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Diffusion in a Chemical Concentration Gradient

JOHN R. MANMNG
National Bureau of Standards, Washington, D. C.

iReceived June 5, 1961)

The concept of correlated reverse jumps is used to treat correlation effects in a chemical concentration
gradient. It is shown that the correlation factor associated with a given atom jump will be very nearly the
same as that in a homogeneous alloy having the composition associated with the point midway between
the initial and flnal atom positions for that jump. This is true for either a vacancy or interstitialcy me-
chanism. With the aid of this result, expressions for the atom flux of a given species and the mean atom
displacement of a layer of diffusing atoms are derived from a purely atomistic approach, taking correlation
effects into account. These expressions diRer from equations obtained by Darken and LeClaire in that
they contain extra terms which arise where there is a flow of vacancies or interstitialcies. These extra
terms can appreciably increase the predicted Kirkendall shift. They appear as both diagonal and cross
terms in the general thermodynamic formulation of the diffusion equations. The method used here to
analyze the effect of a chemical concentration gradient can also be used to study the effect of other types
of gradients and external driving forces.

1. INTRODUCTION

'N the present paper, diffusion in a chemical
~ - concentration gradient in crystalline solids is
considered from an atomistic viewpoint. Correlation
effects and the effect of a Qow of imperfections are
treated explicitly. General expressions are found
relating the atom Aux and mean drift velocity to the
magnitude of the driving force, i.e., the effect that the
gradient has on the atom jump frequencies. These
expressions differ from those found by Darken' and
LeClaire' in that they contain additional terms arising
from the Row of imperfections. Also, the correlation
factor appears explicitly and in a somewhat different
manner than is indicated by LeClaire. ' The additional
term from the Qow of imperfections increases the
predicted Kirkendall shift by an appreciable amount
and, to a smaller extent, increases the predicted
chemical interdiffusion coeKcient.

An effect from a Qow of imperfections is physically
reasonable. When diffusion occurs by a vacancy
mechanism, a given atom cannot jump until a vacancy
has moved into a neighboring site. If the Row of
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vacancies is from right to left (see Fig. 1), a vacancy
is more likely to approach a given atom from the right,
cause a jurnp, and then move away to the left than it
is to approach from the left, cause a jump, and then
move away to the right. As a result, the atom will

jump more frequently to the right than to the left.
This effect depends on the frequency with which
vacancies approach a given atom. Thus, it depends on
the jump frequencies of atoms other than the given
atom. Similar reasoning applies when there is a Aow

of interstitialcies.
Diffusion in a chemical concentration gradient by a

vacancy mechanism will be considered explicitly. The
method which is used is quite general, however, and
can be applied to diffusion in other types of gradients
or by an interstitialcy mechanism. Attention will be
centered on cubic crystals, since this allows a much
simpler treatment.

In certain respects, the present method is similar to
that used by Lidiard3 to treat diffusion in an electric
potential gradient. In the present method, however,
the motion of a given (tracer) atom is followed. This
allows one to distinguish between vacancy Qow effects,
which arise from the preferred direction of motion of
atoms other than the tracer, and Bardeen-Herring
correlation effects, 4 which arise from the effect that the
motion of the tracer atom itself has on the local vacancy
distribution. Also, it allows a more detailed treatment
of correlation effects and a purely atomistic calculation
of the mean atom drift velocity.

2. CORRELATION EFFECTS

%hen diffusion occurs by a vacancy mechanism, the
elementary atom jump consists of an atom exchanging
places with a neighboring vacancy, i.e., the atomF2G. 1. EfIect of a flow of vacancies. The tracer atom is marked

&&. When the vacancy flow is from right to left as shown in the
figure, the individual vacancies are more likely to approach the
tracer from the right than from the left.

'L. S. Darken, Trans. Am. Inst. Mining Met. Engrs. 175, 184
(1948).' A. D. LeClaire, PhiJ. Mag. 3, 921 (1958).

' A. B. Lidiard, Phil. Mag. 46, 1218 (1955).
4 J. Bardeen and C. Herring, in Atom 3IIonements (American

Society for Metals, Cleveland, Ohio, 1951), p. 87; also in
Imperfections in Nearly Perfect Crystals, edited by W. Shockley,
J, H. Holloman, R. Maurer, and E. Seitz (John Wiley R Sons,
Inc. , New York, 1952), p. 261.
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where ) is the jump distance and v is the jump frequency
for the atoms in question. In the absence of a driving
force, correlation effects can be taken into account by
introducing a correlation factor f, on the right-hand
side of Eq. (2). In cubic crystals, ' '

(x2),= lim
n~oo 1+y2

(3)

where (x'), is the mean-square atom displacement in
the x direction after e jumps per atom. For diffusion
by a vacancy mechanism in a pure cubic crystal, ' '

I+ (cos0),
)

I—(cosg),

where 0 is the angle between the directions of two
successive jumps by the same atom, and the average
of coso is taken over all successive pairs of atom jumps.

The above method of correcting for correlation serves
quite well when there is no driving force tending to
make the atoms jump more frequently in one direction
than another. However, when a driving force is present,
several difhculties arise. For example, the mean atom
displacement in the x direction, x, is proportional to e,
and for large values of e,'

Therefore, (x'), contains a contribution proportional
to e; and in general the limit in Eq. (3) will not exist.
In addition, if one wishes to relate the value of S to the
activation energies for jumps in the +x and —x
directions, one must take correlation effects into
account. This cannot be done merely by using Eq. (3).

To avoid these difhculties, a different approach is
used in the present paper. Effective jump frequencies
are calculated by considering successive exchanges of
an atom with a given vacancy. The atom Aux and

5A. D. LeClaire and A. B. Lidiard, Phil. Mag. 1, 518 (1956).
6K. Compaan and Y. Haven, Trans. Faraday Soc. 52, 786

(1956).

jumping into a neighboring vacant lattice site. After
such a jump, the vacancy is at the site which was
previously occupied by the atom. As a result, the
atom on its next jump has a greater than random
probability of returning to its original site, and there
is a correlation between the directions of successive
jumps taken by a given atom. 4

The atom Qux J of a tracer impurity for planar
diffusion in the x direction in the absence of a driving
force can be expressed as

D*—(Bc/Bx),

where c is the concentration of the tracer and D~ is
the diffusion coefficient. In the absence of correlation,
random walk theory predicts that in cubic crystals

(2)

mean atom drift velocity then are calculated from
these frequencies. This approach allows a calculation
of correlation effects in the presence of a driving force
and gives the same result in the absence of a driving
force as does the more conventional approach using
Eq. (3).

This general approach has been used by previous
investigators to obtain approximate expressions for
the correlation factor in homogeneous crystals. 4 ~

Since effects from vacancies which diffuse away through
the lattice and subsequently return were not treated,
these expressions were not exact. In the present paper,
however, these effects are considered; so, for diffusion
in pure cubic crystals, the present treatment is exact.
The manner in which vacancies return will be affected
by the presence of a gradient; but, to a large extent,
this can be taken into account, so the resulting
expressions also are good approximations for diffusion
in a gradient in cubic crystals.

