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The growth-rate equations have been derived for diffusion-controlled precipitation while the diffusing
species is continually being created and destroyed throughout the material. Three mechanisms were treated:
(1) Bulk diffusion from a large spherical region to a small, concentric spherical particle; (2) diffusion in a
spherical region to the wall of the sphere and subsequent instantaneousdiffusiontoaprecipitateparticleon
the sphere's surface; and (3) two-dimensional diffusion in a circular region to a spherical particle located
at the center of the circle. Ham's method, in which the concentration is expanded in eigenfunctions of an
appropriate eigenvalue problem, was extended to take into account the presence of sinks and sources. The
resulting equations were solved with the aid of a digital computer. The results show that, in the short-time
approximation, the radius is proportional to the time for case (1), the radius is proportional to the cube
root of the time for case (2), and the radius shows a rapid rise at very short times and then a slower, almost
linear increase with time for case (3). For long times, the shape of the radius-time curves is more complex.

INTRODUCTION

'HE most comprehensive treatment of the theory
of diffusion-controlled precipitation in the ab-

sence of sinks and sources has been developed by Ham
using an eigenfunction expansion technique. ' As far as
the authors are aware, no comparable treatment of
precipitation processes in which the diffusing species is
continually being created and destroyed has been given.
In view of the growing interest in such problems as
void growth during plastic deformation, ' 4 bubble
formation in fissionable materials, ' and the enhanced
growth of bubbles in irradiated metals containing
helium, ' an analysis of the theory including the effects
of sinks and sources is highly desirable at this time.
It is the purpose of this paper to present this theory for
a number of special cases of physical interest and to
show how the theory may be used to distinguish

among alternative mechanisms of precipitation.
The problems to be solved are essentially boundary

value problems for a nonhomogeneous diffusion equa-
tion. The eigenfunction expansion method used by
Ham can be extended to take into account the sink
and source terms, and this procedure is used throughout
the present paper. It is assumed that the rate o&

production of the diffusing species is a constant inde-

pendent of position and time and that the rate of
destruction is proportional to the concentration. Three
special cases, corresponding to three different mecha-
nisms of precipitation, will be treated in this paper.
These are:

' F. S. Ham, J. Phys. Chem. Solids 6, 335 (1958).' J. Neill Greenwood, D. R. Miller, and J. %. Suiter, Acta Met.
2, 250 (1954).' E. S. Machlin, Trans. Am. Inst. Mining, Met. Petrol. Engrs.
206, 106 (1956).

4 C. W. Chen and E. S. Machlin, Trans. Am. Inst. Mining,
Met. Petrol. Engrs. 209, 829 (1957).

5 G. W. Greenwood, A. J. E. Foreman, and D. E. Rimmer,
J. Nuclear Materials I, 305 (1959).

s A. Goland, Phil. Mag. 6, 189 (1961).

(1) Diffusion in a spherical region of radius L to a
spherical precipitate particle of radius R(L located
at the center of the large sphere,

(2) diffusion in a spherical region of radius L to the
surface of the sphere and subsequent instantaneous
diffusion to a precipitate particle located on the surface
of the sphere, and

(3) diffusion in a two-dimensional circular region of
radius J to a precipitate particle of radius R located at
the center of the large circle.

Throughout this paper it is assumed that the particle
grows slowly enough so that its size variation with time
need not be considered in setting up the boundary
conditions to the diffusion equation.

EIGENFUNCTION EXPANSIONS AND THE
DIFFUSION EQUATION

The general diffusion equation to be solved is

r)N/r)I =DV'rs+ a r xsrs, —

where n is the concentration of diffusing species, t is
the time, D the diffusion coeKcient, f~l the rate of
production of the diffusing species, and ~2 an annihi-

lation constant such that f(~e is the rate at which the
species is destroyed. ~& and ~2 are taken to be constants
independent of m and t.

In the problems being considered in this paper, the
boundary conditions always have the form

(2)

(3)

(4)

That is, the concentration is always zero on some
surface or curve R, the gradient is always zero on some
surface or curve L, and the concentration at zero time
is everywhere zero.

The concentration can always be expanded in a set
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of orthonormal eigenfunctions f; (r),

e=P, a, (t)y;(r), (5)

where a, (t) are the expansion coeKcients and f, (r)
are the solutions of the following eigenvalue problem:

The solution of Eq. (13) is

sin(Z, r+B;)
(16)

(6a)

(6b)

The X,' are the eigenvalues of the problem.
Substituting Eq. (5) into Eq. (1) and using Eq. (6a)

gives

Q, P; (da, /dt+DX, a,+ega, )= ~g.

where C; and 8; are to be evaluated from the normal-
ization condition and the boundary condition (14),
respectively. Equation (14) requires that 5,= —X,R,
and the normalization condition requires that

C '=2m. [(L—R) —L/(1+LB, ')j (18)Now multiply by f, and integrate. Since we require
that the P, form an orthogonal set, it follows that

da, /dt+ (DXp+~2)a; =p;,
Differentiating Eq. (16) and applying the condition

(8) (15) shows that the X; are the roots of the equation

where

P, =—ag It;(r)dr.

tank;(L —R) =LX;.

The lowest root of Eq. (19) is'

(19)

where

is an eGective relaxation time.
Combining Eqs. (10) and (5) gives the general form Co——1/[2 (s R) '7. (21)

X '=3R L' 1+ 9 5 R L . 20
Integrating Eq. (8) and using the condition (4) gives

The higher X; s increase so rapidly with increasing
j's, that terms with j& 1 contribute a, negligible
amount to the series in Eq. (12) and may be neglected.

r, =1/ (DXp+K2)— If the approximation is made that E((J, and Eqs.
(18) and (20) are combined, the result is

e=p; p;;(1 e '&. )—p;(-r) (12)

f,(r) is obtained by solving the eigenvalue problem (6).
Once e is given explicitly as a function of r and t, the
derivation of the rate of growth of the precipitate
particle is straightforward.

