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The conditions necessary in metals for the presence or absence
of localized moments on solute ions containing inner shell elec-
trons are analyzed. A self-consistent Hartree-Fock treatment
shows that there is a sharp transition between the magnetic state
and the nonmagnetic state, depending on the density of states
of free electrons, the s-d admixture matrix elements, and the
Coulomb correlation integral in the d shell; that in the magnetic
state the d polarization can be reduced rather severely to non-
integral values, without appreciable free electron polarization
because of a compensation effect; and that in the nonmagnetic
state the virtual localized d level tends to lic near the Fermi sur-

I. INTRODUCTION

ECENT experimental results' have shown that
the occurrence of localized magnetic moments on
iron-group ions dissolved in nonmagnetic metals is a
more widespread, more systematic, but at the same time,
more complicated phenomenon than previously sus-
pected. In dilute solutions of iron, cobalt, and to a lesser
extent, nickel, the appearance of such moments seems
to be a function mainly of the host metal, although the
moments observed differ greatly from one solute to
another. As a function of the Matthias “electron con-
centration” parameter, one finds sharply defined re-
gions where localized moments are strictly absent,
interspersed with regions at the edges of which the
moments appear almost discontinuously.

The regions of localized moments have a noticeable
negative correlation with the superconducting transition
temperature, and a rather less strong correlation with
low density of states as measured by the low-tempera-
ture specific heat yT.

Such localized moments in metals have been often
accepted as an experimental fact without examination
of their meaning or of the conditions for their occur-
rence. Friedel .and collaborators have made a start at
an understanding of the phenomenon?; extending their
work and some of the concepts set forth by us earlier,?+
we will here attempt to describe formally, in a highly

1B. T. Matthias, M. Peter, H. J. Williams, A. M. Clogston,
E. Corenzwit, and R. C. Sherwood, Phys. Rev. Letters 5, 542
(1960); B. T. Matthias and A. M. Clogston (to be published).
There is, of course, a large literature on specific examples of
localized moments, for which the reader is referred to extensive
bibliographies in the papers of Friedel. (See reference 2.) The
cited papers, however, are the first to bring out clearly the
nature of the phenomenon of appearance and disappearance of
localized moments as a function of the continuous variation of the
nature of the solvent metal.

2 P. de Faget de Casteljau and J. Friedel, J. phys. radium 17,
27 (1956); J. Friedel, Can. J. Phys. 34, 1190 (1956); J. phys.
radium 19, 573 (1958); Suppl. Nuovo cimento VII, 287 (1958);
A. Blandin and J. Friedel, J. phys. radium 19, 573 (1958).

3P. W. Anderson, Oxford Discussion on Magnetism, 1959
(unpublished).

4 P. W. Anderson and A. M. Clogston, Bull. Am. Phys. Soc. 6,
124 (1961).

41

face. It is emphasized that the condition for the magnetic state
depends on the Coulomb (i.e., exchange self-energy) integral, and
that the usual type of exchange alone is not large enough in d-shell
ions to allow magnetic moments to be present. We show that the
susceptibility and specific heat due to the inner shell electrons
show strongly contrasting behavior even in the nonmagnetic
state. A calculation including degenerate d orbitals and d-d ex-
change shows that the orbital angular momentum can be quenched,
even when localized spin moments exist, and even on an isolated
magnetic atom, by kinetic energy effects.

simplified model, a quantum state of the metal in which
such a moment exists, and to discuss the conditions
required for its stability.

The fundamental conceptual difficulty here is that
such a localized moment cannot be satisfactorily de-
scribed within the usual type of one-electron theory
which is adequate for the properties of nonmagnetic
solids. The first problem is that in polyvalent metals
the bandwidths are so great that the energies of the
one-electron states which might contain the magnetic
electrons are certainly coincident with a free-electron
band. One-electron theory does not permit localization
of such a state; the best one can do is to use a virtual
state,? a state which, left to its own devices, would decay
into one of the continuum of free-electron states.

The second problem is that it is very difficult to
understand how, in a usual Hartree-Fock theory, the
states of opposite spin on the ion can be empty while
the parallel spin states are full. For instance, in solutions
of Fe in Mo-Nb alloys, the Fe ion changes from being
nonmagnetic to having a moment corresponding to
about two electrons when the concentration is varied
by only a few percent. This is impossible to credit as
gradual filling up on one-electron energy states, even
if we accept exchange as strongly favoring the parallel-
spin states. There must in fact be a nearly discontinuous
change in the quantum state of the many-electron
problem.

