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data obtained in the region above the Curie point
(122'C). Similar data were obtained for (80+aBa-
20%Sr)TiOs.

The dispersion is best. displayed by showing the
permittivity as a function of frequency. Figure 2 shows
the dispersion observed using polycrystalline (Ba-Sr)
TiOs samples (Curie temperature 55'C). Note that the
dispersion is not a simple relaxation process, but
exhibits resonance characteristics as the Curie point is
approached from the ferroelectric side. No dispersion
is apparent above the Curie point; one curve in this
region is also shown in Fig. 2. The data displayed in

Fig. 2 were obtained using two samples of incomrnen-
surate lengths of the same material. The appearance of
resonance character in the permittivity spectrum recalls
Kittel's theory of domain boundary inertia. ' It appears
that the domain walls respond in a manner similar to a
forced damped harmonic oscillator.

Further measurements are in progress to determine
the effect of biasing electric fields on the dispersion of
(Ba-Sr)TiOs ferroelectrics. The effect of grain size on
the spectrum is also of interest to examine the possibility
of acoustical resonance.

' C. Kittel, Phys. Rev. 83, 458(1951).
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The magnetic moment transformation developed by Fisher enables the antiferromagnetic susceptibility
of the plane triangular Ising lattice to be expanded as a power series that converges over the whole tempera-
ture range 0 ~& T ~&~.The dominant asymptotic behavior of the coe%cients conjectured from extrapolations
by Domb and Sykes, and independently by Park, has been established theoretically by Fisher. A counting
theorem based on the method of Oguchi enables the erst twelve terms of the expansion to be derived. It is
found possible to evaluate the susceptibility numerically over the whole temperature range with a maximum
error of 0.1% at T=O. It is concluded that the specific susceptibility per sp~n ~~~~0™) falls smoothly
from unity at T= oo to a value at T=O which does not differ by more than 0.1% from 3/36, and the form
of the counting theorem leads it to be surmised that it is exactly 3/36.

1. INTRODUCTION

~'O exact closed analytical expression has yet been
given for the zero-field susceptibility of any two-

dimensional Ising model. It is the purpose of the present
paper to evaluate the antiferromagnetic susceptibility
of the plane triangular lattice numerically from exact
series developments.

At high temperatures the reduced zero-field sus-

ceptibility x de6ned as kTxo/m' may be expanded
in powers of the high-temperature counting variable
n=tanh(J/kT), by the method of Oguchi'' as

x(r)=P„a„e", ao ——1.

The first 12 coeKcients have been obtained by Sykes. '
The a„are positive integers and the series converges'
only for

~

e
~ ~&ef, where e'= tanh(J/kTr) =0.267949 and

Tf is the ferromagnetic Curie temperature. The series

(1) can only be used to estimate x(v) in the range

~.~&., t.e., r, &r&
' T. Oguchi, J, Phys. Soc. Japan 6, 31 (1951),
2 M. F. Sykes, J. Math. Phys. 2, 52 (1961).' C, Domb and M, F. Sykes, J. Math. Phys. 2, 63 (1961).

At T=0 which corresponds to e = —1 the ground state
of the antiferromagnetic triangular lattice is highly
degenerate4 and no series or asymptotic developments
about this origin have so far been given.

Recently Fisher' has developed a magnetic moment
transformation that relates the reduced susceptibility
of the triangular lattice to that of the honeycomb
lattice. If pz denotes the reduced susceptibility of the
triangular lattice and pH that of the honeycomb lattice,
then

for
Xr(e) =sLXrr(~)+Xa( —~)1,

w'= e(1+v)/(1+v').

(2)

(3)

' G. H. Wannier, Phys. Rev. 79, 357 (1950).' M. E. Fisher, Phys. Rev. 113, 969 (1959).

Equat. ion (2) relates the susceptibility of the triangular
lattice at temperature v to the mean of the ferromagnetic
and antiferromagnetic susceptibilities of the honeycomb
lattice at a temperature w determined by (3). As e

varies from 0 to —1, m' varies from0 to —~~ and thehigh-
temperature honeycomb susceptibility series corre-
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sponding to (1),

err( w) =Q „b w", b = 1, (4)

converges for —
3 «m «0 since for the honeycomb

lattice ~i ——1/K3. Thus the series development of the
right-hand side of (2), which we shall denote by xr(w),
will converge over the whole antiferromagnetic tempera-
ture range 0&~ v&~ —1. The expansion of xr(w) has been
derived up to the term in m'4 by Sykes' using a special
counting theorem. The asymptotic behavior of the
coeKcients is accurately known' and it is therefore
possible to evaluate the function x(w) numerically with
high accuracy over the whole range; this is undertaken
in the next section.