The procedure leading to Eq. (12) is entirely analo-
gous to that of Ham' except that it has been extended
to account for the presence of ~~ and ~2e in the diffusion
equation.

~L

P, 47ra&C=; sinX, (r—R)rdr.
~z

(22)

Performing the integration and making use of Eq. (19)
gives

The only quantity that remains to be determined in
order to make use of Eq. (12) is P;. This can be evalu-
ated by substituting Eq. (16) into Eq. (9):

p; = 4mxgC, R/X p. (23)
CASE 1. DIFFUSION TO A SPHERICAL PARTICLE

Kyrp i hspn(r R)—
e= (I r t/rp)—d'(riP;)/dr'+X/ (nP~) =0,

P;(R) =0,

(dA/«) -~=0.

(13) (24)
Xp

The rate of growth of the precipitate particle can be
calculated from the Aux of atoms across the particle
surface. This is

(15)

Equations (13) to (15) describe a physical situation
in which a spherical particle of radius E. is collecting
the diffusing species from a surrounding spherical region
of radius L. If the specimen contains many precipitate
particles, then these equations imply that the particles
are small enough so that they may be treated inde-
pendently and 2L then becomes the mean distance
between the particles.

dV//dt=4nR'v Jg (25)

where V is the particle volume, n is the volume per
atom of diffusing species, and Jg is the Aux entering
the particle. Jg is related to the concentration gradient
by

J~——D(Be/Br) ~. (26)

Retaining only the erst term in the series, substitution
For sPherical symmetry, the eigenvalue Problem of of Fqs (16) (20), (21), and (23) into Fq. (12) gives

Eq. (6) becomes
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TABLE I. Solutions of Eq. (38): (o'p+1)pdp/dP= L1—e & '&+n'g.

0.02
0.08
0.14
0.2
0.26

0.32
0.38
0.44
0.50
0.56

n =0.01

0.01993
0.07895
0,1368
0.1935
0.2492

0.3038
0,3573
0.4099
0,4615
0.5121

dp/dt

0.9934
0.9738
0.9549
0.9364
0.9185

0.9011
0.8842
0.8677
0.8518
0.8362

0.02
0.08
0.14
0.2
0.26

0.32
0,38
0.44
0.5
0.56

u =0.1

0.01993
0.07894
0.1368
0.1935
0.2490

0.3035
0.3568
0.4091
0.4604
0.5106

dp/dt'

0.9934
0.9736
0,9543
0.9352
0.9166

0.8983
0,8804
0.8629
0.8457
0.8290

0.02
0.08
0.14
0.20
0.26

0.32
0.38
0.44
0.50
0.56

u =0.5

0.01993
0.7892
0.1366
0.1931
0.2482

0.3021
0.3546
0.4058
0.4550
0.5042

dp/dI, '

0.9933
0.9727
0.9516
0.9300
0.9082

0.8861.
0.8640
0.8420
0,8201
0.7984

0.02
0.08
0.14
0.2
0.26

0.32
0.38
0.44
0.5
0.56

0.01993
0.07889
0.1365
0.1927
0.2473

0.3004
0.3519
0.4017
0.4500
0.4966

dp/dt'

0.9932
0.9716
0.9483
0.9236
0.8979

0.8714
0.8445
0.8174
0.7904
0.7637

0.02
0.08
0.14
0.2
0.26

0.32
0.38
0.44
0.50
0.56

0.01993
0.07882
0.1362
0.1918
0.2455

0.2971
0.3467
0.3941
0.4394
0.4827

dp/dt'

0.9931
0.9693
0.9417
0.9111
0.8781

0.8436
0.8084
0.7729
0.7378
0.7035

0.02
0.1
0.18
0.26
0,34

0.42
0.5
0.58
0.66
0.74

0,01993
0.09777
0.1715
0.2402
0.3033

0.3608
0.4129
0.4601
0.5029
0.5419

dp/dt'