The picture we suggest is founded on the same type
of concept which is valuable in insulating magnetic
materials® and which has been suggested as being es-
sential in magnetic metals®: That the magnetic state is
characterized by being the state in which the Coulomb
correlation integral of electrons in inner shell states is
a major parameter of the problem and must be included
in the Hartree-Fock treatment from the first. Under
these circumstances, the Hartree-Fock fields for elec-
trons of different spins differ not only by exchange in-

5 P, W. Anderson, Phys. Rev. 115, 2 (1959).
6 J. H. Van Vleck, Revs. Modern Phys. 25, 223 (1953); refer-
ence 3.
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tegrals but by true Coulomb integrals, and only this
circumstance makes localized moments possible in the
iron group.

The essence of what we do is a self-consistent calcu-
lation of whether this localized moment exists. The
principle of the method is this: Assuming that the local-
ized moment exists, this means that a d-shell state ¢q
on the impurity atom of spin up is full; of spin down,
empty. If we are to include the repulsive energy within
the d shell in our Hartree field, an electron of spin down
will see the repulsion of the extra spin-up electron, while
the electrons of spin up will not, since they can have
no exchange self-energy. Thus if the unperturbed energy
of the spin-up state lies a distance E below the Fermi
surface, the energy of the spin-down localized state will
by —E-+U, where U is the repulsive d-d interaction;
this must lie above the Fermi level because we assumed
this state empty.

Now we have shown? (it is in fact obvious) that the
effect of covalent admixture of free-electron states with
the d states is to reduce the number of electrons in the
spin-up state and to increase the number in the spin-
down state; thus there is a reduction in the total mo-
ment. We concentrate our attention here, however, on
the changes in number of d electrons. These changes are
such as to decrease the difference U between the spin-up
and spin-down energies; —E moves up to —E+nU,
—E+U down to —E+U(1—6m). én is larger the larger
the density of free electrons, the larger the d to free-
electron admixture matrix element, and the smaller the
energy difference between up and down states. If, by a
change of one of these parameters, o is increased, the
energy difference decreases. We will show that eventu-
ally the situation breaks down cooperatively and be-
comes completely unstable, and it is no longer possible
to maintain a localized moment.

When it is not possible to maintain the moment, the
up- and down-spin d functions are equally occupied; we
give here a self-consistent discussion of this state of
affairs which shows that the highest partially occupied
d level in this case tends to lie near the Fermi surface.
We will give a brief discussion of susceptibility, specific
heat, and other properties of such a state, and show that
in it correlation effects can be of great significance to
these properties of the metal; in particular, there may
be a large, slightly temperature-dependent suscepti-
bility which does not come from localized, orientable
spins and is not reflected in the specific heat.

Before giving a detailed account of the theory and
going on to discuss the possibilities of further extension,
we will emphasize a few aspects of the results.

First, in the “localized” state itis irrelevant whether
or not one speaks of a real or virtuallevel. Evenin the vir-
tual case, the moment is made up of the sum of contri-
butions from actual stationary states of the full one-
electron problem and cannot decay in time. We do expect
that the state will usually be virtual in Friedel’s sense?
and that it can contain any nonintegral number of spins.

Nevertheless, in many other ways the results—but
not the methods—are best described in terms of a model
with actual localized electrons rather than in terms of a
many-electron band type of model.

Second it will be worthwhile to emphasize the com-
parisons and distinctions with respect to the earlier
work of Friedel.? (See especially the paper of Friedel
and Blandin.) Friedel has foreshadowed qualitatively
some aspects of our ideas, most particularly in the fact
that the only logical description of localized magnetic
electrons on impurities in metals is in terms of virtual
states. His discussion of these virtual states in terms of
scattering theory, however, is considerably different,
because he does not identify them closely with localized
atomic states, as we find strong physical reasons to
do. (In some of his work this connection has been
foreshadowed.)

On the other hand, there are several vital differences.
The most important is that he uses as the term which
splits the spin up-spin down energies not the Coulomb
integral

U= f [ 90100(1) l2€27'12_1| S"loc<2) PdT:

but true atomic exchange integrals. In a sense U is
an exchange integral—the exchange self-energy of ¢,
in fact—and in the general formulation of the Hartree-
Fock method one can consider it so, but in fact the
exchange self-energy term is usually—and incorrectly—
ignored (see reference 7). However, the formal theory
is much more straightforward if one includes U in the
manner in which we do it, as a repulsion of opposite-spin
electrons in @i, NOt as an attraction of parallel ones.
Quantitatively, U is very much larger than ordinary
exchange integrals, and we will see that the size of U
is actually necessary to explain the magnetic state.
Exchange of the usual type is, as we shall see, a helpful
influence where more than one d electron is involved,
but not a major factor.

The other major difference is our use of a formal,
self-consistent theory to derive the behavior in terms of
the model parameters, and particularly the criterion for
magnetism, which we find to be considerably more severe
quantitatively than Friedel’s, although it is of similar
form. In general, we have constructed a much more
explicit picture of the actual state of affairs.

A less central difference is our discussion of screening
effects and their absence in the localized magnetic states
as opposed to normal impurity states. We ascribe a
considerably greater role to this feature than to the
width of the virtual states in determining which solute
ion states can show magnetism.