The situation in an alloy is more complicated than
in a pure crystal, since local Quctuations in composition
can occur. Even in a homogeneous alloy, the motion
of a vacancy rearranges the atoms in the vicinity of
the vacancy. This gives rise to a correlation between
the directions of successive jumps by a given vacancy.
In the present paper, effects arising from any such
fluctuations or rearrangement of solvent atoms near
a vacancy are neglected. However, to a large extent,
these effects average out, so no great error should be
introduced by this procedure. To illustrate the method,
diffusion in the absence of a gradient is treated first.
Then, modifications that are necessary when a gradient
is present are considered.

3. METHOD OF CORRELATED JUMPS

A. Correlated Reverse Jumps

When diffusion occurs by a vacancy mechanism, the
basic diffusion process may be described as follows:
First, a eezv vacancy which has not previously ex-
changed with a given tracer atom arrives at one of the
sites neighboring on this atom. Then, the vacancy may
exchange places with the atom, perhaps many times;
and finally the vacancy moves permanently away
from the atom. The first exchange of an atom with a
given vacancy causes the atom to be displaced in a
certain direction. In the following discussion, this
direction will be called the forward direction, and any
atom jump in this direction will be called a forward
jump. Each new vacancy which exchanges with a
given atom defines its own forward direction. After an
original forward jump has occurred, the vacancy is in
the proper position to allow the atom to make a reverse
jump, back to its original position. Such a reverse
jump, caused by the same vacancy, will be called a
correlated reverse j amp This is m.ost likely to occur on

'A. H. Schoen, Convair Research Note No. 22, July, 1958
(unpublished) .
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~oj =

~mojo/(~jjjo+~rjo)&

(6)

where mz;, is the jump frequency for exchange of a
vacancy on site j with a tracer on site o, and wp, , is the
effective frequency with which the vacancy on site j
will exchange with some other atom. The effect of the
returning vacancies is included in Eq. (6) by specifying
that jumps which are followed by an effective return
of the vacancy to site j will not contribute to vep;, .
Thus, mp;, is given by

z—1

u'8j0= P u'jn(1 Fjya Fjoe)q (7)

where m;~ is the frequency with which a vacancy
which is on site j will jump to a neighboring site P,
Y;„ is the fraction of such jumps which are followed
an actual return of the vacancy to site j, Y;„, is the
fraction of such jumps which are effectively cancelled

' J. R. Manning, Phys. Rev. 116, 819 (1959).
' The symbol m will refer to a vacancy jump frequency, while

s will refer to an atom jump frequency. When subscripts are
used to designate the two sites involved in a jump, the one
referring to the position of the atom before the jump will normally
appear first, i.e., I'„-, 7„;.However, in designating vacancy jump
frequencies, the subscript giving the vacancy position before the
jump will precede that giving the vacancy position after the
Jumpq 1.e.p R'pg'p) 'wg'y.

the first jump of the vacancy following the forward
jump. However, even if the vacancy moves off through
the lattice and does not immediately re-exchange places
with the atom, it still may eventually return and do so.
These delayed exchanges also give rise to correlated
reverse jumps.

Those vacancies which return and re-exchange with
the atom from a direction such that cosfW —1, where

P is the angle between the directions of two successive
tracer jumps caused by the same vacancy, obviously
do not cause reverse jumps in the strict sense. However,
in pure cubic crystals, the net tracer displacement
resulting from these vacancies is exactly the same as
if a certain fraction returned to the site corresponding
to cosf= —1 alone, or in fact never left this site. '
This conclusion also is valid for diffusion in homo-
geneous alloys if effects from Quctuations in local
composition are eliminated by averaging over many
tracer atoms. As a result, a vacancy at a site neighboring
on a tracer can be regarded as having an effective
probability I' of exchanging with the tracer and an
effective probability (1—P) of permanently moving
away or randomizing its position around the tracer.
The actual three-dimensional correlation problem in
these crystals then reduces to an equivalent one-
dimensional problem involving jumps with cosP= —1
alone, but with tracer-vacancy exchanges occurring
with probability I'.

In accordance with the above discussion, the effective
probability P„of occurrence of a correlated reverse
jump after an atom jump from site j to site o is given by'

where U„ is the average atom displacement resulting
from a series of jumps which starts with the atom on
site 0 and the vacancy on site j, and 0„is the frequency
with which a tracer atom on site 0 makes an original
forward jump by exchanging with a new vacancy on

TABLE 1. Jump frequencies in the absence of a gradient. '

Lattice

z—1

Zz, „
p=l

z—1

ZOp= 2 VO)'pF)'p
p=l

Uacancy mechanism

Face-centered cubic 4z 1+7kl
Body-centered cubic 3mi+4ki
Simple cubic 4zvl+ kl
Diamond 3K'1

2m 1+5.15kl
2.35wi+2, 98kl
3.04m 1+0.73kl

2'Nl

Intersti tialcy mechanism (with collinear jumps)

AgCl 3K'1 2&1
Face-centered cubic 4z 1+kl 3.26wl+0. 74k 1

& Values of usaf& are defined as follows: For diffusion by a vacancy
mechanism in a face-centered cubic lattice, m1 is the frequency with which
a vacancy will jump from one site neighboring on an impurity to another
given site neighboring on this impurity (non-dissociative jump), and k1 is
the frequency with which a vacancy will jump from a site neighboring on
an impurity to a given one of the adjacent sites not neighboring on the
impurity (dissociative jumps). For other lattices m1 is the frequency with
which a vacancy or interstitialcy will jump from a site which is a nearest
neighbor of an impurity to one of the group of second-nearest neighbors
sites, and k1 is the frequency of jumps from a nearest neighbor site to any
one of the other possible p sites (third-, fourth-, or fifth-nearest neighbors
of the impurity). Figures illustrating these jumps may be found in reference
8, The values of wp are those found in reference 8 for the case where a
vacancy jump from a second-nearest neighbor site is not affected by the
presence of the impurity.

by the return of the vacancy to nearest neighbor sites
other than j, and s is the number of nearest neighbors.
The summation is over only s—1 sites neighboring on
site j, since exchanges of the vacancy with the tracer
are excluded from the sum. When mp, ., is defined in
this manner, I'„ in the absence of a gradient' will
equal (—cos8), . Values of wsj, for various cubic
lattices in the absence of a gradient have been calculated
in reference 8 for the case where a vacancy jump
originating at a next-nearest site from the tracer is
not affected by the presence of the tracer. These
values and the corresponding values of Pwj~ are
given in Table I.