0.9926
0.9503
0.8919
0.8241
0.7533

0.6840
0.6196
0.5614
0.5101
0.4655

0.62
0.68
0.74
0.8
0.86

0.5618
0.6106
0.6586
0.7057
0.7520

0.8211
0.8065
0.7922
0.7784
0.7649

0.62
0.68
0.74
0.8
0.86

0.5599
0.6081
0,6555
0.7019
0,7474

0.8126
0.7966
0.7810
0.7658
0.7510

0.62
0.68
0.74
0.8
0.86

0.5514
0.5974
0.6422
0.6857
0.7280

0.7770
0.7559
0.7353
0.7151
0.6955

0.62
0.68
0.74
0.8
0.86

0.5416
0.5851
0.6270
0.6674
0.7064

0.7372
0.7114
0.6862
0.6619
0.6384

0.62 0.5239
0.68 0.5631
0.74 0.6005
0.80 0.6361
0.86 0.6701

0.6703
0.6385
0.6082
0.5795
0,5525

0.82
0.9
0,98
1.165
1.325

0.5776
0.6104
0.6407
0.7032
0.7505

0.4270
0.3938
0,3653
0.3133
0.2798

0.92 0.7975
0.98 0.8422
1.085 0.9187
1.165 0.9755

0.7518 0.92 0.7920
0.7391 0.98 0.8357
0.7177 1.085 0.9103
0.7021 1.205 0.9926

cr =10

0.7365
0.7224
0.6986
0.6728

0.92
0.98
1.085
1.205
1.285

0.7691
0.8092
0.8766
0.9497
0.9963

cx =20

0.6763
0.6577
0.6266
0.5932
0.5722

0.92
0.98
1.085
1.205
1.285
1,365

0.7440
0.7803
0.8408
0.9055
0.9463
0.9853

0.6158
0.5941
0.5584
0.5212
0.4984
0.4772

0.92
1.000
1.165
1.325
1.485
1.605

0.7025
0.7434
0.8205
0.8872
0.9476
0.9893

0,5272
0.4960
0.4402
0.3960
0,3596
0,3365

1.525
1.725
1.925
2.125
2.325
2,485

0.8032
0.8503
0.8931
0.9325
0.9690
0.9965

n =100

0.2481
0.2239
0.2049
0, 1894
0.1766
0.1677

0.02
0.12
0.22
0.32
0.42

0.52
0.62
0.72
0.82
0,92

1.045
1.245
1.445
1.645
1.845

0.01993
0.1163
0.2045
0.2826
0.3506

0.4095
0.4605
0.5052
0.5448
0,5803

0.6201
0.6757
0.7241
0.7672
0.8063

0.9923
0.92 76
0.8334
0.7299
0.6321

0.5470
0.4766
0.4196
0.3739
0.3372

0.3008
0.2581
0.2275
0.2046
0.1867

0.02
0.1
0.18
0.28
0.4

0.52
0.64
0.76
0.88
1.00

1.285
1.565
1.845
2.125
2.405

0.01993
0.09720
0.1686
0.2471
0.3258

0.3898
0.4427
0.4875
0.5262
0.5604

0.6293
0.6855
0.7342
0.7774
0.8166

0.9919
0.9337
0.8468
0.7246
0.5897

0.4827
0.4033
0.3452
0.3023
0.2698

0.2179
0.1857
0.1633
0.1466
0.1336

0.02
0.1
0.18
0.26
0.34

0.42
0.54
0.7
0.9
1.165

1.485
1.84$
2.245
2.725
3.285

0.01991
0.09609
0.6131
0.2194
0.2657

0.3042
0.3513
0.4008
0.4502
0.5029

0.5551
0.6044
0.6514
0.7003
0.7501

0.9904
0.9025
0.7704
0.6377
0.5263

0.4403
0.3501
0,2762
0.2220
0.1798

0.1488
0.1264
0.1094
0.09517
0.08332

0.02
0.12
0.18
0.28
0.42

0.65
0.92
1.285
1.765
2.365

3.085
3.925
4.925
6.125
7.485

0.01988
0.1089
0.1502
0.2015
0.2508

0.3039
0.3528
0.4015
0.4518
0.5024

0.5522
0.6010
0.6505
0.7015
0.7516

0.9860
0.7672
0.6132
0.4280
0.2935

0.2031
0.1521
0.1182
0.09383
0.07622

0.06329
0.05358
0.04586
0,03952
0.03449

0.01
0.05
0.1
0.3
0.5

0.7
0.9
1.2
1.6
2

2.5
3.0
4
4.5
5

0.009975
0.04856
0.09120
0.1953
0.2492

0.2869
0.3168
0.3540
0.3933
0.4262

0.4613
0.4919
0.5437
0.5663
0.5872

0.9941
0.9242
0.7754
0.3448
0.2175

0.1653
0.1362
0.1096
0.08910
0.07609

0.06511
0.05739
0.04709
0.04345
0.04044

0.01
0.05
0.1
0.2
0.3

0.4
0.7
0.9
1,2
1.6

2.5
3.5

6.0
8

0.009971
0.04815
0.08869
0.1444
0.1795

0.2052
0.2585
0.2846
0.3172
0.3519

0.4119
0.4629
0.5048
0.5570
0.6143

0.9930
0.9011
0.7167
0.4282
0.2928

0.2265
0.1441
0.1193
0.09636
0.07854

0.05755
0.04568
0.03849
0.03167
0.02608

2,045
2.245
2.445
2.685
2.885
3.125

0.8421
0.8754
0.9064
0.9412
0.9684
0.9994

2.685
2.965
3.285
3.565
3.845
4.045

0.1722
0.1603
0.1502
0.1400
0.1327
0.1252

0.8525
0.8857
0.9210
0.9499
0.9773
0.9959

0.1232
0.1145
0.1063
0.1003
0.09499
0.09162

3.925
4.685
5.485
6.365
7.325

0.8001
0,8526
0.9011
0.9503
0.9983

0.07351 9.005,0.8008
0.06498 10.805 0.8522
0.05826 12.725 0.9011
0.05258 14.965 0.9521
0.04776 17.205 0.9982

0,03043 7
0.02691
0.02410 9
0.02161 15
0.01967 20

0.6591
0.6898
0.7181
0.8540
0.9412

0.03219
0.02941
0.02716
0.01927
0.01589

10
15
20
25
30

0.6625
0.7599
0.8373
0.9025
0.9596

0,02244
0.01709
0.01410
0.01214
0.01075

Evaluating the derivative from Eq. (24) gives 7 g and TD have the dimensions of time and may be
thought of as the relaxation times of the annihilation

and diffusion processes, respectively.
By using the definitions embodied in Eqs. (31) to

(35), Eq. (29) becomes

(BN/Br) g = (airs/R) (1 e'i's), — (27)

so that Eq. (25) becomes

d V/dt = 4trRDtisir s(1 e ""), —

RdR/dt =Dm, rs (1 e'i ')—(28)
(nR'+1)R'dR'/dt'=Ci[1 e t ~'+'&'] — (36)or

(29)
Now transform R' according to the definition

The relaxation time ro is related to the particle
radius R through Eqs. (11) and (20). Thus, for R«1, (37)P=—R'Ci '.

1/rs= (3DR/Ls)+as. (30) Then Eq. (36) becomes

Equation (29) cannot be solved analytically, but
useful numerical solutions can be obtained by defining
the quantities o., R', and t' by

(~'p+ 1)pdp/«'=
where

o! —Ci rA/rD

(38)

7D)

t = t/rg, —
C,= r~'Dm, /L', —
R'= R/I. .