Similar transformations can be applied to the anti-
ferrornagnetic Kagome lattice' ' and we shall evaluate
the corresponding reduced susceptibility xi'(t).

We shall compare the results obtained with the be-
havior of some standard approximations and other
numerical extrapolation techniques.

TABLE I. Values of e„ for the series x'r (w).

7
8
9

10
11
12

en

2.9985
2.9973
2.9982
2.9988
2.9985
2.9988

To do t,his we divide out the second factor in (9) and
this is conveniently done logarithmically. We set

and find
in' (w) = lnxr (w)+ (7/4) ln (1—3w') (10)

suggested by a paper by Park, ' which enables the
series (5) to be summed accurately. We suppose that
near w, the function xz(w) behaves like (1—3w') '"
and investigate the assumption that we may write

2. SUMMATION OF THE SERIES gz(w)

The series to be summed is'

xr (w) =2„c„w-'"= 1+6w'+ 24w4+ 90w'+ 318w'

+1098w&o+ 3696wrs+ 12 270w'4

+40 224wis+ 130 650wis+421 176wso

+1 348 998w"+4 299 018w'4+ . (5)

The asymptotic behavior of the coefficients in high-
temperature susceptibility expansions of two-dimen-
sional lattices has been studied by Bomb and Sykes' '
and by Park' who concluded that for large e the a„
of (1) behaved as ti'f4vr " and this corresponds to a
singularity at rtr of the form (vi —tp) '".This conclusion
has recently received rigorous support from the work
of Fisher' on the simple quadratic lattice and we shall
suppose that these conclusions are exact for the tri-
angular and honeycomb lattices —that is, we shall sup-
pose that in (5)

lny(w) p d wsn Q 75ws 1 875w4y2 25ws
—5 4375ws+12 15wio —26 625wis

+54.1071428w"—109.21875w"+210.75w"
396.375wso+ 666.0681818w

—923.8125w'4. (11)

In Table II the successive values of the ratios
r„=d„/d„ i in (11) are given. It would appear that the
quantity r„ is approaching a limit well below 3 and that
the assumption that the singularity occurs as u factor
is correct.

We now write
12

lnxr(w) = —(7/4)ln(1 —3w')+ Q d„w'"+R(w), (12)

where R(w) denotes the remainder after summation
of the first 12 terms of (11).We shall denote the value
of zz(w) obtained by neglecting this remainder by
yz (w)is, and we have

x, (w) =x, (w) is expR(w). (13)

The extent to which the coefficients conform to this
limiting behavior for the values of m at our disposal
may be judged from an examination of the quantity
0„=c„/c„ i(1+3/4e) as proposed by Domb and Sykes'
which, if (6) is correct, will approach 3 as n, increases.
The last six values of 0„are given in Table I and it will
be seen that even for small values of e the asymptotic
behavior is remarkably well observed. In fact, the series
(5) is the most smoothly convergent high-temperature
Ising series we have yet encountered.

To evaluate xr (w) we shall employ a device

M. K. Fisher, Physica 25, 521 (1959).
7 S. Naya, Progr. Theoret. Phys. (Kyoto) 11, 53 (1954).

C. Bomb and M. F. Sykes, Proc. Roy. Soc. (London)A240,
214 (1957).' D. Park, Physica 22, 932 (1956),

TABLE II. Values of r„=d„/d„& for the expansion of lnplw).

r5 ——2.2345
r6= 2.1914
r7 =2.0322
rg ——2.0186

rg = 1.9296
r10——1.8808
~11=1.6804
r12 = 1.3870

Since we may suppose that the ratios in Table II are
monotonic decreasing, we observe that on taking the
last ratio and assuming a geometric progression we have

1&~ expR(w) &~0.9985 for —1~& s&~0, (14)

and therefore the approxima, tion xr (w) ts will be correct
to within 15 parts in 10 000. The behavior of the ratios
in Table II is not sufficiently regular to suggest any
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FIG. 1.The reduced antiferromagnetic susceptibility of the plane
triangular lattice; (g) Exact, (E) Energetic approximation. (k)
Kikuchi approximation, (8) Bethe approximation, and (G)
Residual correlation function.