B. Effective Jump Frequency

When an atom and vacancy undergo a series of
exchanges with cosf being —1 for each pair of successive
exchanges, the atom will merely jump back and forth
along the line determined by the original jump
(see Fig. 2). Since each correlated reverse jump in
such a series merely cancels the effect of the forward
jump preceding it, neither the reverse jumps nor the
preceding forward jumps are effective in causing random
walk diffusion. The egecjine j sjmP frequejjcy v„, for
atom jumps from site o to site j will be de6ned as the
frequency which would result in the same average atom
displacement along the line 0-j as that resulting from
the sequences of correlated jumps which actually occur.
Thus,
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neighboring site j. For a series of correlated jumps,

U.;=X(1 P—,.+P;,P„P—;.P.;+ ), (9)

where Pj, is the probability of occurrence of a correlated
reverse jump after an atom jump from site o to site j
and is de6ned by an equation analogous to Eq. (6) for
P„.The second term in parentheses in Eq. (9) arises
from the effective probability of occurrence of a
correlated reverse jump following an original forward
jump (Fig. 2b), the third term from the effective
probability of a second forward jump in a sequence of
forward and correlated reverse jumps (Fig. 2c), and
so on, Also,

SITE 0

(a)

SITE J SITE 0

(b)

SITE y

~oj Va&o~TJo/(~p&o+~Tjo)& (10)

where v j, is the effective frequency with which new
vacancies erst arrive at site j, and mpj, and mzj, are
defined above. Since those vacancies which effectively
return to one of the sites neighboring on the tracer
after having previously been at such a site are treated
as not contributing to xpj„one must specify that these
vacancies do not contribute to v j, either. Thus,

SITK 0 SITK 4 SITE 0 SITK 4

z—1

v;.= Q cV„w;(1—V„,,—V „),

and one finds from Eq. (6)

(13)

A basic jump frequency s.j& for an atom jump from
site o to site j can be defined such that

&ojb +vj J~Tj0)

where X„g is the equilibrium probability that a
vacancy would be present at a given neighboring site j
if the tracer were in a homogeneous alloy having the
composition associated with this site. Equation (12)
then can be rewritten as

where
vo&'e= voj &Gojfoj&

G.;= va&./1V„;gu&p. ..
(15)

(16)

f„=(1—P;,) (1—P„)/(1—P,.P.~). (1/)

Equation (15) is a particularly convenient expression

where T,~ is the molar concentration of vacancies at
site p, w» is the frequency with which a vacancy
which is on site p will jump to site j, Y». is the fraction
of such jumps which involve the return of a vacancy
which has previously been on site j and hence do not
contribute to v j, and I'», is the fraction of Mpj jumps
which involve the effective return of a vacancy which
has been on one of the sites other than site j neighboring
on the tracer. From Eqs. (8)—(10), it follows that

vajo ( tvpjo l 1 Pjo
vo&e= ivy&o

( I & (12)
'Np pt&Sip&'a+we&'p~ 1—P&oPp&

(c)
FIG. 2. Contributions to the effective atom jump frequency

v„,. The arrows show jumps made by an atom originally on site o.
Further jumps may occur in each sequence. The jumps shown in
boldface give the 6rst four terms in Eq. (9). The vertical dis-
placement of the jumps is not real and is shown only to increase
legibility.

for v.;. since v.&t„G„, and f.; can be given useful
physical interpretations. For example, vojp through its
dependence on S„~ is directly related to the energy
of formation for a vacancy in a homogeneous alloy
and through its dependence on mz j, to the energy of
motion for an atom jump from site o to site j. Also,
G„.can be identified as a factor which arises from the
effect of a flow of vacancies, and f„as the factor
which arises because a vacancy can exchange more
than once with a given atom. As a result, f„can be
identified as the correlation factor.

C. In the Absence Of a Gradient

In the absence of a gradient, there will be no net
Row of vacancies between sites j and p so, in this case,

where X„j is the molar concentration of vacancies at
site j. Also, the number of vacancy jumps from site j
to site p which e6'ectively are cancelled by the sub-
sequent return of the vacancy to site j must equal the
number of vacancy jumps from site p to site j which
effectively cancel (and are cancelled by) previous j to
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p jumps, so

Similarly,
lV&jzvjy Yjgrr, SppK gpjYpj cr ~ (19)

homogeneous alloy having the composition associated
with site o would exchange with a neighboring tracer
atom, the value of mz j, in a gradient is given by"

+vj~jy Yj yio
=E))yK pjE pj's (20)

~rj o =d'or g+ &, (26)

X„=&V„jJ (21)

in the absence of a gradient. Upon substitution of
Eqs. (18)—(21) into Eqs. (7), (11), and (16), one
Ands that G,j in the absence of a gradient equals unity.

When there is no gradient, the jump frequencies
m~j, and mpj, will be independent of direction and
position. Thus, the subscripts o and j can be omitted,
and P„=P,.=P, where P=ver/(we+mr). Equations
(15) and (17) then reduce to

with
ve= vb)

f= (1—P)/(1+P).

(22)

(23)

As discussed earlier, up does not include any contri-
bution from those vacancies which effectively return
to the same site after making a mj„jump. Thus,
P= (—cos8), ; and it follows from Eqs. (4) and (23)
that

(24)

where f, is the correlation factor which is obtained
when (x'), is evaluated directly.

In the absence of a gradient, correlations between
the directions of successive atom jumps arise solely
because a given vacancy may exchange with the same
atom more than once. This has been taken fully into
account in the calculation of the effective jump fre-
quency. The factor (1 P;,)/(1 P,,P„—) in Eq.—(12)
takes into account the possibility that a given jump
may be followed by a series of correlated exchanges of
the atom with the same vacancy, while the factor
(1—P„)from Eq. (13) takes into account the possibility
that a given jump may have been Preceded by an
exchange of the atom with the given vacancy. Hence,
the jump frequency in Eq. (2) can be treated as an
effective jump frequency; and

(25)

where v. is an effective jump frequency and vb a basic
jump frequency. The right-hand expression is the
usual correlated walk expression for the diffusion
coefficient D*.

D. fo, in a Gradient

A chemical concentration gradient can affect the
vacancy jump frequencies both because of chemical
potential effects in a non-ideal solid solution and because
the energy of motion may be a function of composition. '
If Rzg is the frequency with which a vacancy in a,

If the over-all vacancy concentration is maintained at
its equilibrium value, where 0- is a small quantity depending on the magnitude

and direction of the gradient. The gradient also can
affect the manner in which vacancies which make j-p
jumps will return to the tracer. However, to a good
approximation. Eq. (6) will still be valid with

top, a= w pg+ p, (27)

where zvpo is the value of zp in a homogeneous crystal
having the composition associated with site 0 and p is
a small quantity. The nature of this approximation is
discussed in more detail in the Appendix. Even in the
presence of a gradient, the average tracer displacement
then is given by Eq. (9); and Eqs. (15)—(17) follow
as before.