In these equations r& and ~D are defined by

rg = 1/Ks, rn L'/3D. ——

(31)

(32)

(33)

(34)

(35)

Equation (38) was solved for p and dp/dt' by a
Runge-Kutta integration program on a digital computer
for the initial conditions p=0 and dp/dt'=1 at t'=0.
LNote that for t' &1& (/' o+p1), Eq. (38) gives p'=t's

+constant, so that if the radius is zero at t=0 it is

proportional to the time for small t.j The results are

shown in Table I and are displayed graphically in

Fig. 1, where p, the reduced radius, is plotted against t',

the reduced time, for a range of values of n.
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A special case of Eq. (36), of great interest because
of its application to the formation of voids in metals,
is given by the condition (rrR'«1). This means that
the annihilation constant ~2 is much greater than
3DR/L'. In this case, Eq. (36) reduces to

I.O

R'dR'/dt'= Ci (1 e ').——

Integration of Eq. (37) gives

-', R"=Ci(t'+e "—1).

(39)
RADIUS, p

100

CASE 2. DIFFUSION TO THE WALL OF A SPHERE

In this section, the physical situation being considered
is one in which the diffusing species is being created
and destroyed throughout a spherical region of radius
L. This species diffuses to the surface of the spherical
region and then migrates instantaneously to a spherical
precipitate particle located on this surface. The eigen-
value equation is the same as for case 1,

d( re)/ rd' +X/(rf, ) =0; (42)

In the short-time approximation, rvhen t'((1, Eq. (40)
simplifies to

~'= ~-alt',

so that in this special case the radius is proportional to
the time.

I l I I I i 1 l0,2 .4 .6 .8 I.O l.2 I.+ l.6 l.8
T INlE, t

FIG. 1. Reduced radius versus reduced time for spherical
mechanism calculated from Eq. (38).

(44). Differentiating (45) gives

df (X;cosh;(r —L)

dr E r

sin), ;(r—L,) q
(49)

2

This derivative is not defined at r =0. In order to make
use of the boundary condition, it is necessary to take
the limit of (47) as r goes to zero. The result is that

but the boundary conditions in this case are

4 (L)=o,

(dg~/dr) p
0——

sin), L=0,

(43) so that the X; are given by

(44) X,= jm/L.

(50)

(51)

sin (X,r+8)
;=C, (45)

The eigenfunctions of Eq. (42) are again given by Equation (50) simplifies the expression for C;, since
it requires that the second term in (4g) be zero. There-
fore,

C '= 2mL.

(53)

Combining Eqs. (52), (42), and (46) gives the final
but C; and 8 have values that are different from those resu]t for y,.
for case 1, because the boundary conditions are different. sinL(j /L)(r —L)jFrom (43), it is found that 8= X;L so that Eq. (45—) O;=(2 L)-i
becomes r

sin'A;(r —L) sin'A, (L—r)f=C- = —C The constants p; are evaluated from Eq. (9) just as
in case j. :

The normalization condition is
(j~

p, =4m(2mL) 4r r sinI —(r—L) Idr.
) (54)

which gives

Crs= 4~ sin9, (r—L)dr
0

(47) Performing the integration gives

P;= 2421r rL "/j Qrr. —(55)
4~ (X;L sin2X;Lp

X, E2 4

The ), are determined by the boundary condition

r P. R. Oliver and L. A. Girifalco (to be published).

The relaxation times r, are given by substituting Eq.
(44) into Eq. (11):

1/r; =Dj 'n'/L'+~s.

The concentration as a function of position and time
is obtained by substituting Eq. (53), (55), and (56)
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OO

anti St(n) = Z
t' 1 (I+nj2)2

n St(n) St(n) n S,(n) St(n)

1
TABLE II. Values of St(n) = Z

&' '1+o.j2
Then Eq. (59) becomes

(
I ar), t ETAj'+rn)

0,01 15.2063
0.05 6.5241
0.10 4.4668
0.20 3.0121
0.30 2.3676

7.3539
3.0124
1.9836
1.2562
0.93431

0.40
0.50
0.60
0.70
0.80

1.9837
1.7219
1.5289
1.3793
1.2592

0.74314
0.61376
0.51949
0.44749
0.39066

0.90
1
1.2
1.4
1.6

1.8
2
2.5
3
3.5

1.1600 0.34470
1.0765 0.30684
0.9431 0.24834
0.8406 0.20555
0.7591 0.17317

0.6926 0.14800
0.6371 0.12801
0.5315 0.09286
0.4563 0.07050
0.4001 0.05537

8
9

10
15
20

25
30
40
50
60

70
80
90

100

0.1904
0.1706
0.1546
0.1051
0.07964

0.06411
0.05365
0.04045
0.03247
0.02711

0.02328
0,02039
0.01814
0.01634

0.3563
0.3212

5 0.2924
6.0 0.2481
7 0.2155

0.04465
0.03677
0.03081
0.02254
0.01721

0.01357
0.01097
9.054X10 '
4.262X10 '
2.469X10 '

1 609X10 '
1.131X10 '
6.458X10 4

4.171X10 4

2.915X10 4

2.151X10 4

1652X10 4

1309X10 4

1062X10 4

(TAj'+TD'l
1—exp —

I I
t . (62)

TATD )
Since the eigenvalues given by Eq. (44) can be

either positive or negative, the index j runs from —~
to +~. However, the terms in the sum involve only j'.
Therefore, Eq. (62) can be written as

(eln ) TDTA

I

—
I

= —2»trA(1 —e—"")—4»,QI
t ar), =~ & TAj'+.n&

(TAj '+Tnt
X 1—exp —

I

— It, (63)
TATD )

or

(f)ts)
2»gr A

—(1 e ti'A—)
—4»,TA—Q

l ar), i=& 1+j'(r A/rn)

into Eq. (12): X 1—exp —
I

—j'+1 I—
)T,

~ («)
2L», 1 ]Dj'm'

+»s I

i j4 Ls )
Combining Eqs. (58) and (64)

d p/tgt —g7rL2vD»lrAL(1 e t(rA)—
+2S(rA/rn, t/rA) j, (65)X 1—exp —

I
+»s It sinI (r L) I—. (57—)