We will not make any attempt at detailed applications

7 One can trace the neglect of this term back to early papers
in the theory of magnetic metals, e.g., J. C. Slater, Phys. Rev. 49,
537 (1936), where the formal expressions given actually do include

this term, but the evaluation from atomic energy levels drops it
out again.



LOCALIZED MAGNETIC STATES IN METALS 43

of our results but merely set out a rather schematized
model to show the principles which we believe apply in
practice. In a last section of this paper we will discuss
possible further extensions and applications.

II. THE HAMILTONIAN; APPROXIMATIONS
OF THE MODEL

The model we use can best be summarized by writing
down the Hamiltonian:

H=H0f+H0d+Hc0rr+H3d- (1)

Here Hy; is the unperturbed energy of the free-electron
system in second-quantized notation:

Ho,r= Z €xMka,
)

Mo = Cko Cko

€ 1s the energy of the free-electron state of momentum
k, nxs the number operator for momentum % and spin
g, and cxe and cx.* the destruction and creation opera-
tors. The continuum of free-electron states has a density
p(e), which we normally assume constant, although it
may easily be verified that a reasonable energy varia-
tion of p(e) has little effect on the results.

In a real metal the “free-electron states” may be
assumed to consist of the usual s and p free-electron
shells for which quasi-free electrons are a good approxi-
mation, as well as in some cases—certainly Sc and Y
and, we suspect, as far into the d shell as V or Mo—the
“free” d electrons. As Slater and Wood have pointed
out,® near the bottom of the band the d states are almost
as extended as s and p states. Still farther into the transi-
tion series, only a portion of the delectrons could reason-
ably be taken free in our sense. (The essential criteria
will appear in discussing Heorr.)

The second term, Hoq, is the unperturbed energy of
the “d” states on the impurity atom. In the discussion
in the body of the paper, we assume the physically un-
realistic case of a single nondegenerate level, because
the principle of the method is easily extended to the
more complicated many-level & or f shell. In an Ap-
pendix we give the extension to a many-level shell; the
only new feature there is internal exchange, which is a
favorable effect. The term in the Hamiltonian is

Hoq=E(nap+na-). (3)

A real question with respect to Eq. (3) is the precise
definition of the localized eigenfunction ¢q; and in fact
why we treat the effect of the solute atom entirely as
that of a separate localized state ¢4 and not purely as
an impurity potential acting on the free electron gas,
as is done by Friedel? and in many impurity problems
not involving transition metals. The main reason will
become clear shortly: that the correlation effects in
@4, which is visualized as an inner shell level, are larger
than for the free electrons because of the inner shell
character of ¢g.

3. H. Wood, Phys. Rev. 117, 714 (1960).

On the other hand, this separation and our theory
are only easily applicable if ¢; is, in fact, orthogonal to
the Wannier functions belonging to all of the free-elec-
tron band or bands. This allows us to distinguish the
“d” state clearly from the free-electron states, and
makes it plausible to leave out of our model Hamil-
tonian (1) the direct perturbation in the energy of the
band functions caused by the impurity, as being ir-
relevant to the magnetic problem. We can in fact make
—if we like—¢q orthogonal to Wannier functions on all
centers, but this will not be essential.®

The assumption of a d state distinct from the free
electron band is not essential in order to form a virtual
state; as Wolff'® has pointed out, even in the Slater-
Koster one-band theory virtual states can appear. On
the other hand, in physical fact a localized d state has
no resemblance to the band states near it in energy.
In spite of the fact that because of completeness it can
of course be built up out of a superposition of plane
waves, the requisite plane waves are primarily in bands
far from the Fermi level and thus need not be included
in the free-electron Hamiltonian (2).

The third term, Heor, is the repulsive energy among
the d functions, which we schematize as

Hor= U”df'ﬂdl,

4)
sz[@d(r1)12|<Pd(r2)’2€2|1‘1—r2[_1d7'1d‘rg.

We have here neglected the correlation energy of the
electrons in “free-electron” states and the d-free repul-
sion. The free states, even if, as in such metals as Y
or Sc, they are partially d states, are very much more
extended throughout the unit cell than are the localiz-
able states near the top of the d band®?; for this reason,
and particularly because the free electrons experience
a much more effective screening than the inner shells
do, it is reasonable that U, in effect, might be ~10 v
for inner-shell d functions but only a few volts for free
functions. Energy-level tables even for free atoms show
that s-s and s-d repulsive energies are 2-3 v smaller
than d-d energies; but we rely mainly on the fact that
the free electrons in the metal are much more spread
out and much better screened than in the atom. It has

9 In cases like Sc, Ti, and other lower d-shellions, it may be most
convenient to treat the free-electron states as orthogonalized
plane waves, which is in fact a fair approximation. On the Sc or
Ti site, the plane waves are orthogonalized to 1, 2, and 3 s and
$ but not 3d states; therefore, they have considerable 3d character
even though they are basically free states. On the Fe or other mag-
netic type site, however, they must be orthogonalized to all 3d
levels also; as demonstrated by M. H. Cohen and V. Heine, Phys.
Rev. 122, 1821 (1961) this minimizes the perturbation of the free
electron potential by the Fe atom. We are suggesting, then, that
the two types of d states often postulated [see reference 8] are
those which are essentially orthogonalized plane waves, and those
which are made up primarily of atomic d wave functions.

