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in a region where the sublattices approach saturation.
For the Gd sublattice this does not happen until T is
appreciably below 100'K, but the Fe sublattices are
over 70%%uq saturated even at 300'K. This may explain
why there is practically no contribution at all for the
Fe ions, even though our molecular field treatment
would predict a small but noticeable effect. (ii) Even
in our best sample the theoretical saturation moment
was not attained in the helium range. This makes the
calculation of relative magnetization at higher temper-
atures somewhat uncertain, but the eftect on the
susceptibility is generally negligible. (iii) The discrep-
ancy between the theoretical and experimental (o,)&=s
value may have been due to small impurities of other
rare earths, which might have the effect of increasing
the magnetic anisotropy at the lowest temperatures
(as in the experiments of Dillon and Nielsen" ). Too
large a magnetic hardness in the polycrystalline sample
would lead to uncertainty in both the extrapolated
values of o-, and the deduced values of susceptibility.
(iv) In estimating the Gd sublattice magnetization we
assumed, with Pauthenet, that there is no "back
action" by the Gd ions on the Fe sublattices. This
cannot be true exactly, and in the regions in which a-,

varies rapidly with temperature the effect of this on

"J.F. Dillon and J. W. Nielsen, Phys. Rev. 120, 105 (1960).

the calculated susceptibility may be appreciable.
Inclusion of this e6ect might very weB account for the
systematic discrepancy in the region of 100'K.

CONCLUSION

We have made measurements of the intrinsic suscepti-
bility of a sample of polycrystalline gadolinium iron
garnet between 2' and 300'K. The results are generally
in reasonable agreement with earlier measurements by
Pauthenet on a sample presumably less nearly stoichio-
metric. At high temperatures the susceptibility approxi-
mately follows Curie's law for free Gd'+ ions, but
there are significant deviations which become very
large at low temperatures. It is shown that these
deviations are quantitatively consistent with the eGects
to be expected from paramagnetic saturation. Inter-
actions between the rare-earth ions appear to be much
less important than previously supposed.
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Bloch Wall Excitation. Application to Nuclear Resonance in a Bloch Wall*
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The excitation spectrum of an assembly of electronic spins in a Bloch wall structure is studied, assuming a
uniaxial anisotropy. The spectrum may be divided into two branches; one is a specific wall excitation and
does not spread outside the wall, the other one is similar to the spin-wave excitation spectrum in a uniform
ferromagnet. These calculations are used to study the properties of the nuclear magnetic resonances in a
Sloch wall. The relaxation times are evaluated, taking into account the damping of the motion of the
electronic spins and are compared with experimental values. The spin-spin coupling and the variation of the
magnetization across the wall is also estimated.

I. INTRODUCTION

'P'UCLEAR magnetic resonances in several ferro-
magnetic substances have been observed re-

cently. ' The large amplitude of the signals is explained
by assuming that the observed nuclei are within the
Bloch wall.

*This research has been supported by the National Science
Foundation.
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Chem. Solids, 17, 341 (1961);C. Robert and J. M. Winter, Compt.
rend. 250, 3831 (1960);J. Herve and P. Veillet, Compt. rend. 252,
99 (1961).

The relaxation times T1 and T~ have also been
measured using spin-echo techniques. ' The theoretical
estimation of relaxation times and spin-spin couplings
requires a detailed knowledge of the motion of the
electronic spins within the Bloch wall.

A complete solution for this problem may be found by
assuming a uniaxial anisotropy and using a simplified
demagnetizing field, then the relaxation times are esti-
mated, taking into account the damping of the wall
motion. An indirect interaction is also estimated.

2 M. Weger, E. L. Hahn, and A. M. Portis, J. Appl. Phys. 32,
124S (1961);C. Robert and J. M. Winter, Nuovo cimento, (to be
published).
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X
or

d8, /ds = (1/a) (E/J) & sine, ,

FIG. 1. De6nition of axis.

e-m

S

(2)sin8; = 1/cosh (z,/X) .