Ls ) g L )
'

where

The total number of atoms entering the surface of
the sphere is given by the Qux at r=L, and all of these
atoms reach the precipitate particle so that the rate of
growth of the volume of the particle is

d~/dt=4«'»L= —4 L'»(»/f)r)Lt (5g)

JL being the flux at r =L. From Eq. (57), the derivative
1S

f Bnq )Dj 'Tt'

I
—

I
= —2»~XI +»s

&qr), & Ls

)Dj 'Tr'

X 1—exp —
I

+»s It . (59)

(TA t ~ 1

( rn rA) i-t 1+j '(TA/rn)

X 1—exp —
I

—j'+1
I

— . (66)
(Tn ) TA

Integrating Eq. (65), with the condition V=p at t=p,
gives

v= csrA(t'L1+2s&(n))+e ' 1I+2 s(snt') j
—

I 1+2Ss(a)$}, (6'7)

where Cs, t', S&(n), S&(u,t'), and Ss(n) are defined by

C2= Sm L'vaag7 A, (6g)

The value of the sum in Eq. (59) depends on the
relative magnitudes of the rate of diGusion and the rate
of annihilation. In the general case, a graphical pro-
cedure is most convenient for investigating the form
of the dependence of the particle growth rate on time.
For this purpose dehne two relaxation times, one for
the diffusion process and one for the annihilation
process, just as in case 1:

Q= SA TDj

t'= t/rA,

00 ]
S&(n)=g

i=& 1+nj '

~ exp( —nj't')
Ss(n, t') =g

(1+at')'

(69)

(7o)

(71)

(72)

Tn=—Is/Dss

T A
—= 1/»s.

(60)

(61)

00

Ss(n) =E
i-& (1+uj')'

(73)
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exp( —cvP$ }
TAsLF. III. Values of S (,t) = Z—

j 1 ($+~ .2}2

0.01
F 05
.1
~ 2.3
.4
.5.6
~ 7
.8.9

1
1.2
1.4
1.6
1.8
2
2.5
3
3.5
4
4.5
5

'F

QS'
lp
15
20
25
3Q
40
5Q
60

0

0.01
7 ~ 2861
2.9821
1.9622
1.2411 ..9219.7324
.6042.5108
.4395
.3832.3377
.3002.2424
.2001
.1682.1434
.1237

8.915xl0-2
6.726xlp 2
5.249xlp 2
4.207x10-2
3.443x10-2
2.867x10-2
2.072xlp"2
1.563xlp-2
1.218x10-2
Q. 73X10-3
7.94xlp 3
3.53x10-3
1.93x10-3
1.19xlp 3
7.S2xlp 4
4.07xlp 4
2.37x10-4
1.49xlp 4

1.4

P. 05
7.0685
2.8847
1.8934
1.1924
.8822
.6981
.5735.4829
.4137.3592.3l52.2791.2234
.1829.1524.1288
.1102

7.773X1Q 2
5.741xl0-2
4.388X10-2
3.444x10-2
2.761xl0-2
2.252xlp 2
1.562x10-2
1.131xlp 2
S.47x10-3
6.50xlQ"3
5.09xlp 3
1.86xlp"3
8.37xlp 4
4.24Xlp 4
2.32x 10 "4

1.6

0.1
6.84489
2.7865
1.8239
1,1433
.8421
.6634
.5426.4547
.3878
.3352
.2927
~ 2579.2045.1658
.1368.1145

9.7Q2xlQ-2
6 ' 682xlp-2
4.817xlQ 2
3.5S3x10-2
2.753x10-2
2.155X10-2
1.716xlp"2
1.135xlp 2
7.83xlp 3
5.58x10-3
4.09xlp 3
3.05xlp 3
8.72xlp 4
3.07x10-4
1.21xlp 4

1.8

0.2
6.4971
2.6292
1.7127
1.0647
.7779
.6079
.4931
.4098
.3465
~ 2969
.2570
.2245.1748
.1392
~ 1127

9.265xlQ"2
7.705Xlp-2
5.065xl0-2
3.484xlp"2
2.479xlp 2
1.811xl0-2
1,352xlQ-2
1.026xl0-2
6.16x10-3
3.86xlp 3
2.49x10-3
1.65x10-3
1.12xlp 3
1,94x10-4

0.3
6.2139
2.5026
1.6231
1.0013.7263
.5632
.4533
.3738
.3135
, 2663.2286.1980
~ 1514.1185

9.427x10-2
7.6p7xlp-2
6.213xlp"2
3.8 97xlp "2
2.557x10-2
1.735xlQ-2
1.208xl0-2
8.58xlp"3
6.20xlp 3
3.37X10
1.91xlp 3
1.12xlp 3
6.72Xlp 4
4.11xlp 4

2.5

0.4
5.9746
2.3955
1.5477

, 9478.6826
.5255
.4198
.3434
.2857
, 2407
.2049
~ 1579.1323
.1016

7.943xl0-2
6.293X10 2
5.043xlp 2
3.018X10 2
1.887xlp 2
1.219xlp-2
8.08xlQ-3
5.47x10-3
3.76x10-3
1.85xlp 3
9.'50xlp-4
5.03xlp"4
2.73xl0-4
1.5lxlp 4

0.5
5.7666
2.3025
1.4817
.9013
.6447
.4928
.3907
~ 3172
.2617
.2187.1847.1572
.1161

8.762xlQ"2
6.722xlp"2
5.227x10-2
4.110xlp"2
2.344x10-2
1.396xlp 2
8.59xlQ 3
5.4lx10-3
3.48x10-3
2.28xl0-3
1.02X10 3
4.72x10-4
2.26xlp 4
l. llx10-4