On the same figure we also plot gr~(v) and the residual
correlation function G(v). The function G(v) is negative
in the region —0.51372&v&0, and the difference
xz —gp has a maximum value in this range of about
o% of yv near v= —0.37 (or 0.7T~) and is zero at
v= —0.51372 (0.48Tf) where G(v) changes sign. Thus
effectively the approximation x& (v) is accurate to
within 2% in the temperature region or Ty & T& ~; at
~T~ the error is 9% and at 0.1Tr it rises to near its
maximum value of 20%.

more refined extrapolation. The remainder R(w) will

have a maximum value at T=O or m'= ——', . At this
point, from (13) and (14), we calculat. e

0 13884&~yr (w' = —-', ) ~& 0.139093. (15)

To complete the extrapolation we observe that a
study of the configurational data required to derive the
high-temperature series for xv(v) leads to the con-
clusion' " that we may write

x(v) = (1—ov) '11—(o.—1)v+v' —2vU(v)+G(v)3, (16)

where o.+1 is the coordination number, U(v) is the
reduced energy U(0)=0, U(1)=q/2, and G(v) is an
unknown function de6ned in terms of certain lattice
configurations but not known in closed form. It is found
that the approximation obtained by neglecting G(v),
which we shall call the energetic susceptibility (yv~), is
correct to within —,'% in the region —v~~& v~&0. )In this
region the approximation yv(w)t& will be correct to
within 0.02%.]We must therefore suppose that at high
temperatures the energy, which is determined by the
first-order correlations between spins, plays a dominant
role. At low temperatures, however, the function G(v),
which we shall call the residual correlationfunction,
becomes important. By substitution of (15) in (16) we
6nd that at n= —1

0.9998&~G(—1)&~1.0074,

Urc (v) =2 (1+v)'UH (w*)/3 (1+v')

+2v/(1+~') —v(1+v)/(1+v'), (2o)
for

w*= v(1+v)/(1+v'). (21)

For the antiferromagnetic region —1&v(0 the vari-
able zv* varies from 0 to ——,

' and is therefore always
entirely inside the circle of convergence of the high-tem-
perature expansion of err(w*) which is —1/3l&w*&0.
Since 24 terms' of the expansion of xlr(w*) are available,
the quantity pre(v) can be evaluated accurately over
the whole antiferromagnetic temperature range. By a,

straightforward numerical extrapolation we estimate

err (—1/3'*) =0.397193&0.000002, (22)

4. ANTIFERRONAGNETIC SUSCEPTIBILITY OF
THE KAGOME LATTICE

The relationship between the partition functions of
the Kagome and honeycomb lattices has been studied
by Nayar and Fisher. ' The reduced energy Urc(v) and
reduced susceptibility pre(v) of the Kagome lattice can
be related to those of the honeycomb lattice. In our nota-
tion the results may be written

xrc(v) = 1+v(1—v+ v') L6x~(w*)
—

2 UrI (w*)/3 —2$/(1+ v')' (19)

and from this we shall conclude G(—1) is very probably
unity. We have therefore employed as remainder the
expression

R(w) = 1260w'-'/(1+1. 364w') (18)

and for the Kagome lattice

pre( —1)=0.18943&0.00001,

G(—1)=0.3643.

(23)

(24)

which corresponds to taking a geometric progression
after the last term in (11) with a common ratio chosen
to make G(—1)=1. The relatively small value of the
remainder leads us to suppose that the value of )tv(w)
calculated from (13) and (18) should prove correct to
5 parts in 10000.

The quantities xx(v), xrc~(v), and G(v) for the Kagome
lattice are plotted in Fig. 2. The function G(v) is always
positive for this lattice.

a.o

3. ANTIFERRONAGNETIC SUSCEPTIBILITY OF
THE PLANE TRIANGULAR LATTICE

By the method of the previous section the suscepti-
bility of the plane triangular lattice has been calculated
and we plot the result against the variable v in Fig. 1.

