:

and p,' ~ are monotonic in both / and k.
In the solution of (7.38) we choose

p;=pic (j=1,2, -, k)

2587 o, &sl&1.2590

2.3944 n&s2&2.4164 n,

3.4207 n& F3&3.5576 n.

(7.42)