Now keeping only terms of second order with respect to
Sy' and S,', the Hamiltonian becomes

3C= —2J Q S,'S, '—2J g cos(LN;) Sr'Sr'+
sf'

—2J Q 5 r' Sr'+' +2' coals, I (Sr')'+(5, ')')

A=a(J/E)' being of the order of the wall thickness,
where u is the lattice spacing. We deduce also the
relation,

Finally, the variation of the magnetization within the
Bloch wall is calculated.

II. EQUATIONS OF MOTION

Let us assume a uniaxial anisotropy:

~~=E Z' I:(5'")'+(5'*)'
the Os axis is perpendicular to the plane of the wall; the
wall is a 180' wall, and the magnetization for s= —~ is
parallel to Ox, for s=+ ~ antiparallel to Ox.

We assume a simple cubic lattice. The exchange part
of the Hamiltonian may be written

K, = —2JQ S,"S,,

the summation being restricted to nearest neighbors.
The angle between the static magnetization and Ox is
called 0 and 0 is an unknown function of s. Let us choose
a new system of axes Ox, OI', Os; OX is the spin
direction, and Os is not changed (Fig. 1).The directions
of the axes vary from one atom to another. The Hamil-
tonian becomes

K= —2J P (5,'5,&) —2J P cos(8,—8;+ )
'Cpm

X (Sx'Sx'+ +Sr'Sr~ ™)
—2J P sm(8 —8 )(5 'S '+™5'Sx'+™)—

+4J P L(Sr')'+ (5,')')

+E P L(Sr')'(cos'8, —sin'8, )+ (5,')' cos'8,];
68;=8;—8,p . (3)

(The linear terms disappear by taking into account the
minimization condition. )

The equation of motion is

ikd S;/dt = LS;,3C).

Then, assuming a slow spatial variation and using
commutation relations, we get

dSy
Il = —2JSa'V'S.+2ESS,(cos'8 —sin'8),

dS, O'Sy (d'Sr d'Sr i
lt = 2Jsu' cos(LN)+2JSa'I +

dt dk' E dy' dx' j
—2ESSr (cos'8—sin'8).

Now, if we look for an oscillatory time-varying solution
Lusing (1) instead of cos68=1 ~(E/J) sin28)—,

iESr = 2JS—a'V'5, —2ESS,(cos'8 —sin'8)
i&5,= 2JSa'V'Sr 2ESSr(co—s'8 sin'8) (5—).

For the particular value E=O, the solution is

Sy=8 sin8, S,=c sin8,
—2J Q (Sx'Sx'+'+Sr'Sr'+')+E Q I

(Sx')' sin'8

—2(Sx') (Sr') sin8; cos8,+ (Sr')' cos'8;+ (5,')').

nz is a unit vector of the cell along Os and / is a unit
vector perpendicular to Os.

For the ground state we assume S~=S, S~=S,=O,
and 0 is determined by minimizing the energy. Thus we
obtain the well-known result, '

J(8, 8,~ )'=E sin'8, ,
—

'C. Kittel and J. K. Gait, SolQ-State I'hysics, edited by F.
Seitz and D. Turnbull (Academic Press, Inc. , New York, 1956),
Vol. 3.

C and 8 being constants. The solution Sy =8 sin0, S,=0
corresponds to a small change of the angle between the
magnetization and Ox, and LN= (8/5) sin8, giving rise
to a translation As of the Bloch wall. Using Eq. (1),

~.=X(B/5).

Before looking for the general solution of these equa-
tions, we need to complete them for the following
reasons.

1. With the Hamiltonian (3) the simplest excitation
occurs exactly at zero energy, so any uniform perturba-
tion, however small, may push the wall to inanity. It is
known that the wall must have a stiffness coeKcient o.
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sp is the area of the wall (n is defined per unit area of the
wall).