When Eqs. (26) and (27) are substituted into Eq. (6),
one Ands

P„=(iorg+o)/(mpg+wrg+ p+o). (28)

Similarly, if z»J and zvp& are the values of wz and mp

in a homogeneous alloy having the composition
associated with site j,

P .= (Tory —&)/(7jjpz+7jors —p —&) (29)

Since the o-j jumps are just the reverse of the j-o jumps,
the small quantities o and p in Eq. (29) will be the
same to first order as those in Eqs. (26)—(28). The
effective probability of return I'0 in a homogeneous
alloy having the composition associated with site 0 is
given by

Pg —zvr g/ ( top g y ior g) 1 (30)

where P&~2 is the effective probability of occurrence of
a return jump in a homogeneous alloy having the
composition associated with the point midway between
sites o and j. Also, I'J~& is equal to the value of

M When lower-case subscripts refer to sites in the crystal, the
corresponding capital letter subscripts refer either to the plane
containing the site or to a homogeneous alloy having the com-
position associated with the site. Macroscopically the composition
can be considered to vary continuously as a function of position.
The composition associated with a given site is the value of the
macroscopic composit;ion g.t t;he point of the site,

while that in a homogeneous alloy having the com-
position with site j is given by

(31)

When these relations are substituted in Eq. (17), one
finds to first order in small quantities,

(1—Pg)(1—Pg) (1—Pgjg) 1—PJj2
(32)

1 PgPg 1—(Pgj—,)' 1+Pgj2
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(—cos8), in this alloy, so it follows from Eqs. (4)
and (32) that

(33)

where fJ/2 is the correlation factor in a homogeneous
alloy having the composition associated with the
midpoint between sites o and j.In Eq. (17), f„depends
in the same manner on the probability I'„of jumps
from site 0 to site j as on the probability I';, of jumps
from site j to o. Thus, it is reasonable that f.; depends
on the composition associated with the point midway
between sites 0 and j.

4. PHYSICALLY MEASURABLE QUANTITIES

A. Atom Flux

A procedure very similar to that followed by Lidiard'
can be used to calculate the atom flux from the effective
jump frequencies. When diffusion occurs by a vacancy
mechanism in a cubic lattice, an atom can move from
one side of a given (100) plane to the other side only
by passing through a lattice site in this plane. Thus,
the atom flux equals the number of lattice sites per
unit area multiplied by the net number of atoms per
unit time passing through a given site. The number
of lattice sites per unit area equals the number n of
lattice sites per unit volume multiplied by the distance
a between neighboring (100) planes. The net number
of atoms passing through a given site can be found by
enumerating the number of atoms entering and leaving
this site in the positive and negative x directions,
and then counting each as contributing half an atom
to the flux. Thus, for a given species, the flux J, in
the positive x direction at the plane containing site o is
given by

J.= ', «{No(Z+vog. Z—vo .)—
+N Z v oe cV+Z+v+oe}, —(34)

where the subscripts 0, +, and —refer respectively
to plane 0, which contains site o, and to the neighboring
planes in the positive and negative x directions;
XII in general is the mole fraction of atoms of the
given species on plane H; Zli is the number of sites on
plane H which neighbor on site 0; and v~0, is the
eRective jump frequency for a jump from a site on
plane H to a site on plane G. Effective jump frequencies
appear in Eq. (34) instead of basic jump frequencies,
since forward jump-correlated reverse jump pairs of
jumps do not contribute to the net diffusive flow of
atoms.

For all sitesj on plane +, coslf„=c/X, where g„ is
the angle between the x direction and the line 0-j
connecting site o to site j, and X is the distance between
site o and site j.Similarly, cosp„=0 for sites on plane 0;
and cosP„.= —a/X for sites on plane —.By definition,
c~=eX~, where cII is the number of atoms of the
given species per unit volume in a region centered at

plane H. Thus, Eq. (34) can be rewritten as

+o= 2X/co P voje cos@oj P cjvjoe cosgoj]q (35)

f„=f,L1+-',X cosp„(8 1nf/Bx)], (37)

where f, is the correlation factor in. a homogeneous
alloy having the composition associated with site 0.
In Eq. (14) defining v.j&, the quantity X„jz is directly
related to the energy of formation for a vacancy, while

m», is directly related to the energy of motion for an
atom jump. A gradient or driving force in the x direction
will change these by an amount proportional to cosP„,
so to 6rst order in small quantities,

vojt = vob(1+~ coseteoj),

where v, b is the basic jump frequency for a jump
between two sites in a homogeneous alloy having the

composition associated with site o, and A is a small
quantity depending on the chemical concentration
gradient or other driving force but not depending on j.
Finally, in Eq. (16), the jumps which contribute to
v;, and mp, , are just the reverse of one another. When
there is a driving force along the x axis, the energies of
motion and formation, and hence the jump frequencies,
for these jumps will be changed by an amount pro-
portional to cos@„. Thus to first order in small
quantities,

G„=1+8 cosg.j, (39)

where 8 is a small quantity depending on the gradient
or driving force but not depending on j. This is
discussed more fully in the Appendix.

When Eqs. (37)—(39) are substituted in Eq. (15),
one finds to first order in small quantities,

v„,=f,v,b{1+cosp„[A+8+i~X(8lnf/crx)$}, (40)

v. ..= fever{1 cos@.jr 2+8+—,'X(cj inf/cjx)]}.— (41)

In addition,

c,=c,l1+X cos&„(cj inc/cjx) j, (42)

where c, and c, are the concentrations of the given
species at the planes containing sites o and j; and
v„., and v;„are the effective jump frequencies from
site o to site j and from site j to site o, respectively.
The quantity v... can be evaluated from Eq. (15) and
a detailed consideration of f„, v.j~, and G., ; while
v;„can be evaluated from Eq. (15) and the equation

v...= v, ;,I 1+X coslt.j(B 1nv,/cjx)], (36)

where site —j is the site on the opposite side of site o
from site j.

The factor f„has been considered in the previous
section. From Eq. (33), it follows to first order in
small quantities that
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while, in all cubic lattices, for m an odd integer,

P cos &„.=0,
j=l

(43)

qandr,
X(w, —w„) ( 8 Iny, ) clcV„

B=
7.15w & 8 in';& Bx

(50)

and

cos @pj= as.
j=l

(44)

v= svg= sJ ve)
&—1 (46)

When Eqs. (40)—(44) are substituted into Eq. (35)
and the subscripts o are omitted, one finds

J= 2cD*X '(A+B) D"(Bc—/ctss) cD*(8—lnv/Bst), (45)

where

where m, and m„are the jump frequencies for exchange
of a vacancy with a given neighboring q or r atom in a
homogeneous alloy having the composition associated
with site o; m is the average vacancy jump frequency
in such an alloy, equal to 1V,w, +IV,w„; and X, and X,
are the mole fractions of q and r type atoms at site o.
LEquation (50) for B dilTers only slightly from the simi-
lar equation for the quantity —DF/2kT found in a
previous paper. "$ It then follows from Eqs. (49) and
(50) that

and
D*= ', X'vf. - (47)

ci in'; q Bc; 2X;(w,—w,) Bc,

8 In%;) cia 7.15w clx

Explicit values of 3 and 8 can be obtained by evalu-
ating Eqs. (14) and (16). I.eClaire' has considered the
effect that a chemical concentration gradient can have
on the quantities appearing in Eq. (14). If vacancies
are in local equilibrium, his analysis shows

A =-,'XL(8 lnv/cia) —(8 in'/cia) j,
where p is the activity coefficient of the diffusing
species. When Eq. (48) is substituted into Eq. (45),
one finds

J';= 2c,D;*X 'B D*L1+(8 in'—;/8 in%, )$(etc,/clx), (49)

where the subscript i refers to the component under
consideration. The term —D;*$1+(8in';/8 inÃ;)$
&((etc;/cia) is the term which appears in the usual
Darken equation. The term involving 8 is an addi-
tional term which gives the effect of a Qow of vacancies.
This additional term can appreciably affect the pre-
dicted Kirkendall shift. Also, to a lesser extent, it will

alter the predicted chemical interdiffusion coeKcients.