P, A. Wolff (to be published). Wolff shows that similar phe-
nomena to those we describe occur even when the Freidel type of
virtual state is used; this is reassuring but we believe the present
approach is simpler and more physical.
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Fi1c. 1. Unperturbed energy levels in the absence of s-d
admixture.

been suggested in the past!! that the d-d repulsion might
be to some extent screened out by s electrons; we think
that such screening would require a kinetic energy loss
to the s electrons as great as or greater than the correla-
tion energy gained, and would be quite ineffective.

As we mentioned earlier, U is formally the exchange
self-energy of the state ¢4 as well as the Coulomb inte-
gral of that state. Thus, formally, we could write the
exchange and correlation terms

3K (mr+ny) (ma+ny) —3J (nyny+nine),

where both K and J are U; this shows the parallelism
with normal exchange, but also shows why the term is
often dropped, because the J part is really only a one-
electron energy ni—+ny.”

A sound argument from experiment that U must be
large is the observation that in some cases Hund’s rule
is obeyed, so that intra-atomic exchange is clearly not
screened in the & shell; and mechanisms which screen
U would also tend to screen the exchange integrals.

The fourth essential part of the Hamiltonian is the
s-d interaction term

H =3 Var(cxo castcas*cxo)- (5)
k,o

This type of s-d interaction is a purely one-electron
energy, entirely different from the s-d exchange inter-
action which enters the Zener type of theory. The d
function usually has a symmetry different from the
Wannier functions on the atom it occupies, so that

11 C, Herring, see reference 6.
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matrix elements with the Wannier functions of the
band on the same atom vanish; this is why such effects
as we discuss do not usually appear in a one-atom theory.
But there is no reason whatever for the matrix elements
with Wannier functions on neighboring atoms to vanish.
These matrix elements may be estimated to be of the
order 2-3 ev or even more, from various sources—for
instance, the lowering of the binding energy of Cu and
other noble metals relative to the alkalies can be ascribed
to s-d interaction.’?

The effect of symmetry allows us to write down a
useful expression for Vg in terns of Wannier functions
a(r—R,) belonging to the band:

1
N f ¢ (03rr(r) X e™*ra(r—R,)

Vax=

(6)

1
P p— ik-Rp
VN R%éo ¢ Va(R).

This has been used* to evaluate some of the perturbation
theory results for polarization and other parameters.
It will not be necessary in this paper, however, to
simplify Vax except to assume that the mean-square
matrix element, averaged over a surface of constant
energy ex, does not vary radically as we vary e;.

We treat the Hamiltonian (1) entirely in the Hartree-
Fock approximation. That and the approximations al-
ready made in setting up the Hamiltonian are the only
essential approximations; the one-electron problem
posed by Eq. (5) as a perturbation will be completely
solved later, in principle, although in much of what we
do we could, for simplicity, treat Eq. (5) in perturba-
tion theory.

III. SOME SIMPLE LIMITS

Let us first, however, exhibit the two simple limiting
cases, so that we can see the alternatives available. Let
us imagine first that V is very small and U very large;
for simplicity, place E a certain distance below the un-
perturbed Fermi surface, E+U above it. (See Fig. 1.)
It is clear what will happen in this case: one electron,
whether of spin up or down, will fall into the d shell
state, since it is below the Fermi surface. Now because
of the term Hcom, the effective one-electron energy in
Hartree-Fock approximation for the other 4 shell
state is now E-U, so that that state will remain
empty. Thus one electron and one only is in the d
shell, and this electron has a mean spin s=%, not
zero as it would be if it really were half an electron
apiece in spin-up and spin-down states. This state, then,
is the magnetic state. It is interesting to note that in
this state there is a large spin-dependence of the

2 A second source for this estimate is the size of the similar
matrix elements between d functions and ligand s and p functions
in magnetic insulators, as estimated from covalency effects or
superexchange integrals (see reference 5).
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Hartree field—if we. occupy o=+, for instance, the
Hartree field for spin-up electrons differs by U from that
for spin-down electrons. As we discussed earlier, this is
not the usual atomic exchange effect, but a kind of cor-
relation effect, which however appears within the unre-
stricted Hartree-Fock formalism. This type of exchange
(or correlation) has been applied extensively in molecu-
lar theory®® and in the theory of antiferromagnetism?
but not previously in metals.