2. Doring4 showed that demagnetizing effects give a
wall mass. The evaluation of demagnetizing effects for
an arbitrary excitation is a fairly complicated problem;
but if we assume a slow spatial variation for the
magnetization in the X and V direction, we may use an
approximate value.

In a magnetic substance the demagnetizing field is
defined by the two relations,

divHd ———4pr divM, curlHq ——0. (7)

As we shall see later, the solutions are plane waves in the
X and V directions, so for low values of E~ and Ey the
main term in the divergence is dM/ds (providing the
spins are not too far from the center of the wall).
Equations (7) are approximately satisfied by

H~' —4s-gPS, ', IIqx——Hdr 0, —— ——

providing Ex) sin0,&(1, and Ei X sin0, ((1.Then we add
to our Hamiltonian the term

—;H.S(gP) = —2.(gP) P, (5, ) .

3. The experimental study of wall displacement shows
that the motion is accompanied by energy losses. In
metals the losses come mainly from the effects of eddy
currents. In order to take these effects into account, we
add to the equations of motion a damping term, which
has the form first suggested by Landau and Lifshitz:

(dS/dI)d, p,„s —(F/5'){S.——X[S.XH]),
where H is the demagnetizing field.

Adding all the contributions, the equations of motion
become

—iESy = 2JSa'V'5,
—2ES (cos'0 —sin'0) 5 +4s.gPMsS„(8)

iES,=2JSa'7'Sy
—2ES (cos'0 —sin'0) Sr+2K'SSr —FS,.

Now, if we insert the pure translational solution,

S,=C sin0, 5„=8sin0,

4%'. Doring, Z. Naturforsch. Ba, 373 (1948).

related to the initial permeability. The energy required
to push the wall on a distance s is n(s'/2).

The simplest way to take into account the wall
stiffness is to add to our Hamiltonian the term
E' P;(Sr')2. I.et us show that this term gives a change
in energy of n(As'/2) for a translation of As. A As
translation is equivalent to a rotation LN; = (As/I~) sin0,
for the spin i, and a transverse component appears, Sg'
=5(hs/Ii) sin0, , giving a change of energy, E' P, (Sr')'
=E'(As/II, )'5' Q, sin'0;. Then

2 E'5'
n= — P sin'0, .

so

we get
pEB—=4~gpMBC,i' =2E'Sa —rC,

III. GENERAL SOLUTIQN

5& and 5, may be written:

Sr „,=Z(s) exp(iKxX+iEr V)

We are left with the set of equations for the s de-
pendence:

iESr =—2JSa'(d'S, /ds')
—2KS (cos'0 —sin'0) S,+4vrgPM sS„

(10)
iES,= 2JSa'(d'Sr/ds')

—2ES (cos'0 —sin'0) Sr+2K'SSr —FS,.

The equation,

pZ = 25JSa'(d'Z/ds') —2ES (cos'0 —sin'0) Z,

has the following solutions:

Z(s) =exp{a[1—(p/2ES)]i(s/Ii))
X{&tanh (s/Ii)+ [1—(p/2ES) ]-:).

The general solution is any combination of these two.
The only well-behaved solution for s —+ ~ occurs when
p= 0 (translation) or when p) 2ES (spin-wave-like
solution). The excitation spectrum may be divided into
two branches:

1. A typical wall-type excitation is

Sr= [B/cosh(s/X)] exp[i(ExX+Er V)],
5,= [C/cosh(s/I~)] exp[i(KxX+Er V)].

C and 8 obey the equations,

then

iEB= (2JSa'k'+47rgPMs)C,
—iEC = (2JSa'k"'+ 2E'S)B I'C;—

E' iEF (2E'5+2JSa'—k')—
X (4s.gPMs+2 JSa'k') =0, (12)

with k'= Ex'+Er'. The wave vector has no component,
along s.

E'—iEF—(2E'S) (4n gPM s) =0.