3.5

0.6

5.5824
2.2201
1.4234
.8601
.6111
.4638
.3650
.2940.2407
.1995
.1670.1409.1022

7.575x10-2
5.703x10-2
4.351x10-2
3.357x10-2
1.824xlp 2
1.Q34xlQ
6.05x10-3
3.63x10-3
2.22X10 3
1.38X10 3
5.58xlp 4
2'. 34xlp-4
1.02X10"4

0.7

5,4171
2.1462
1,3712
.8232
~ 5810
.4379
~ 3421
.2733
.2220
, 1824
.1514
.1266

9.023X10-2
6.561xl0-2
4, 847xlQ"2
3.628xlp"2
2.745xl0-2
1.419xlp 2
7.65xlp 3
4.26X10 3
2, 43x10-3
1.42X10 3
8.39XlQ 4
3.06X10 4
1,16xlp 4

4.5

0.8
5.2672
2.0792
1.3238.7897
.5537
.4144.3213.2547
.2051.1672.1375
.1140

7.975x10-2
5.691xlp"2
4.124xlp-2
3.027x10-2
2.245x10-2
1.105xl0-2
5.67xlp 3
3.00xl0-3
1.63x10-3
9.03xlp 4
5.09xl0-4
1.68x10-4

0.9
5.1302
2.0179
1.2804

:7590
.5287
.3929
~ 3023
.2378
.1899
.1534
.1251
.1027

7.056xlp 2
4.939xlp-2
3.511xlp 2
2.526xlp 2
1.838xlp 2
8.6lxlp 3
4.2pxlp 3
2.12xlp 3
1.09X10 3
5.76xlp 4
3.09X10"4

5 ' 0040
1.9615
1.2405
.7308
- 5057.3732
.2850
~ 2223
.1761
.1410.1139

9.270X10"2
6.248xlp"2
4.290X10 2
2.99Qxlp 2
2.11pxlp 2
1.504xlp 2
6.70xlp 3
3.llxlp 3
1.49xlp 3
7.33x10-4
3.67x10-4
1.87X10-4

1.2
4.7786
1.8607
1.1692.6804.4647.3380.2541.1950
.1518.1194

9.47pxlp 2
7.563xlQ-2
4.905xlp 2
3.238x10-2
2.17pxlp"2
1.471x10-2l.ppsxlp-2
4.06x10-3
1.7lxlp 3
7.4lxlp 4
3.29xlp 4
1.49xlp 4

0.01 4.581S
~ 05 1.7727.1 1.1070
~ 2 .6365
~ 3 ~ 4290
~ 4 e3075
.5 .2275.6 .1717
~ 7 .1312.8 .1013.9

,

7.888X10"2
1 d. lBpxlp-2
1.2 3.854xlp-2
1.4 2.446xlp-2
1.6 1.575xlp-2
1,8 1.026xl0-2
2 d. 76xlp"3
2.5 2.47xlQ"3
3 9.57x10-4
3.5 3.68x10-4

1.48xlp"4

4.4079
1.6949
1.0520.5976.3974

~ 2806.2043.1514.1137
8.615xl0-2
6.578xlp-2
5.054xl0-2
3.030X10 2
1.849XlQ 2
1.144xl0-2
7.16xlp 3
4.53xl0-3
1.5pxlQ "3
5.14xlp-4
1.83x10-4

4. 2521
1.6252
1.0028

~ 5628.3692
.2567
~ 1837.1338

9.860xlQ"2
7 ' 33pxlp 2
5.489X10-2
4.135x10-2
2.383xlp 2
1.397x10-2
8.30xlQ-3
5.00xl0-3
3.04xlp-3
9.07x10-4
2.82xlp-4

4.1115
1.5623

.9583

.5314.3438

.2353

.1655

.1184
8.558xlp"2
6.241xlp-2
4.582xlp-2
3.385xlp-2
1.875xlp-2
1.056xl0-2
6.03xl0-3
3.49xlp 3
2.04x10-3
5.50x10-4
1.55X10-4

3.8114
1.4281
.8634
~ 4644
.2899
~ 1904.12S1

B.737xlp-2
6.019X1Q-2
4.179xlp 2
2.920x10-2
2.052X10 2
1.029xl0-2
5.24x10-3
2.71X10 3
1.42xlp 3
7.49xlQ-4
1.58x10-4

3.5660l.3184
.7858
.4097
.2462
~ 1549

9.944xlp-2
6.463xlQ-2
4.239X10-2
2.800X10 2
1.861xlp 2
1,245x10-2
5.65xlp-3
2 ' 60XlQ"3
1 ~ 22xlp 3
5, 76xlp 4
2.75x10-4

3.3600
1.2262

~ 7206.3639.2102
.1263

7e733xlp 2
4.785xlp-2
2.986xl0-2
1.877xlp 2
1.187xlp 2
7.55xl0-3
3.10xl0-3
1.29xlp-3
5.47xl0-4
2.34xlp 4
1.01xl0-4

3.1834
1.1473
.6648
.3247.1799.1033

6.019xlp 2
3.544x10-2
2.104xlQ-2
1.258xlp"2
7.57xl0-3
4.58xl0-3
1.70X10 3
6.42xlp-4
2.46xlp-4

3.0298
1 ~ 0786

~ 6162
.2908
~ 1543

8.445x10-2
4.686xlp"2
2.625xlp"2
1.483xl0-2
8.43xlp-3
4.83xl0-3
2.78xlp 3
9.33xlp-4
3.19X10-4
l. lpxl0-4

2.8945
1.0180

~ 5734.2611
~ 1325

6.91QXlp 2
3.649X10-2
1.945xl0-2
1.045xl0-2
5.65xl0-3
3.08xl0-3
1.68xl0-3
5.12xlp-4
1.58X10-4

2.6657.9157
~ 5011.2117

9.796X10-2
4.629xlQ"2
2.213xlp 2
1.067xlp 2
5.19xl0-3
2.54xl0-3
1.25xip"3
6.2pxlp 4
1,54xlp 4