Approximate expressions for 8 and J, in other cubic
lattices can be obtained by replacing the quantity
7.15w in Eqs. (50) and (51) by the value of wtt in
these other lattices as given in Table I with all m;„set
equal to the average vacancy jump frequency m.

C. Kirkenda11 Shift

The quantity B in Eq. (50) is not negligible. In fact,
it is large enough to affect the Kirkendall shift appreci-
ably. This will be discussed in the present section.

If a given lattice plane in a crystal containing a
chemical concentration gradient is marked by inserting
inert wires or foils at this plane and diffusion is allowed
to occur, it is found that the markers frequently move
toward one end of the specimen. "This shift in position
of the markers relative to the ends of the specimen is
called the Kirkendall shift and arises when there is a
net Row of atoms across the plane defined by the
markers. If there is no change in the dimensions of the
specimen normal to the gradient, the velocity v of the
markers in a binary alloy is given by'

B. B Term —Vacancy Flow Term e= (J,+J„)/(c,+c„), (52)

When a gradient causes a vacancy Row, vacancies
will approach an atom more frequently from one
direction than another. This will not affect the factors
f„and v„.t, in Eq. (15) since f„depends equally on
the probabilities of jump in the +jth and —jth
directions and v„g depends on what happens after a
vacancy arrives at a site neighboring on the tracer.
Therefore, the total effect of the Qow of vacancies
must be contained in the factor G„ in Eq. (15) and
in the term involving B in Eq. (45). To 6rst order in
small quantities, B will be proportional to the difference
between the vacancy jump frequencies with and
against the vacancy Row. Hence, 8 will be proportional
to the magnitude of the vacancy Row.

It is shown in the Appendix that for diffusion in a
face-centered cubic binary alloy containing species

where J, and J„are the atom cruxes of q and r atoms
and c, and c„are their concentrations at the plane
defined by the wires. Expressions for J, and J„can be
found from Eq. (49). According to the Gibbs-Duhem
relation,

(Dined,

/cl ln&V, ) will be the same for both
species in a binary alloy. Therefore, when these
expressions are substituted into Eq. (52), one obtains

v=2K tB(NoD~e+N D +)

8 in'; ciX,
+(D,*—D„*)

~

1+ (, (53)
cl inÃ;) ctx

"J.R. Manning, Phys. Rev. 116, 69 (1959).
"See e.g. , A. D. LeClaire, in Progress ie Mela/ Physics

(Pergamon Press, New York, 1953),Vol. 4, p. 265; D. Lazarus, in
Sohd State Physics, edited by F. Sei-tz and D. Turnbnll (Academic
Press, New York, 1960), Vol. 10, p. 120.
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where D,* and D„* are the values of D* for q and r
atoms; and the mole fractions W, and X„of q and r
atoms are given by N, =c,/(c, +c,) and N„=c,/(c, +c,)

The second term on the right in Eq. (53) is the term
found by Darken, ' while the first term on the right is
an additional term which arises from the Row of
vacancies. When the expression for 8 in Eq. (50) is
substituted into Eq. (53), it is found that the ratio R
of this term to the conventional Darken term is given by

2 (w, —w,) (N,D,*+N„D,*)

7.15 (D,*—D„*) (Nqwq+N, w,)
(54)

D. Chemical Interdiffusion CoefFicient

In a previous paper, " it was found that x,=4m„
when Ã, =0.25 and D,*=3D„*.It follows from Eq.
(54) that R =0.36 in this case; and it appears in general
that the vacancy flow term in Eq. (53) will not be
negligible. Accurate measurements of the Kirkendall
shift, (8 in'~/cj 1nN, ), D,*, and D„* in a given alloy
would allow values of E and the magnitude of the 8
term to be determined experimentally. Unfortunately,
data in the literature do not allow an unambiguous
determination at the present time, since in all cases
at least one of the above quantities has not been
measured to sufFicient accuracy. Such measurements
should be quite possible, however. The expression for
8 in Eq. (50) is only approximate; but it certainly
gives the proper sign and general magnitude. Thus,
the Row of vacancies should increase the Kirkendall
shift by a measurable amount.

D,*=3D„*,and zv, =4m„, the ratio of this term to the
Darken term equals approximately 0.07.

gg Z

=X P Vojo COSpoj.
8f

Equation (15) will be valid for any site neighboring on
the tracer. Thus,

Qg Z

V oj bGoj foj COSgoj
Bt i=i

(59)

When values of f„, v„b, and G., from Eqs. (37), (38),
and (39) are substituted into Eq. (59) and use is made
of Eqs. (43), (44), and (46), one obtains

Bx 81nf'—=2D*X ' jr+8+-'X
8f Bx

where D* is given by Eq. (47). If distance is measured
in lattice units so that X is constant, one finds from
Eq. (47)

8 lnD* 8 lnv 8 lnf
+

Bx Bs Bx
(61)

E. Mean Atom Drift Velocity

The mean atom displacement x of a diffusing atom
is a quantity of interest in many diffusion experiments.
In a cubic crystal, the rate of change of x as a function
of time t can be expressed in terms of the effective
jump frequencies by the equation

8$8 lnD* 8 in+=D* 2X
—'8+—

Bx l9x
(55)J;= D, (Bc,/Bx)—,

Darken' has also shown that, if an intrinsic diffusion
coefficient D; for each species i diffusing in a chemical a d ' h g'v n y Eq (4g), on«nd
concentration gradient is defined by the equation

(62)

D = (N,D„*+N„D,*)$1+(8 lny;/8 lnN, ))
2N, N„(D,*—D,*)(wg —w,) ( cj 1ny; )"~ 1+

'
~. (57)

7.15 8 1nN;lN,w, +N,w„

The first term on the right in Eq. (57) is the familiar
Darken term, while the second term is an additional
contribution arising from the 8 term in Eq. (51).

This additional term will usually be small but will
not always be negligible. For example, if S,=0.25,

where J; is the atom Aux of species i with respect to a
fixed lattice plane in the crystal, the chemical inter-
diffusion coeKcient D for interdiffusion of the two
components q and r in a binary aHoy is given by

D= N,D,+N,Dq.