If F«4s.gPMs and 2E'5«4m-gPMS, the amplitude of 5,
is much smaller than the amplitude of 5&. The energy
obtained for very small damping is the wall resonance
energy; Eqs. (9) give the same result as the Doring
formula using the wall mass, cup

——(n/m„)l, with m„
= [A'/4s (gP)'](1/II, ') (1/Sp)P, sin'".0, (see reference 3),
and using formula (6),

Apip= (2E S)'*(4 gPMs)'*.

In iron ppp is of the order of 500 Mc/sec.
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then

2EB= (—2JSa2k2+42rgPM s+2ES)C,
2EC = (2JSa'k'+2K'5+2KS) B (13)

E'= (2K5+2K'5+2 JSapk4)

X (2ES+4~gPMs+2JSa2k2) (14

The lowest stat. e occurs at an energy (2ES) '*(42rgPMs) &

higher than the bottom of the wall excitation branch,
assuming 42rgpMs) 2ES)2E'5

We must remember that the calculation is valid only
for small values of k and inside the Bloch wall. It is well
known that for a uniform ferromagnet' there are several
spin-wave branches depending on the angle between lr

and the magnetization. The bottom of the branches
varies between 2ES and (2ES) '(4ngpMs) 2. In th. e wall
for low k the faster variation of S is always in the z

direction, and only the branch corresponding to excita-
tion in a direction transverse to S is found.

The occurrence of the term tanh(s/X) in the solution
shows that for small k the amplitude of the motion
inside the wall is reduced. For this reason the spin-wave-
like solution is not very important for the relaxation in
the wall.

IV. AMPLITUDE OF THE THERMAL MOTION

We need to calculate the amplitude of the motion for
a wall excitation. The energy of the excitation is

The wall excitation may be described as a translation
in the s direction, the amplitude of the translation
varying sinusoidally in x and y directions. The wall
excitation branch is very important for the nuclear
relaxation, because the bottom of the spectrum occurs
at a relatively Iow energy. The 5& motion is nonuniform
in the s direction, explaining the occurrence of severa]
relaxation times. This branch does not exist outside the
wall.

2. There is a spin-wave-like excitation:

Sr——Be'" R[tanh(s/'A)+2lj. k,],
5,= (C/B)Sy. ,

with the equations (neglecting the damping term)

Then we find

a'5 gEq '* ( 2E'S+2JSa'k'
!t —! ~(E)!

2Sjj (J 0 I 42rgPMS+2JSapkpi
(16)

a'S (IC) ' (42rgPMs+2JSa'k') l

I

—! ~(E)! ! .
25, & Ji & 2K'5+2JSapk2 )

The amplitude in the spin-wave branch may be calcu-
lated in the same way (we neglect E' here):

a' 22(E)5 (2ES+42rgPMs+2JSa2k2i *'

Pp 1+),2k/ I 2ES+2JSa'k'
(»)

a' n(E)5 ( 2KS+2JSa'k'

p'p 1+ljpk 2 ( 2KS+42rgpM s+2JSa2k2)

where Vo is the volume of the sample.
All these equations implicitly assume a small damp-

ing; but as far as the relaxation time is concerned, the
damping plays a fundamental role and the formula (16)
is not very useful. The quantities we are really interested
in are the spectral density of Sy and 5, for a fre-
quency coo.'

Starting from Eqs. (10) and using the random-force
technique, ' (5&2)„spectral density due to thermal
excitation is given by

a'S (K) ' (EsT) (I'Ig)
(Sr2)„=sin28,

Sp EJ) 2r

42rgPM s+2JSa'k'
X —,(18)

(~2 E~2)2+~2' 2

with

E 2= (2E S+2JSapk2) (42rgPM s+2JSapk2)

assuming KT))~ (classical approximation).
In the limit I'x going to zero, Eq. (18) becomes

a'S (Ei ' (42rPMs+2JSa'k')
(Srp)„=sinpe,

I
—

! KsT
Sjj (Jj gl

E,.= —Ja' g, S,"V'S;
+K Q; [(S,r)2+ (5,')2](cos28,—sin28, )

+E' 2'(5'")'+2~gP 2'(5")', (15)
or

E. = [Ja2k2(C2+B2)+K'B2+22r(gP)2C2j P; sm20, .

which is (16) for KsT))E'.
From (11) we also derive

XP( —E')+~( +E')g,

This energy is also E,„=e(E)E, where N(E) is the
number of magnons at a given temperature (we shall
call magnons the wall-type excitation as well as the
spin-wave-type excitation) .

then

(S,') = (S ');
(42rgPM s+2JSa'k')'

(S,') «(Sr')„.