2.4784.8320.4419.1724
7.251xlp 2

003X10-2
1.342xl0-2
5.86xl0-3
2.58xlQ-3
1.14xlp 3
5.09X10 4
2.28xlp-4

2.3213.7617
~ 3924.1407

5.369X10 2
2.08&X10-2
8.14xlp 3
3.21x10-3
1.30xlQ"3
5.13xlp 4
2.07xlp 4

0.01.05
~ l.2
t 3.4.5.6
~ 7.8

2.1870
.7017
~ 3500
.1150

3.977x1p-2
1.394xlp 2
4.94xlp "3
1.76xlp-3
6 ~ 35xlp 4
2.3pxlp 4

10
2.0704.6495.3134
9.40SxlQ 2
2.946xlp 2
9.34X10-3
2.99xlp-3
9.68xl0-4
3.16xlp-4
1.04xl0-4

15
1.6546.4636
.1857

3.458X10-2
6.57x10-3
1.26xlp 3
2.46x10-4

20

1.3922.3465
.1120

1.272xlp-2
1.47x10-3
1.7lx10-4

25

1.2072.2646
6.786xl0-2
4.68xl0-3
3.27xlp 4

30 4Q 50 60 70 80 90 100
1.0677 .8680 .7293 .6257 .5446 .4788 .4241 3777

2Q41
' .123Q 7 ' 449xlQ-2 4 516xlQ-2 2 739xlQ-2 1 66lxlQ-2 l.ppsxl0-2 B.llxlp-3

4.115xlp"2 1.514xlp"2 5.57xlp"3 2, p5xlp"3 7.54xlp 4 2.77xlp 1.02xlp 4
1.72xlp"3 2.33xlp 4

In order to use Eq. (67) it is necessary to evaluate
the sums S~, 52, and 53. This has been done for a range
of values of n and t' with the aid of a digital computer.
The number of terms included in the sums ranged from
64000 to 2600, depending on the rapidity of conver-
gence of the sums for given values of e and t'. The
results are listed in Table II and III.

Figure 2 shows plots of R' against t' for diferent
values of n calculated from Eq. (67), where R' is
defined by

R'= R(4x/3C2~g) i.

For t'((1, expansion of the exponentials in Eq. (67)
shows that V is proportional to t'. Therefore, in the
short-time approximation, the radius is proportional to
the cube root of the time.

CASE 3. DIFFUSION IN A TWO-DIMENSIONAL REGION

dV~ 14;+— +X'P =0
dr' r dr

(75)

4'~(&) = o,

(~42/«) =~=0

(76)

(77)

Equation (75) is the zero-order Bessel equation with
the solutions

$,=&,Jo(A,~)+8;Vo(X,~), (7g)

In this case, the diffusing species moves in a two-
dimensional circular region of radius L, and precipitates
onto a particle of radius E located at the center of the
region. For this case, the eigenvalue problem of Eq. (6)
becomes
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RADIUS, R'

.2

where A; and 8, are constants and .~0

zero-order Bessel functions of the first
kind, respectively.

Differentiating Eq. (79) gives

and Po are
and second

dP, dJo(&,r) d Yo(X,r)
=A, +I3,

& d'r
(79)

FxG. 2. Reduced radius versus reduced time for wall
mechanism calculated from Eq. (67).

or
4~R'= Dv2~R(BN/Br) „a

is obtained by substituting Eq. (85) into Eq. (12):

Jo(Z;R)
Yo(&,r) . (87)

Yo P„.R)

The only quantity that remains to be evaluated is P, .
This can be done by substituting Eq. (85) into Eq. (9)
and evaluating the integral by making use of the
properties of Bessel functions. The result is

2mi Jp()t,R)
RA, Ji(),R) — Yi(X,R) . (88)

Yp(X;R)

The rate of growth of a precipitate particle in the
presence of a concentration profile given by Eq. (87)
will depend on whether the particle is considered to be
two or three dimensional. In this work, it will be
assumed that the particle is a sphere which is bisected
by the circular two-dimensional region. The diGusing
species enters the sphere only through the perimeter
of the great circle lying in the plane. Once the diffusing
atom moves across this perimeter, however, internal
surface diffusion takes place instantaneously so that
the particle maintains its spherical shape. For this
model, the rate of particle growth is given by

From the properties of Bessel functions,

dJ,(),r)/dr = X,J,(z,r—),

d Yo(z,r)/dr = X,Y,(),—r),
(80)

(8&)

dE.
=Do/2R(r)rl/'dr—)„„. (90)

Differentiating Eq. (87) with respect to r, evaluating
the derivative at r =E, and substituting the result

A;Jp(X,R)+B,Yp(X;R) =O,

A;J, (X;I.)+&,Yi()~;I-)=0.

Solving Eqs. (82) and (83) for A;/8;, we have

(83)

A,/8; = —Yog.gR)/Jo(&gR) = —YiP iL)/Ji("iI) (84)

Combining Eqs. (78) and (84) gives f, in terms of only
one constant, A;:

A( J( r)) —P', (X,R)/Yp()~, R)]Yo(X,r)}. (85)

where J1 and V1 are the first-order Bessel functions of
the first and second kind, respectively. Using Eqs. (78)
and (81), the boundary conditions, Eqs. (76) and (77)
give