Values of D, and D„can be determined from Eq. (51).
When these values are substituted into Eq. (56), one
obtains

The mean atom displacement x can be determined
experimentally from the profile of a layer of tracer
atoms originally located on a plane perpendicular to
the direction of a concentration gradient of non-tracer
atoms. This can be compared with the value obtained
when Eq. (62) is integrated over time and averaged
over all tracer atoms. ' " In cases where DB inD*/Bx)
—(cj lny/Bx) j is small, it may be possible to measure
the 8 term in Eq. (62).

cx (x'). Bc 8
t (x'). )ov sv

r 2r cjx Bx 0 2r
(63)

S. COMPARISON WITH OTHER
DIFFUSION EQUATIONS

A. Le Claire's Continuum Equation

LeClaire, ' using a continuum approach, has derived
an expression for the atom Aux J,
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where r is the diffusion time. A similar expression can
be obtained from the present atomistic approach.
From Eqs. (45), (60), and (61), it follows to first order
in small quantities that

J= cBx/Bt —D*Bc/Bx—cBD*/Bx. (64)

B. Lidiard s Atomistic Equations

A method proposed by Lidiard, ' in which the various
orientations of vacancy-impurity complexes are con-
sidered in detail, can also be used to study diffusion in
a gradient. When the same physical assumptions are
made, Lidiard's approach should lead to the same
expression for J as does the present approach. Recent
work" confirms this except for some numerical co-
efficients. The difference in numerical coefficients arises
because the non-random return of vacancies which
make dissociative m;„jumps is considered in the
present paper, while in Lidiard s equations it is not.
This difference is not large in the face-centered cubic
lattice. However, it becomes more significant in the
non-close-packed lattices or in diffusion by an
interstitialcy mechanism.

In the present method, the motion of a given atom
is followed in detail. This allows Bx/Bt to be calculated
directly without reference to a continuum equation
such as Eq. (63). However, in Lidiard's method, this
is not possible, so an independent comparison of purely
atomistic expressions for Bx/Bt cannot be made.

C. General Thermodynamic Equations—
Cross Terms

Since the Row of vacancies depends on the Row of
all the atom species in the crystal, G„and 8 depend
on the chemical potential gradients of all these species.

"R.E. Howard and J. R. Manning (to be published).

According to Eq. (5), a random walk calculation of
(x'), /2r in a gradient leads to a term in (x)'/r which
may become infinite. This makes the interpretation of
Eq. (63) in terms of atom jump frequencies or diffusion
coeKcients somewhat difficult. However, in the limit
where r goes to zero, (x)'/7 also goes to zero. Thus, if
r goes to zero and the number of jumps e goes to
infinity, (x'), /2r as given by Eq. (5) reduces to D* as
given by Eq. (47), where v=0/7. The .higher order
terms ((x'), /~; (x'), /7; etc.) in Eq. (63) also go to
zero as r goes to zero. Therefore, Eqs. (63) and (64)
agree in this limit. Since Eq. (63) is derived from a
continuum approach, it should be most valid in this
limit where 7- is very small.

It may be noted, however, that the atomistic
expression for Bx/Bt derived by LeClaire' is only
approximate, since it neglects correlation effects and
the effect of a Qow of vacancies. Thus, LeClaire's
atomistic expression for Bx/Bt does not agree with
Eq. (60) and his resulting expression for J does not
agree with Eq. (49).

As a result, Eqs. (49) and (51) for J, will not reduce to
the simple form,

J,= —M(Bp;/Bx), (65)

where p; is the chemical potential of the diffusing
species and M is a coefficient of proportionality.
Instead, the more general equations,

6. INTERSTITIALCY N;ECHANISM

An analysis very similar to that above can be made
when diffusion occurs by an interstitialcy mechanism.
In this mechanism, an interstitial atom pushes one of
its neighbors from a normal lattice site into an inter-
stitial site and then moves into the lattice site itself.
In such a jump, the interstitialcy (which is defined as
the lattice imperfection resulting from the presence of
an interstitial atom) moves in the same direction as
the atoms. Thus, an atom Row toward the right causes
an interstitialcy Row also toward the right. This causes
interstitialcies to come up to an atom more often from
the left than from the right and again leads to G terms
which enhance the net atom Row.

In the interstitialcy mechanism, only half of the
jumps by a given atom (those from lattice sites to
interstitial sites) are correlated to previous jumps, and
these depend only on the immediately preceding jump.
Thus, the concept of forward jump-correlated reverse
jump pairs seems particularly appropriate. The calcu-
lation of v, follows much the same pattern as in the
case of the vacancy mechanism and may be sketched
as follows: After an atom has jumped from an inter-
stitial site to a lattice site, there will be an interstitial
atom in proper position to cause a reverse jump. Thus,
the effective jump frequency vI„, for an atom jump
from an interstitial site 0 to a lattice site j is given by

proje &lojb(1 +jo)q (67)

where I',, is the effective probability of occurrence of

J,= —Qi, M i, (Byi,/Bx), (66)

must be used, where p, ~ is the chemical potential of
species k, the M;~ are a set of coefficients, and the sum
is over all the different atom species in the crystal.

Equation (66) includes cross terms giving the
dependence of the Row of type i atoms on the chemical
potential gradients of the other species in the crystal.
As LeClaire' has pointed out, the correlation factor
itself can be absorbed in the constant of proportionality
M in Eq. (65). Hence, in the absence of a flow of
vacancies, the correlation between the directions of
successive atom jumps will not introduce any nonzero
cross terms. However, if a Qow of vacancies occurs,
the cross terms will no longer be zero. Since the vacancy
Row depends to a certain extent on the Row of i atoms,
the vacancy Row also contributes to the diagonal term
in Eq. (66). These additional cross and diagonal terms
cause the equation for J; to differ from that assumed
by Darken.
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a, correlated reverse jump following an atom jump
from site 0 to site j and p&„.& is the basic jump frequency
for a jump from an interstitial site 0 to a lattice site j.
There is no G factor in Eq. (67), since one does not
require an imperfection in a neighboring site to allow
an atom to jump from an interstitial site to a lattice
site. Also, there are no terms involving I", I", etc.,
since correlated jumps occur only in pairs. A fraction
I'„.of the jumps from a lattice site 0 to an interstitial
site j will merely be correlated reverse jumps which
cancel the effect of previous atom jump from interstitial
site o to lattice site j.Thus, the effective jump frequency
v&„, for such a jump is. given by

However, for each type of gradient, the values of A
and 8 must be determined separately from the effect
that each gradient has on the various jump frequencies.

If a vacancy or interstitialcy mechanism is operative
a Qow of vacancies or interstitialcies can be expected
when a gradient or external driving force is present.
Because of the G terms, this will introduce an additional
driving force, tending to make the atoms move in a
preferred direction through the crystal. In particular,
it will drive the atoms in the same directions as that
in which they were already moving under the action
of the original driving force. Hence, it will enhance the
effect of this force.

vt, o/e= GoevLoeb(1 Po/), — (68) 8. SUMMARY

where the factor G.; arises because interstitialcies may
approach a lattice atom more frequently from one
direction than another, and v&„b is the basic jump
frequency for such a jump. The total effective jump
frequency v„., is then given by

Vo/e Vro/e+ VLoj e. (69)

'7. APPLICATION TO OTHER TYPES OF GRADIENTS

An electric potential gradient or temperature gradient
across a crystal can also cause a Row of vacancies or
interstitialcies. In fact, any external driving force that
tends to make atoms jump more frequently in one
direction can cause such a fI.ow. Correlation effects in
these cases can be treated in the same manner as in a
chemical concentration gradient. In each case, if the
correlation factor is a function of position, its value
for a given atom jump will be that associated with the
point midway between the initial and final atom posi-
tions. Also, Eqs. (45) and (60) for the atom Aux and
mean drift velocity will be valid in these other cases.