~ C. Kittel, Introduction to Solid-State Physics (John Riley 8:
Sons, Inc. , New York, 1956),2nd ed. , Appendix 0.

6 C. Herring and C. Kittel, Phys. Rev. 81, 869 (1951).

7 A. Abragam, Principles of Nuclear Magnetism (Oxford Uni-
versity Press, New York, 1961).

L. D. Landau and E. Lifschitz, Statistical Physics (Pergamon
Press, New York, 1958), p. 38&.
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V. NUCLEAR RELAXATION TIME

The nuclear spins are coupled to the electronic spin by
the hyper6ne coupling,

X;.,=P, AI,"S;.

The nuclear resonance energy is obtained by replacing
S by its mean value,

(K;„2)=P, Ix'(Sx'),
and then

~o =A(Sx'),

which is proportional to AM(T), and at very low tem-
perature coo= AS.

For the relaxation time calculation we are interested
in the fluctuations of the hyper6ne interaction around
its mean value,

be conserved in a transition involving the emission or
destruction of a single magnon accompanied by a nuclear
spin flip. The lifetime of the magnons being not infinite,
there is a certain indeterminancy in their energy, and
the nuclei may absorb or emit magnons which differ in
energy from coo.

We shall6rst discuss Tj when coo) b, ' without damping
and then take damping into account. The density of
states per unit energy range p(E) for the wall-type
excitation is

p (E)=Esp/22r (2JSa') 52K'5+42rgPM s+4JSa'k' j
E&a', (22)

X&A',

using the fact that the number of states with energy in
dEat Eis

(22r/(22r)') k (dk/dE) dESp.

X;„„—(Z;„,)=P; I
AIx'(Sx' —(Sx'))

+A (Ir'Sr'+I, '5, ')j. From (22) we deduce the useful relation,

(Sro+5,2)s'p(E) =Sin20 22(E) (1/SorJ) (K/J) '*. (23)

(11 1 ohio' 1
sin'8; n (oio)—

I

—
IET,); 5165' J(J)(1 ) 22r ~A'q

L(«'I Sr'IE~))'
ET,), ir2 (4) s;,s, oip (KsT) (K) &1

= sin28,
I

—
I

—, (24
165& JS) ~J) k'+((E'IS.'IE'))']~(Ef)~(E'—Ef), (19)

'The term Sx—(Sx) is proportional to Sr'+5, 2 and is
smaller than the transverse terms Sr and Sz& and we The relaxation time is
shall neglect it for the moment. T& may be computed
using the transition probability formula,

where E, is the energy in the initial state, Ef is the
energy in the final state, and S&' and S,' are considered
as operators in the electronic system. In our semiclassical
calculation I(E;ISr'IEs)I2o(E, Ef) may be re—placed
by (Sr') o', formula (19) becomes

f' 1 y 12rA2

P L(Sr') '+(5 ') 2)
kT); k 2 2

(20)

pip &6 = (2K S)*(47rgPM s) *. (21)

The term in S, may be neglected.
Now for T2 we note that the perturbation, being along

the F axis, only induces transition when the spin is in
the s direction; as the spin is rotating around the X axis
it spends only half its time in the s direction and the
relaxation rate is half as fast. More generally, T& is
found to be twice T~ when the perturbation has no
component along the direction of the magnetic field at
the nuclei.