A second simple type of assumption is to ignore the
possibility of unequal spin occupation and to suggest
that equal numbers of d electrons appear with + and
— spins. Again neglecting V' as an approximation, we
run into an interesting situation. If we assumed both
d states empty, then clearly both have energies E, below
the Fermi surface, and they must be filled. If, however,
we fill them, that too is not allowed because then both
have energy E4-U far above the Fermi surface. Clearly,
a rough approximation is that each d state be filled just
so that E4+(n)U~~ep: the state adjusts itself so that
it automatically lies near the Fermi surface. We shall
see that the more complete theory tends to do this also.

IV. HARTREE-FOCK THEORY

In order to give a reasonably accurate discussion of
the Hamiltonian (1), it must be treated in Hartree-Fock
approximation. That means that we assume the wave
function to be the (antisymmetrized) product function

Po= H Cn*q)vac; (7)

en<eR

where the one-electron state creation operators ¢,* and
energies e, are solutions of

[H,6n5*]] av®0= €oCrn-"Py, ®)

the “av’” meaning that three fermion terms in the com-
mutator are to be evaluated in terms of average values
for the state ®,.

In the case of our simple Hamiltonian (1) these equa-
tions are very easy to solve. Let us set

Cno'*=Zk(nlk)ade*+ (n[d)"cd"*; (9)

and the equations for the various unperturbed operators
are
[H,cxo*]| av=excxo*+ Viacao*; (10)

and
[H75d¢*] l av=— [E_[" U(”d ,—u>]cdv*+2k deckv*- (11)

The resulting “equations of motion” for the relevant
coefficients (7|k) and (#|d) are obtained by substitu-
tion of Egs. (9), (10), and (11) into Eq. (8):

em(n[k),=ek(nlk),+ de(n[d),, (12&)
ene(n|d)o=[E+Ulna, o)1 (n|d)s
+>k Vax(n|k),. (12b)

3P, 0. Lowdin, Phys. Rev. 97, 1509 (1955).

V. GREEN’S FUNCTION SOLUTION OF
ONE-ELECTRON EQUATIONS

Since these equations can, for practical purposes,
be solved exactly by Green’s function methods, we
shall not stop to give the perturbation theory answers,
even though they suffice under many circumstances for
qualitative results.

The results we want to use are never actually the
individual quantities (n|k), or the actual continuum
level energies e, but certain averages over these such
as, for instance, the mean density of admixture of the
do state into the continuum levels of energy e, i.e.,

pas(€)=2n 8(en—e)[ (n]d),[*

This will be the most important quantity because it
determines the d-function occupation number. This
and all other quantities of interest may be obtained
most directly by studying the Green’s function:

G(etis)=1/(etis—H).

In the representation 7z of exact eigenstates, G is
diagonal :

(13)

Gun?(et+is)=1/(e+is— €no), (13a)

but in the unperturbed state representation, its matrix
elements give the required densities; for instance,

1
pas(€) =; % | (@]n)q|? lim ey ey
=— (1/m)Im[Gas*(e) ;
while the total modified density of states is
po(e)= (1/m)Im[TrG°(¢)],

(14)

etc.
The equations for G are derived from Eq. (12), using

(etis—H)uGow= .

They are, making use of the abbreviations

E,,=E+ U(”d,—u>y (15)

and
E=e+tis, (16)
(8—E;)Gaa—2 x VaxGra®=1; (17a)
(8—€x)Gra"— VaGaa®=0; (17b)
(6= E.)Gix® =X VawGri’=0; (17¢)

kl

and

(8—ex)Grx"— ViwaGax’ = dirx. (17d)

From Egs. (17a) and (17b) we may immediately
solve for Gaq:

Gaa”(8)=[8—E,~ x| Vax|*(6—ex) "] (18)
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The sum in Eq. (18) may be evaluated:

i v 2(6—£k)—’£8 (Vo
i % Vaf = (Va9

Here we have neglected the effective energy shift of
the d state,

(19)

AEd=P{Z sz},

k e—ex

(20)

because it may be taken into account simply by shifting
the assumed unperturbed energy E. If the density of
states is reasonably constant AE; will not change very
radically as E, changes. Thus we see that, except for
the energy shift, Gqs behaves exactly as if there were
an energy state—the ‘“virtual state”—at

&=E,+iA,

where the “width parameter” A of the virtual state is

defined by
A=m{Vvp0(e). (21)

We usually assume that A is a constant parameter,
roughly independent of E,. The density distribution
(14) of the d state is

(e) m
Pdo\€)=———————.
T (e— Eq)* A2
Equation (22) is the most important formula for our
self-consistent treatment, but it will be of interest in
the problem of polarization in the free-electron bands to

(22)

E+u

e+ulnyy

-z 2a

R

€

T Py
Fic. 2. Density of state distributions in a magnetic case. The
“humps” at E+U{xn_) and E4U(n,) are the virtual d “levels”
of width 24, for up and down spins, respectively. The numbers of

electrons (n.) and (#_) occupying them are to be computed from
the area of the unshaded portion, below the Fermi surface.
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work out the remainder of the elements of G. Starting
with the off-diagonal elements of Eq. (17d), we obtain

ViraGax®
G =——,
— e

(k'=k).