The number of lattice-to-interstitial jumps taken by a
given atom must equal the number of interstitial-to-
lattice jumps and

~
(1—G„)~&&1. Thus, to first order

in small quantities,

Voje (1 PJ/2)(VIo/b+Go/VLojb)e (70)

where Pj/2 g (P„+P',,).Also, Pj/2 —(cos8')', , where
0 is the angle between successive interstitial-to-lattice
and lattice-to-interstitial jumps in a homogeneous
alloy having the composition associated with the point
midway between sites o and j. For an interstitialcy
mechanism, the correlation factor f, in such an alloy
is given by' f,= 1+(cos8'), . Thus, 1 Pz/2= f,. —

Equation (70) is very similar to Eq. (15), which
applies for a vacancy mechanism, the main difference
being the form of the correlation factor and the way
in which G„ is contained in the equation. The calcu-
lation of the atom Aux and the mean atom displacement
for the interstitialcy mechanism then proceeds in
much the same manner as did that for the vacancy
mechanism.

Equations describing diffusion in a gradient were
derived from an atomistic viewpoint. The displacement
of an atom which results from a series of exchanges
with a given vacancy was considered. This allowed one
to distinguish between (1) correlation effects, which
arise because the motion of the tracer atom itself may
affect the probability of a vacancy being at the various
sites neighboring on the tracer, and (2) vacancy flow

effects, which are caused by the non-random motion
of atoms other than the tracer. Approximate calcula-
tions of the magnitude of the vacancy Aow term
indicate that the Kirkendall shift in a binary all.oy
will be significantly /urger than is predicted by Darken.
Also, the effect of the vacancy Qow term on the chemical
interdiffusion coefficients and the mean tracer displace-
ment may in certain cases be large enough to measure.

Equations (45) and (60) for the diffusion flux and
mean drift velocity are quite general and can be
applied to diffusion in many kinds of gradients. Their
agreement with similar equations can be summarized
as follows: Good agreement is found with a generalized
form of Lidiard's atomistic equations and with
LeClaire's continuum equation in the limit of this
equation for very small diffusion times. However,
additional terms arising from correlation and vacancy
Qow effects are found which are not present in I.eClaire's
atomistic equations or in Darken s continuum equa-
tions. These additional terms can appreciably affect
various measurable quantities.
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APPENDIX

A. Physical Assumptions to Evaluate A and B

Equations (45) and (60) will be valid for diffusion
in any type of gradient. However, the quantities A
and 8 in these equations depend on the manner in
which the gradient changes the various jump fre-
quencies. In the present section, the effect of a chemical
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concentration gradient on these frequencies will be
considered.

To erst order in small quantities, the effect will be
proportional to the difference between the compositions
associated with the initial and final atom positions for
a jump. Thus, if differences between the various non-
tracer atoms are ignored, the jump frequency m;, & for
exchange of a vacancy on site g with an atom on site h
of species i is given by

W~gh =Wr ghm (1+4 COSQgh), (A1)

Wrghrg W~ghg(1+Br Cospgh)r (A2)

where m;, I,„is the value of w;, p, in a homogeneous alloy
having the composition associated with the point mid-
way between sites g and h; m;,&0 is that in a homo-
geneous alloy having the composition associated with
the site g; q, and B, are small quantities; and pgh is the
angle between the line g-h and the direction of the
gradient. If the gradient lies in the x direction, it
follows from Eqs. (14) and (38) that

(A8)

where X;0 and X;~ are the mole fractions of i atoms
on the planes containing sites g and h. The approximate
equality on the right arises since s ' will be much
smaller than unity and N;~ differs from N;@ only to
first order in small quantities. This approximation
will not appreciably affect the final expression for B.
To first order,

JV,lq=lV; L1+-,'X cosp, h(B in%;/Bx) j, (A9)

where Ã;„ is the mole fraction of i atoms in a homo-
geneous alloy having the composition associated with
the point midway between sites g and h.

In a binary alloy,

BEq/Bx = —BX„/Bx, (A10)

position of the plane containing site g. The probability
that the atom arrived at site h by this method is
approximately s ', where s is the number of nearest
neighbors. Therefore, cVqh and cV„h in Eq. (A7) are
given by

N, h= (1 s'—)N,gg+s 'X;g=N, ~,

A = Bq —qq+X(B in'„/Bx), and the Gibbs-Duhem relation for binary alloys gives
A3

where the subscript T refers to the tracer ion and N, is
the mole fraction of vacancies. In general,

B;=-,'X(B lnw, /Bx), (A4)

(B in'; B in', )
q;=-,'1%.

('
& Bx Bx &

' (AS)

and in the case of a chemical concentration gradient,
LeClaire finds, '

B 1nyq/B 1nÃq =B lny, /B 1nE,. (A11)

Thus, Eq. (A7) reduces to

Wgh Wghgr(1+ & COQgh)r (A12)

where m, & is the value of m, & in a homogeneous alloy
having the composition associated with the point mid-

way between sites g and h, and

where p; is the activity coefficient for i atoms and p„ is
the activity coefhcient for vacancies. If the concentra-
tion of vacancies on the average is maintained at its
equilibrium value,

(Wqghgr Wrghgr) ( B IW'i l BA r B ln&r
]1+ / +wgh„E B in%;~ Bx Bx

Similarly,
(A13)

B in'„/Bx = B lnÃ„/B—x. (A6) Wgh~= WghG(1+ 5 COSQgh) r (A14)

Equation (48) for A then follows in a straightforward
manner. ' "Further consideration is necessary to derive
an equation for 8, however, since jumps by several
different types of atoms will enter into this calculation,
and an average vacancy jump frequency must be
defined.

In a binary alloy containing q and r atoms, the
average frequency m, & for exchange of a vacancy on
site g with an atom on site h is given by

Wgh= +qhWqgh++rhWrga)

where N, I, and N, ~ are the probabilities that a q or r
atom will be at site h; and m«I, and m„,~ are given by
Eq. (A1). For the most part, the composition of the
plane containing site h will determine N, ~ and N„~.
However, if the atom arrives at site h neighboring on
the vacancy by being originally on site g and then
exchanging with this vacancy, the probability that the
atom will be a q or r atom will depend on the com-

where z, y,g is the value of m, ~ in a homogeneous alloy
having the composition associated with site g, and to
first order,

B=-,'X(B lnw/Bx).

B. Effect of Returning Vacancies

(A15)

It has been assumed that, even in the presence of a
gradient, the effect of vacancies which leave site j and
arrive again at some site neighboring on the tracer is
the same as if a certain fraction had never left site j at
all. This allowed the use of Eq. (9) to calculate the
average tracer displacement. In this section, the e6ect
of a gradient on these returning vacancies will be
considered in detail, and conditions under which the
above assumption is valid will be discussed.