If the damping is neglected, by using (20) and (19) a
zero relaxation rate is found if the following condition is
fulfilled;

when KT))poo and oio) 6', and (1/Tq), =0 when Mo &6'.
Now, if we take the damping into account, (20) is
written

t' 1 i A'a'S
I

—
I

»noe, (KsT)(r)
(Tg); 2h Sp (J)

42rgPM s+2JSa'k'
xp

(pip2 EI2)+pp2P2

assuming F independent of E. The summation in k is
replaced by an integration and, taking E' as a new
variable,

p1~ A' pKy'
I

—
I
=—sin'e;

I

—
I
5(1')(KsT)

ETg&, 2k ( J)
E' 42rgPM s+2JSa'k2

X I

"s 42rJS2K'5+42rgiSMs+4JSa k'

X
(~ 2 EI2)2+~ 2p2

This condition expresses the fact that, the minimum The main contribution to the integral comes from values
energy of the wall excitation is larger than the nuclear of E' such as E'&I' or 2JSa'k'&I"/42rgpMs or
Zeeman splitting. In such a condition the energy cannot I'&42rgj3Ms. 2JSa'k' may be neglected compared to
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4~gPMB. The result is easily obtained:

(1 ) G)p KgT (K)»
]
—

f
=sin'8,—

».Tjl; h 16sJSEIi
((op' —5")X ——tan-']

2 L. odor ) (25)

pendent, the relaxation rate at the center of the wall
does not vary with temperature as kT. The eft'ect of the
remaining term S~—Sx must be estimated. This term
gives a contribution only to T2. In the quantum-
mechanical description this term involves two magnon
operators and the relaxation is produced by a Raman
scattering of magnons. The relaxation rate is given by

ol'
cpo KgT (E)» ( opol

»n e,—
h 16m JS E I & & 6"—~o')

If F is small compared to ~o and 6, we find the same
result as before for coo) d', but for ~o(A',

If I' is very large, more precisely oppi')
~

d "—cop' ~, then

1/T~ ——
p (1/T~) for F=0, &op) A.

T~ becomes independent of I' and 6'.
Comparison with experiment is not very easy. The

measurements in the three metals show a spread of
relaxation times suggesting an important relaxation by
wall-type excitations. But for comparison with theory,
we want to know the shortest relaxation time (i.e., the
relaxation time at the center of the wall), and the
extrapolation is not easy. On the other hand, F and 6'
are not too well known. In metals the damping comes
from the effects of eddy currents and depends on the
size of the powder; 6' is related to the stiGness parame-
ter and is a structure-sensitive quantity. In iron 5 /h is
typically 500 Mc/sec and (op/h is 45 Mc/sec. The
parameter F/h may very well vary between 1000 Mc/sec
to 20 Mc/sec, according to the size of the powder.

At room temperature in iron (K/I)»=1.7X10 ', and

KgT/JS=1. 9.

Equation (25) for a nuclear spin at z=O may be written

1/Ti=0.65X10 o(&oo/A) tan '(coop/~").

Assuming F/h= 1000 Mc/sec, we find

1/T&=3X104 sec '.

Now, assuming F/h= 20 Mc/sec,

1/T~ ——0.6X10' sec '.

The experimental value is 1.1X10' sec '.
In cobalt the comparison is nearly impossible, because

the value of E in the cubic phase is not known. In nickel
the experimental result at room temperature 1/T~=3
X10' sec ' is expla, ined if we assume 6'/h=500 Mc/sec
and F/k=300 Mc/sec. Taking into account the un-
certainty in both theoretical and experimental results,
the agreement is not too bad.