' M. F. Sykes and M, E, Fisher, Phys. Re@. T.etters 1, 321
(1958),

0.5

-0.5 gJ o.o
FIG. 2. The reduced antiferromagnetic susceptibility of th e

Kagome lattice; (y) Exact, (E) Energetic approximation, and
(G) residual correlation function.
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U(v) =3v+6v'+ 12v'+24v4+54r, '+
This series has a generating function (HoutappeP')

—(1+v') 1—3v —3v'+v' 2
—E(k)—1,

(1—v)'

(25)

where E(k) is the complete elliptic integral of the first
kind and 0'=16v'(1 —v+v')/(1 —v)'(1+v)'. Althoughthe
series (25) converges only for

~
vI &~v~, expression (26)

is valid for all ~v~ &~1. Because of this, the energetic
susceptibility can be continued analytically down to
v = —1 and it seems likely that if the generating function
of the series for xp(v) could be recognized it would prove
to be the complete solution.

In the standard Bethe approximation the high-
temperature expansion for the susceptibility has as
generating function the Firgau formula, "

ys ——(1+v)/(1 —~v), I v
i
(1/0. (27)

The restriction on the range in (27) results from the as-
sumption in the derivation of x~ that there is no long-
range order. Since no long-range order is possible on the
triangular lattice for J&0, we take as the Bethe ap-
proximation in the low-temperature antiferromagnetic
region the analytic continuation of (27) which we plot
in Fig. 1. Since this approximation depends only on the
coordination number and neglects the detailed structure
of the lattice, it is not surprising that it gives only a
crude representation at low temperatures.

An approximation which makes some allowance for
the structure of the lattice is that proposed by Kikuchi, "
and the corresponding high-temperature susceptibility
has been evaluated by Burley, '4 who finds for the tri-
angular lattice

»(v) = (1—v)/(1 —») (1—4v),
l

v
I

&~-: (28)

Here again the restricted range of e results from the
assumption of no long-range order. We plot the function
(28) in Fig. 1, and it will be seen that the approximation
is almost as good as xv~. At T=0, (28) gives
xI, (—1)=0.100 while xr~( —1)=0.111. We remark in
parentheses that the ground state of the triangular
lattice is highly degenerate and has a finite entropy4
of 5/2=0. 32306, while the Kikuchi approximation"

"R.M. F. Houtappel, Physica 16, 425 (1950).' U. Firgau, Ann. Physik 40, 295 (1941)."R.Kikuchi, Phys. Rev. 81, 988 (1951).
'4 D. M. Burley, Phil. Mag. 5, 909 (1960).

5. APPROXIMATIONS AND EXTRAPOLATIONS

Before examining some of the approximations that
have been proposed for the antiferromagnetic suscepti-
bility of the Ising model, we make the following general
observation.

The reduced energy of the triangular lattice may be
expanded at high temperatures in powers of v as

yields 5/R=0. 2877 which may be regarded as reason-
able for so simple an approximation.

At the temperature T=T~, i.e., when v= —e~, we
find

g, (—v,) =0.339277,

xg (—vr) =0.339271,

yy, E ( vr)—=0.340157.

(29)

which reproduces the first 8 terms of the expansion of

xr(v) correctly, "may be regarded as an excellent ap-
proximation to xr for

~
v~ (v~. At v= —vy, (30) gives

0.33917 compared with the exact value of 0.33928;
it has the correct radius of convergence (namely the
least positive root of the quadratic factor), and this
occurs to the correct power. The representation will be
satisfactory both for the ferromagnetic and for the
antiferromagnetic susceptibility. We shall call such an
approximation an "algebraic mimic, "and such a mimic
provides a convenient method of summation of the series
but is quite unsuitable for analytic continuation unless
it happens to be the true generating function. In fact
Eq. (30) yields the inadmissible value x(—1)=~.
Algebraic mimics can be constructed which generate
any required number of terms correctly, but we have
so far been unable to find any mimic that could be
proposed as the exact solution, which as we have already
urged could be continued analytically, and it seems un-

'5 Ninth term 732 694 in place of 732 678.

The excellent agreement (0.002 jo) between the first
two estimates in (29) is to some extent misleading, since
it is fortuitous in much the same way as the agreement
between xz~ and xT at v= —0.51372 which results from
the change of sign of G(v) at this point.