This may then be substituted into Eq. (17¢) to give
[8—Ei— X |Vaw|*(8— ew) IGix"=V axGrxc”,
K>k

which, using Eq. (19), is
[8—Est+iA+|Vax|2(E— ) 1Gar"= VarGrx°.
Now, the diagonal element of Eq. (17d) gives us
l 18 dk[z —1
E— E, 1A+ | Var[2(8— ek)‘l] (24)
= (8—ex) ' +[| Vax|?/ (6— &) (86— Eo+iA)].

This can be interpreted to say that, although each
Gix has a pole at precisely the same energy, so that
its perturbed energy is unshifted, nonetheless a certain
amount of its density is to be found in the region of the
virtual state—the admixture effect.* This is given by

Varl® 9
)Zpd ’

(23)

Gyx®= [8—" €

—-—ImGkk(e)z
™ €E— €

(25)

near the virtual state. There are also shifts near the pole
in the density, which correspond to the polarization
effect computed in perturbation theory in reference 4.
We shall see later that the compensation theorem of
that reference may be derived directly from (24).

VI. SELF-CONSISTENCY CONDITIONS FOR
LOCALIZED MOMENTS

In the preceding section we obtained the expression
(22) for the density of d admixture in the continuum
states of energy e. In order to determine the number of
d electrons of a given spin o, we integrate this up to the
Fermi energy er, since all states e, below er are full
(at least at absolute zero). Thus

1 peF Ade
(nda> = f -
TV o (e—E,)?+A?

1 Ev_ €F
=-— cot™! )
T A
Now we must make this equation self-consistent,

which involves solving simultaneously the two equations
(15) and (26).

(26)

()= (EZH V)

11r E -i Ulnay) @n
L 2T ey
(nd_)=; cot ( A )
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Equation (27) is the fundamental equation of our self-
consistent method.

To show its meaning, we have plotted out in Fig. 2
a typical magnetic case. We show the two virtual states
in terms of their distributions pgs.(e) from Eq. (22)
centered around the self-consistent energies E, from
Eq. (15). The empty portions of the two distributions
are shaded.

To show the possibilities inherent in Eq. (27), let
us plot out (nay) vs (na_) in two cases. (See Fig. 3.)
For simplicity we have chosen er— E=U/2, and values
of U/A of 1 and 5. We see that when U/A is rather small,
such as the case U/A=1, there is only one place where
Eq. (27) is consistent, at (ny)=(n_)=3%. But as U be-
comes larger, the maximum slope of the cot™ curve
becomes steeper and at U/A=S5 we find the “localized”
case in which there are three possible solutions, one at
(nyy=(n_y=1 but another pair at (n,)=1—(n_)=0.822,
while (74 —#n_)=m=0.644, the moment in Bohr magne-
tons. The magnetic solutions are the stable ones ener-
getically (this is obvious because the Hartree-Fock
equations are variational; thus all three solutions must
be extrema, and since the end points of the range are
clearly not minima, this means that the two outside
solutions must be minima, the center one a maximum).

Before giving a physical discussion of these localized
moment states, let us work out some of the numerical
consequences of Eq. (27). Let us introduce the dimen-
sionless parameter

y=U/A, 29

the ratio of the Coulomb integral to the width of the
virtual state. When y is large, correlation is large and
localization is easy, while y small represents the “nor-
mal”’; nonmagnetic situation. The parameter

x=(ep—E)/U (29)

is also useful; =0 means the empty d state is right
at the Fermi level, while x=1 puts E+4 U at the Fermi
level. x=%, where E and E+4U are symmetrically
disposed about the Fermi level, is the most favorable
case for magnetism. We shall find that 0<x<1 is the
only magnetic range, but in the nonmagnetic cases x
can be outside this range.

Inserting Egs. (28) and (29) into Eq. (27), and drop-
ping angular brackets, we rewrite that equation

Thar=cot [y(ner—x)]. @27

Let us investigate some special cases.

A. Magnetic limit: y>>1, x not small or too near 1.
Then the cot™ is either close to zero or to m, and 74,
is near zero or one. Assume #4;~1, #4_~0. Then

wnd_g -

y&—nay) yna—2)

=)
€r~Egrr
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n-)
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0.2
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{ng-)
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I
0.4 0.6 0.8 1.0
{nd+y \

(b)
F1c. 3. (a) Self-consistency plot of (n.) vs (n_) for a typical

magnetic case. y=U/A=S5, x=(er—E)/U=4%. Note three pos-
sible solutions. (b) A typical nonmagnetic case. y=1, while x=3.
The width is five times greater and only one intersection appears.