The parameters F and 6' being temperature-de-

VI. INDIRECT INTERACTION

Several years ago Suhl showed that in a ferromagnet
an indirect coupling exists between nuclear spins, in-
volving a virtual excitation of a spin wave. ' The same
kind of interaction may be computed in the wall using a
virtual excitation of a wall magnon. It is convenient to
quantize the wall magnons. Sy and S, are written in the
following way:

S '= (S/2)'(2(J/K)'(So/a') j»
XP p Lax~ exp(iK R,)+ax exp( —iK R;)]

Xs1I18j, (26)S.*=—i(S/2)'P(I/K)'*(So/a') j '*

XP p La&t exp(iK R,)—ax exp( —iK R;)j
X»ne, .

a~t and u~ are usual creation and destruction operators
and the term before the summation is a normalizing
factor. Using Eq. (15), the Hamiltonian becomes

BC=Q p $(2ISaoko+K S+2m g(8M s)asctaz'
+ (K'S 2vrgPM s) (axa —x+axta xt)]. (27)

The Hamiltonian may be diagonalized by the usual
canonical transformation, "

hc=uxax+~xa z', px' ~x'=1

The transverse part of the hyperfine coupling is written
in terms of the operators b~ and b~t.

K;„,= Q (A/2) (2S)»L(E/I) '*(2a'/Sp) $»

Xsing, LI+' exp(iK. R~)

X (@Icbm vzb&)+complex conjugate], (28)

I+. Ir+iI„——
9 H. Suhl, J. phys. radium 20, 333 (1959).' T. Holstein and H. Primakoft, Phys. Rev. 58, 1098 (1940).

(1/T ) '= ( /8) (A'/&S) L(S ')'+ (S*')')
~o &o

Xn(E)Le(Z)+1]p(E)p(E')5(E—E')dEdE'.

Using the high-temperature approximation, we obtain

(1/T p), = sin40;(&up'/A$4) (1/64~) (K/I) (KgT/I)'(1/I», ').

The numerical evaluation gives 1/T p much smaller than
10' sec ' at room temperature in the three metals, and
this process may be neglected.
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and the indirect interaction between the nuclear spins i lifetime of magnons and they cannot propagate the
and j is, keeping only the secular part, interaction over infinite distances.

se;;=g 1,(A'5/2) (E/I) l

X (Sp/2a') sin8, sing, exp(iK R;;)
X (I+'I '+I 'Ip') {(vx'+vs')

XL2E/(Ep —opop)]+2ppo/(Ep —opop) } {29)

For low k, p& and vz are very large compared to one,
and expanding in the power of k, keeping only the terms
in k', Eq. (29) becomes

se,,= (A'/8~) (E/J)-:(1/2J)

X t t exp(pK R,;)./(p'+k')dKxdEr,
"o ~o (3O)

2=-
a' &gPMs 2JS

VII. MAGNETIZATION IN THE WALL

The relative variation of 5 is given by ASx/5
= (Sr'+Sf)/25. The magnitude of the magnetization
is no longer uniform, because S& and 5, vary along the
wall. The nonuniformity of the magnetization gives a
shift and a line width to the nuclear resonance line (and
also an asymmetry).

The mean value of DSx is easily evaluated for the
wall-type excitation, using the relations (16) and (23),

P{S ')'+ (5,')']/25

=sin'8, (1/16JprS')(E/J)' *~t n(E)dE
gl

= sin'8, (ET/16m JS') (E/J)-: 1n(K„T/g').

if ~o&&g', p= (1/a)(E'/J)'*. 1/p is a measure of the
range of the interaction in the X and V direction and is
usually larger than the wall thickness P. The integral
over K is (assuming P real)"

p exp(iK R)dk k sin8d8

p'+k'

(DSx) 1 a'

SPA'kg+tanh�(s/X)]
2 (E)—

( 5 Jsw 25'~ Uo 1+0k '

4KS+4~gPM s+4JSa'k'
X

The effect is maximum at the center of the wall.
The contribution of the spin-wave branch is given by

the equation,

ts s"E,(PR) es"E,( —PR)]=-,'—I(PR)
2PR

center of the wall is given by the formula (~51 1 a'5 1

h'Av'= (A'/16m J)'(E/J)LI(I+1)/3] p, sin'8;Ip(pR;;). ( 5 j,d, ( 5 ) „„„„25pz U, 1+ypk p, 2 n(E)