A gradient can change the probability that a vacancy
which has made a m;„jump will eBectively return to
site j.Three cases can be distinguished: (1) the vacancy
actually returns to site j, (2) the vacancy jumps



D I FF US I ON I N CH EM I CAL CON CE N TRATI ON GRAD I EN T

directly to some other site k neighboring on the tracer,
and (3) the vacancy jumps to a site p not neighboring
on the tracer but subsequently arrives at a site k.
Cases 1 and 2 can be treated to first order in small
quantities. However, the treatment of case 3 is more
approximate.

First, let us consider those vacancies which after
leaving site j return to this site itself (case 1).To first
order, a uniform gradient will change the frequency
with which a vacancy makes a given sequence
of exchanges with non-tracer atoms by a factor
(1+op cosp, q), where e is the same for each jump
and the summation is over all jumps in the sequence.
For a sequence of jumps which starts and ends at the
same site, P cosp, iequals zero, so in Eq. (7),

(A16)

where m;„g and V,~J are the values of m, „and V;~ in
a homogeneous alloy having the composition associated
with the site j.

Next, let us consider those vacancies which after
leaving site j arrive at some other site neighboring on
the tracer. A case of particular interest is the face-
centered cubic lattice, where it is possible for a vacancy
to jump directly from one site neighboring on the
tracer to another such site (case 2). In this lattice, the
twelve sites neighboring on the tracer can be divided
into three groups of four sites each, with all sites in a
given group lying on a given (100) plane. ' For diffusion

along an x axis normal to these planes, all sites in a
given group are equivalent to one another, and jumps
from one equivalent site to another can be treated as
if they effectively did not occur. Thus, while jumps
between nonequivalent sites contribute to v;, and mp, „
jumps between equivalent sites do not. Since jumps
between equivalent sites are directed normal to the
x axis, they are not affected by a gradient along this
a,xis, and in Eq. (7)

(A17)

where V,.„,g is the value of Y;„, in the absence of a
gradient and the summation is over the four sites
which are mutual nearest neighbors of site j and the
tracer. In cubic lattices, diffusion will be independent
of crystallographic direction, so Eq. (A17) will be
valid regardless of the angle between the gradient and
the (100) directions.

Qext let us consider those vacancies which jump from
site j to a site p not neighboring on the tracer and
subsequently return to some site k neighboring on the
tracer (case 3). When there is a gradient, the net
tracer displacement per vacancy averaged over all
vacancies can contain a small component normal to
the line 0-j. When the component is large, Eq. (9) will
no longer be a good approximation. If the vacancy
concentration at sites not neighboring on the tracer

were by some means maintained at their equilibrium
values (as is 'assumed, for example, by Lidiard'), the
effect of the gradient on the vacancy distribution
originating at site j would not result in a net tracer
displacement normal to o-j, and the asymmetry in
this distribution could be neglected. In real crystals,
however, these equilibrium concentrations probably
are not maintained, since this would require vacancy
sources and sinks at every lattice point. Thus, this
matter should be considered further.

H there is a strong attractive force between the
tracer and a vacancy at a next-nearest neighbor site p,
the fraction of vacancies which move from site j to p
and then eventually to a nonequivalent site k may be
large. Then the tracer displacement resulting from the
asymmetry in the distribution of these vacancies may
be large also, and the present treatment will be only
roughly correct. On the other hand, if a vacancy at a
next-nearest neighbor site is only weakly attracted to
the tracer, the error introduced in Eq. (9) will be
small. This is probably true in nondilute alloys. Also,
this will be true for self-diffusion in a pure lattice or
for diffusion of a dilute impurity which is very similar
to the solvent atoms. The approximation in Eq. (9)
will be particularly good in the diamond lattice where
four jumps are required for the vacancy to move from
one nearest neighbor site to another.

If there is no strong attractive force between the
tracer and a vacancy at a next-nearest neighbor site,
Y;~J. will be considerably larger than the contribution
to Y;~,g from vacancies which have jumped to site P
and eventually to a site k. Thus, no great error in the
value of mp;, will be introduced if the small effect of
the gradient on m;~V;„, is neglected and it is assumed

(A18)

In this respect, it may be remembered that the summa-
tion in Eq. (A17) is exact.

C. Evaluation of G„and 8
With the a,id of Eqs. (A12)—(A18), Eq. (7) can be

rewritten as

~N =2 'ii'i»PJ»+(~+~) cos4'ip) (A19)

where
F,„g 1—Y,~g —F,——„,g. (A20)

Equations (19) a,nd (20) are valid even in a gradient,
and equations for m». V» and m»V», can be written
analogous to Eqs. (A16) and (A18). When Eqs. (A12)
and (A14) are then used to evaluate Eq. (11),one finds

v;.= P (1V„,w„,A/1+(8 e) cosy;„]—
—X.;w, »LP';„,g+ F;,g$}. (A21)
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Equilibrium vacancy concentrations probably are
not maintained near impurity atoms in the presence of
a gradient. However, since v j, is the frequency with
which new vacancies come up to site j from other
regions in the crystal, local perturbations in the
vacancy concentration caused by the motion of the
impurity will not affect v j, If the over-all vacancy
concentration is maintained at its equilibrium value,
the quantities X„, and N„„ in Eq. (A21) thus can be
replaced by their equilibrium values S„J and E,»
in homogeneous alloys having the concentrations
associated with sites j and P.

Even when there is a vacancy-impurity binding
energy, detailed balance requires

pj JKjyJ JV&y JlVpj J~7L7 (A22)

z—1

&ajo= +vjJ P ~jyJ
@=1

( 8 in%„i
&& F;~J+I 8 e+X —

) cosP;„.
cjx

(A24)

where E,» is the equilibrium concentration of
vacancies on a next-nearest neighbor site in a homo-
geneous alloy having the composition associated with
site j.Also,

X„„~=X„~~[1+Xcosg, „(8in'„/Bx)], (A23)

so Eq. (A21) can be rewritten as

When Eqs. (A19) and (A24) are substituted into
Eq. (16), one fLnds

( 8 in'„
G.,=1+I ~

Bx

w~'pg cosfiy
) P=1

(A25)

It then follows from Eqs. (A6) and (A13) that in a
chemical concentration gradient in a binary alloy,

P w~'~~ cosy~'~
8 in'; i 81V „p=i

X( 1+ (A26)
8 inlV; Bx

2 ~~n~F~n~

where unnecessary subscripts have been omitted.
[To first order, the quantities in Eq. (A26) can be
taken as those in an alloy having the composition
associated with site 0.] If all w;„~ are identical and
equal the average frequency m, the sum in the
numerator in cubic lattices reduces to mcosp„. Also,
the sum in the denominator reduces to mp, with all

jump frequencies set equal to m. Values of mp can be
found from Table I. Equation (50) for 8 then follows

upon comparison of Eqs. (39) and (A26).