XoR L/R XoR L/R

0.03 28.854
0,035 25.342
0.04 22.665
0.047 19.827
0.048 19.486

0.075
0.076
0.077
0.078
0.079

13.554
13.411
13.272
13.136
13.003

P oR L/R

0.16 7.530
0, 17 7.198
0.18 6.900
0.19 6.631
0.20 6.387

XoR L/R h.oR L/R

0.47
0.48
0.49
0.50
0.51

3.570
3.523
3.478
3.434
3.393

0.78
0.79
1.0
2,0
3.0

2.646
2.628
2.319
1.704
1.483

0.049
0.05
0.051
0.052
0.053

1,9.157
18.841
18.537
18.244
17.961

0,08
0.081
0.082
0.083
0,084

12.873
12.746
12.622
12.501
12.383

0.21 6.165 0.52
0.22 5.962 0.53
0.23 5.775 0.54
0.24 5.603 0.55
0.25 5.444 0.56

3.352
3.313
3.276
3.240
3.204

4.0
5.0
6.0
7.0
8.0

1.368
1.298
1.250
1.216
1.190

0.054
0.055
0.056
0,057
0.058

17.688
17.424
17.169
16.923
16.684

0.085
0.086
0.087
0.088
0.089

12.267
12.154
12.043
11.934
11.828

0.26 5.296
0.27 5.158
0.28 5.029
0,29 4.909
0.30 4.796

0.57 3.170
0.58 3 ~ 138
0.59 3.106
0.60 3.075
0.61 3.045

9.0
10,0
11.0
12.0
13.0

1.169
1.152
1.139
1.128
1.118

TABLE IV. Eigenvalues for two-dimensional case,
Eq. (92). XOR against L/R.

The constant A, can be evaluated from the requirement
that it; be normalized. The result is

0.059
0.060
0.061
0.062
0,063

16.454
16.230
16.013
15.803
15.600

0.090
0.091
0.092
0.093
0.094

11.724
11.622
11.523
11.425
11.329

0.31
0.32
0.33
0.34
0.35

4.689 0.62
4.589 0.63
4.495 0.64
4.406 0.65
4.321 0.66

3.016
2.988
2.960
2.934
2.908

14.0
15.0
16,0
17.0
18.0

1.110
1.103
1.096
1.091
1.086

J,();R)
A, '=orI.' Jp(X,I)— Yp(&,I-)

YpP.,R)

-2 0.064
0.065
0.066
0.067
0.068

15.402
15.210
15.023
14.841
14.665

0.095
0,096
0.097
0,098
0.099

11.235
11.143
11.053
10.964
10.877

036 4 241 067
0.37 4.165 0.68
0.38 4.092 0.69
0.39 4.023 0.70
0.40 3.957 0.71

2.883
2.858
2.835
2,811
2.789

19.0
20.0

1.081
1.077

J.(),R)—irR' Ji(X;R)—— Yi(X,R) . (86)
Yp(X;R)

The concentration e for this two-dimensional problem

0.069
0.070
0.071
0.072
0,073
0.074

14.493
14.326
14.164
14.005
13,851
13.701

0.1
0.11
0.12
0.13
0.14
0.15

10.792
10.019
9.367
8.809
8.236
7.903

0.41 3.894 0.72
0.42 3.834 0.73
0.43 3.777 0.74
0.44 3.722 0.75
0.45 3.669 0.76
0.46 3.618 0.77

2.767
2.746
2.725
2.704
2.684
2.665
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along with Eq. (88) into Eq. (90) gives

dR =—Dwxirrgr; A,'(1 e —e' —)
dt

Jog.;R)
X Ji(X,R) — I"i(X,R) . (91)

Vp(X;R) R,crn

l2xlO-I

IO—

= DmiprroAQP(1 —e "")
Jo(XQR)

X J,(),QR) — I'i(XQR), (92)
&o(&oR)

and only the first eigenvalues ) p are needed in order to
use this equation. Table IV lists XpR as a function of
L/R.

It is convenient to define a function F(R) by

F (R) =prA p'( Ji(XQR)
—

LJp (XQR)/ YQ (XQR)]F'i (XQR) }, (93)

so that Eq. (92) becomes

dR/dt, =Devoir p(1 e"")F(R)— (94)

This equation is difficult to handle even numerically,
since Tp is a function of R through its dependence on ) p.

However, a solution is easily obtained in the short-time
approximation t/rp«1. In this case, the exponential
can be expanded, and integration of Eq. (94) gives

1 t')
t

dR
Dmi rp( ————[dt=,

"o krp 2 rp') ~p F(R)

If we retain only the first term in the expansion, then

The only problem that remains to be solved in order
to make Eq. (91) useful is the determination of the
eigenvalues X;. This was done with the aid of a digital
computer by numerically integrating Eq. (75) for given
values of ),R and computing the corresponding values
of the ratio L/R that satisfied the boundary conditions
(76) and (77). In this way the first six eigenvalues
Xp, ., ) p were obtained as functions of L/R. Inserting
these eigenvalues into Eq. (91) and making some
approximate calculations showed that the first term in
the series is the dominant one, the higher terms con-
tributing only 10 ' to 10 ' of the first term. It is,
therefore, a good approximation to write Eq. (91) as
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FIG. 3. Radius versus time for two-dimensional
mechanism calculated from Eq. (96).

functions. The time can then be obtained as a function
of R by numerical or graphical integration of Eq. (96).
To illustrate the form of the R against t curve, the
calculation was performed for the special case of
L = 10 ' cm. The results are plotted in Fig. 3.

DISCUSSION AND CONCLUSION

Because of the complexity of the problem, analytic
solutions of the diffusion-controlled precipitation ki-
netics in the presence of sources and sinks are not
available. However, these solutions can be obtained by
numerical methods and can be put in a convenient
form.

The most striking differences among the three cases
considered in this paper arise in the form of the radius-
time curves in the short-time approximation. For case 1
(spherical mechanism), the radius is proportional to
time for short times. For case 2 (wall mechanism), the
radius is proportional to the cube root of the time. For
case 3 (two-dimensional mechanism), the radius shows
a very rapid rise at extemely short times and then a
slower, almost linear increase with time.

The growth rate of the precipitate particle depends
on the diffusion coefficient, the rate of production, and
the rate of annihilation of the diffusing species. By the
proper analysis of radius against time data according
to the methods outlined in this paper, it should be
possible to acquire the pertinent information concerning
the mechanism of precipitation in systems containing
sources and sinks.

p~ dR
~Dm~t'=

~

~p F(R)
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