'tA'e are especially interested in the difference between
65/5 at the center of the wall and outside the wall,The Van Vleck second moment for a nucleus at the

%e obtain, after using an integration instead of a
summation,

4KS+4~gPM s+4JSa'k'

I(Ij1) '
h(hv')'= (A'/4n J) (K/J)'

3

' (4n.gPM s) (2JS)

The main contribution to the integral is obtained when
k,X(1, and we always have 2JSk,'u'«kT, when
E&T&&K. The integral is approximately

and, if cop((~,
—

GOp

"A. Krdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi,
Tables of Integral Transform (McGraw-Hill Book Company, Inc. ,
New York, 1954), Vol. 1, p. 56.

h{gvo)k= (AP/4pr J)P(I+1)/3]l(K/K')'(J/K)l.

The second moment is larger by a factor (E/E')** than
the second moment calculated by Suhl for a uniform
ferromagnet.

If orp)D, the integration in k space may be done
(taking the principal part of the integral), but the range
becomes infinite giving an infinite second moment. . In
fact the range can never be infinite because of the finite

1 a' p" dk, 1

25 8pr' "p 1+X'kP "p exp(Ep/EsT) —1

4ES+4m gpM s+4JSa'kg'
X dExd+y p

jVp

with Ep=E (for k, =0), and k'=k '+k '
The integral in Ex and Ei is very s~m~lar to the

integral we use for calculating 65/5 coming from the
wall excitation branch except that 6' has to be replaced
bye,

6= (2ES)*

(4mgPMs) '. .

By adding the two contributions which act in opposite
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directions, we get

~AS' ~AS'

~ 5 ~ center ( 5 ) edge

VIII. CUBIC ANISOTROPY, 90' WALL

The anisotropy energy is

= (K/Ss) p',s(5„+5, )+S„sS,q, (33)

which becomes, in the new frame (using only quadratic
terms),

1 )Ky -*'(KT
y

8~5 E J ) &2JS) &g'j
X~——(K/5')P, [(5,')' sin'8; cos'8;+ (5,')'(5, ')'

+ (5,')'(Sr')'(1 —6 cos'8; sin'8;) j.
167rS (J ) (2J5$ 'tK') The minimization of energy gives the condition,

It may be useful to compare this result to the 65/5 in a
uniform ferromagnet:

f'651 ) AS)

~ 5 ~ center ~ 5 ~ edge

PASq fKq&PETE (Eq
E 5 );i„- E J) (2JS) t K')

The maximum relative variation of the resonance fre-
quency is

Ap/tr= s(2ES/ET)* ln(K/K ) (AM/M)uniform. (32)

The frequency is lower in the wall. The effect of the
spin-wave branch has already been estimated by Suhl, "
using a different method.

For iron at room temperature we obtain (assuming
E/E'= 100)

2 t =18 kc/sec.

The effect is not negligible; the observed linewidths are
of the same order of magnitude, but they show a very
small temperature dependence. Here also the theory
predicts the maximum value for the ].inewidth. The
linewidth due to this effect may be smaller if the ob-
served spins are not at the center of the wall.

"H. Suhl, Bull. Am. Phys. Soc. 5, 175 (1960).

E sin'0; cos'0;= JlM,'.

d8/ds= (1/X) (sin28/2), sin28= 1/cosh(s/X), 0(8(rr/2.
The equations of motion for the s dependence are

sESr = —2JSa'(d'5, /dg')

+2ESS,(1 3sin'8 c—os'8) 47rgPM —gS„
(34)

sES,= 2JSa' (d'Sr/dg')
2KSSr (—1—8 sin'8 cos'8) +2K'SSr —rs, .

The exact solution is dificult to find, but if we re-
member that the largest term in the 6rst equation is the
demagnetizing term, 5, may be eliminated using i'~
= —47rgPMBS„and the equation of Sr is the same as
before.

The same considerations are true for low k, in the
spin-wave spectrum; and, as in all our calculations, the
effects are important only when 5»S, and the results
are not changed.
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