These may be approximately solved to obtain:

2(1—na)=1—2)n4

g1/[’ry(1_,ryx(l1—x))]’ (30)

m=ngp~ne-=1—1/[ryx(1—x)—1].
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B. Nownmagnetic cases. Here we may assume
nap=nq-=n. Then Eq. (27) becomes

cotrn=y(n—zx). 31)

In the simplest subcase, # will not be far from 3—the
final virtual state lying within a width of the Fermi
level—so that

cotrn~m (3 —n), (32)
and
(1+2xy/7)
~L | 33
* [ (1+y/x) ] (33)

We see that # tends to take on the value of §, meaning
that the effective energy level stays near the Fermi level.
The effective energy of the d state relative to the Fermi
level is

1—-2x 1—2x
=Ay .
14/ 1+y/7

Eoi=U(n—x)=U-

Thus this is a very good approximation when y is
small or, when % is even reasonably close to %, for all
relevant y.

In the opposite limit (y largish,  near 1 or 0); the
most interesting region is x near 0 (results for x>~1 are
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F16. 4. Regions of magnetic and nonmagnetic behavior.
Curve gives % vs 7/y.=7wA/U.

symmetric), y quite large. Here

cotmn~1/mn,
and we have

y(n—x)~1/mn. (35)
Solving by successive approximations, we get
n~1/(xy)d+1x+. . .. (36)

C. The Transition Curve. Next it is interesting to
trace out the transition curve from magnetic to non-
magnetic behavior. Clearly, on the transition curve
na=mna_, so that Eq. (31) is one condition on the curve.

The second may be obtained by differencing Eq. (27).
The result is

w/sin?rn.=7y.. 37)
Here the subscript ¢ refers to the values on the critical
curve of transition into the magnetic case. Equations
(37) and (31) cannot be solved in simple form for y,
vs #, but can be expressed simply in terms of #. and x:

™ cotmn,

sin®rn,

Ve

)
Ne—X

or
(38)

From Egs. (38) and (37) we can obtain the following
approximations for x~} and a~0 (symmetrical in
x=3%):

sin2mn,= 2w (n.—x).

yesmtimt(a—3)P+. .., e (392)
and
(39b)

yiodn /x4 .., (a=20).

These results are summarized in Fig. 4, which gives
the transition curve as a function of x and #/y, and in
Fig. 5, which plots # and, where they are different,
(nayy and {nq_y as functions of =/y for two typical cases,
x=21 and x=1%. The plot vs«/y is essentially a plot vs
A, the width of the virtual state.

In order to get a feeling for orders of magnitude,
in the iron group U is expected to be about 10 ev. The
density of states is fairly widely variable; in an s band
as in Cu it might be of the order 75 (ev)~*, while some
of the d-band metals might have densities twice to three
times that. The least well-known parameter is (V%,y.
If one ascribes a fair fraction of the binding energy
surplus of iron-group metals, such as Cu, as compared
to non-d-band cases, such as K, to s-d coupling, Vv
may well be ~2-3 ev. This would also be borne out by
the band displacements in Cu which perturb the Fermi
surface. Thus A== (V?)p(e) runs of the order 2-5 ev.
This shows that the transition U/A=y=m occurs right
in the interesting region, and that it is perfectly possible
that the transitions from magnetic to nonmagnetic
localized states observed by Matthias et al.! could be
caused either by changes in the density of states or by
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motion of the Fermi level (changes in x). Note, however,
that the shape of Fig. 3 indicates some insensitivity to .

For rare-earth solutes, on the other hand, U~1S5 ev
and V,y,~1 ev at most, so that magnetic cases are to be
expected almost exclusively.

In Appendix I, we discuss the somewhat more realistic
case of an orbitally degenerate localized level, as is
usually expected to be present in & or f bands on high
symmetry sites. In such a case, one must take into ac-
count the repulsion of the electrons with parallel spins
but different orbits, as well as the fact that this repulsion
is decreased by the atomic exchange integral J (~1-2 ev
in the iron group). This is the usual “exchange” effect.

It turns out that the condition for “splitting” of the
Hartree field is less stringent when we include J: The
condition analogous to Eq. (37) is

U T J
—= ch
A sin?rn,

"™ (40)
which shows that the required U is decreased by the
presence of J. Note, however, that in the absence of U,
we require J>2rxA. If our quantitative estimate of A
is even approximately right, this shows that exchange
of the usual sort is utterly incapable of causing magne-
tism in the d shell.
It is interesting that there is a second condition,

T J
S +—,
sin?rn,  2A

(41)

which expresses the requirement that the Hartree fields
for the two orbitally degenerate states become different.
Where Eq. (40) is satisfied, but not Eq. (41), we will
observe ‘“quenching” of the orbital magnetic moment
by the kinetic energy of interaction with the band, but
no quenching of the spin. As far as I know, this is actu-
ally the behavior of the iron group solutes in most cases;
the fact that such behavior is not simply explained from
the usual point of view has not been remarked before.