The deficiencies of the Kikuchi approximation are
more evident in the ferromagnetic region where (28)
predicts a singularity of type (vy —v)

' in place of
(v f—v) '". Instead of the analytic continuation of an
approximate high-temperature formula, we could at-
tempt to continue a representation of the high-tempera-
ture series y(v). A method of deriving such a representa-
tion has been discussed by Park' and for details reference
should be made to his paper. Essentially it consists in
finding a function which generates all the known coe%-
cients correctly. If the true generating function is a
simple one, it will be detected and the complete solution
obtained in closed form. Park was able to identify the
magnetization of the simple quadratic lattice in this
way from its series expansion. The method is fraught
with danger since an approximation that gives the first
m terms of a series correctly is not necessarily a good
one. It will be better if it also gives the correct radius
of convergence and better still if it has the correct
asymptotic behavior. In this respect the function

x~(v) = (1—4v+") '"(1+»')(1—v)'(1+v')'
X(1+2v') '(11v) &, (30)
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likely in view of the form of (26) that y(v) would prove
to be algebraic.

Another method of mimicking the high-temperature
expansion is that employed by Domb and Sykes' for
the corresponding ferromagnetic problem. They write

g(v) =2 (1—t) 'I'+1t (t), 1/t= v,/v, (31)

the polynomial z(t) being chosen to reproduce the
known terms correctly. The values they quote for the
triangular lattice give y( —vf) =0.3385 which is correct
to 0.23%, but the number of signi6cant 6gures quoted
is inadequate for the antiferromagnetic problem and
only 8 terms were at their disposal. With the 12 terms
now available, the representation (31) could be im-
proved and the method is again adequate for summation
in the high-temperature region. As T—&0, t —+—~
and the form of P(t) makes an estimation of y( —1) by
this method impracticable.

6. CONCLUSIONS

A formula has been given that enables the anti-
ferromagnetic susceptibility of the plane triangular
lattice to be evaluated over the entire temperature
range with a maximum error of 5 parts in 10000 at

T'=0. That this has proved possible results from three
facts. First, the magnetic moment transformation yields
an expansion that converges up to T=O. Second, the
asymptotic behavior of the coefficients is well established
and this makes a reliable summation possible. Third, a
counting theorem enables an adequate number of terms
of the series to be derived.

We have found that, while adequate for estimating
y(v) in the range 0)v) —vt, none of the approximate
methods previously proposed for extrapolating the high-
temperature susceptibility series enables the suscepti-
bility to be evaluated at low temperatures. In the range
~T~&T& ~, the energetic approximation is the most
satisfactory. Unfortunately, although this is probably
still true for three-dimensional lattices, the energy is not
known exactly in these cases.
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The recovery of quenched-in extra resistivity has been studied in thin gold wires, to which atomic concen-
trations of silver equal to 1.2X10 ' or 1.40&10 ' have been added. Recovery occurs at higher temperatures
than for pure specimens, the eQ'ective activation energy being larger than 1 ev. The interpretation is that
vacancy-impurity complexes are formed, whose binding energy is about 0.3 ev. Evidence of motion of
defects at low temperature is also obtained in the case of impure specimens.

I. INTRODUCTION

GREAT deal of attention has been devoted in
the last few years to the kinetics of lattice

vacancies in face-centered cubic metals. After the first
results by Koehler et al.i for gold, the quenching method
has been widely used to inject vacancies into the
specimens; the features of recovery of quenched-in
extra resistivity during annealing at suitable tempera-
tures have been assumed to be directly related to the
behavior of lattice vacancies.

Experimental evidence has been accumulated, how-

ever, to show that recovery is very seldom a simple
process. Actually, if the equilibrium concentration of

~ Laboratori Centro Informazioni Studi Esperienze and Istituto
di Fisica del Politecnico, Milano, Italy.' J. W, Kau8man and J. S. Koehler, Phys. Rev. 97, 555 (1955).

vacancies at the quench temperature is large, di-
vacancies are very likely to be formed during quench,
which inhuence the annealing kinetics. "Moreover,
electron microscope observations by Silcox and Hirsch'
and investigation of changes in mechanical properties
during annealing by Mori, Meshii, and Kauffman'
provided clear experimental evidence that the formation
of vacancy clusters is also important in quenched gold.

Annealing kinetics seem to be simple and reflect
essentially the behavior of pure vacancies only if the

2 J. S. Koehler, E. Seitz, and J. E. Bauerle, Phys. Rev. 107,
1499 (1957).

3 G. J. Dienes and A. C. Damask, Trans. Faraday Soc. (to be
published).

J. Silcox and P. B. Hirsch, Phil. Mag. 4, 72 (1959).
~ T. Mori, M. Meshii, and J. W. Kauffman, Acta Met. 9, 71

(1961l.