VI. POLARIZATION OF FREE ELECTRONS; THE
COMPENSATION THEOREM

The “compensation theorem,”* which shows that the
net free electron polarization roughly cancels between
the admixture and antiferromagnetic effects, may be
derived very easily from the diagonal elements Gy of
the Green’s function from Eq. (24). That equation gives

[Va|?

G’ (€)= (e—ex) 4+ .
(&=( ) (e—er)*(e— Eq,+1A)

(24)

Now the total density in energy of free-electron states
is given by summing this over all &£, which is very simple
since the dependence of (24) on ¢ is so simple.
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Fic. 5. Two typical plots of (z.) and (n_) as a function of
w/y=nA/U. (n.)—(n_) gives the net number of spins, and vanishes
at the transition y, for the given x. (a) x=3%; (b) x=1%.

1
pfrec(e) = fdk ImGkk (6)
m

1 @D
=—— Imf o(er)de,(e—e)™! (42)
™ 0
{ " | Vax|*[(e— Es)+iA] '
(e—er)[(e— Eq)*+47]
Introduce
p(er)=p(e)— (ex—€)(dp/de) |t . . ., (43)
and by a simple contour integration we obtain
dp(e) | Vax|*(e— E,)
pree()=p(e)+ = (44)

der, (e—E,)*A? '

The most interesting thing about this result is that
if p(ex), -the density of states, is constant in the first
place, the presence of a virtual state anywhere in the
spectrum fails to affect the free electron density at all;
only the d state itself modifies the total density of states.

Since we can obtain the total number of free electrons
of a given spin simply by integrating Eq. (44) up to the
Fermi surface:

€F
Niree’ = f meea(f)dea (45)

—0

this will be entirely unchanged, and there will be no
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net polarization of free electrons, if p(ex) is rigorously
constant. Otherwise, there will be a change:

7 dp(e) e—FE,
Ages= | V2| f de .
o de (e— E,)?HA?

(46)

If we assume for simplicity that dp/de is roughly con-
stant in the region of interest it turns out that even the
first-order corrections tend to cancel in the polarization:

[V[2dp [ (er—Ep+a2
Angt— An= (Am) jo~ — ln[
de L(E_—ep)+A°

J. (47)

(For this observation I am indebted to conversations
with A. M. Clogston.)

This cancellation appears to be more or less for-
tuitous. There are two contributions physically :

(1) The 4 function becomes mixed with free electron
wave functions and vice versa. Clearly, this leads to no
net fotal polarization, since it is merely a unitary trans-
formation of the wave function. However, it has the
effect of reducing the d polarization, because some of
the free functions above e become partially d. At this
stage, however, there is still a net spin of precisely one
electron; and to compensate the d polarization, some
previously unpolarized free electrons are polarized.

(2) The free electron functions also have an energy
shift

ABy,= | Vax|*(ex— E,) /[ (ex— E,)*+A%],

which leads to a negative first-order free electron polari-
zation. This polarization is a true polarization rather
than an admixture, similar in nature to a Zener-
Nabarro-Kittel-Ruderman-Yosida polarization. In par-
ticular, this polarization requires a relaxation process in
order to follow the time dependence of the localized
spin in the presence of a variable external field, where
the admixture polarization, being a high-frequency
effect, will follow immediately. Thus, any g shifts caused
by free electron polarization will tend to have anti-
ferromagnetic sign. (We leave out of account here the
true s-d exchange polarization which results from the
relatively small s-d exchange integral. That has a defi-
nitely ferromagnetic sign. In the rare-earth group, this
ferromagnetic effect may be relatively larger.)

The spacial distribution of the polarization is not
as directly obtainable from the Green’s functions. For
this reason and for the sake of brevity, we leave this
for a later publication.

VII. SUSCEPTIBILITY AND SPECIFIC HEAT

In the region of localized magnetic states, the sus-
ceptibility and specific heat—at least those caused by
the solute—are probably controlled, near absolute zero,
by the interaction of the solute moments. These mo-
ments, although they are not integral numbers of Bohr
magnetons, are both localized and free to rotate, like
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ordinary ionic moments in insulators'; and they can
exhibit ferromagnetic or antiferromagnetic behavior
depending on their interactions. We will make no at-
tempt here to explore the complexities of this situation.

In the nonmagnetic region, however, the localized
virtual & states can have a very considerable effect on
the metallic properties, such as spin susceptibility and
specific heat; and in particular, these two measurements,
which are often considered as both measuring the
density of states at the Fermi surface, vary quite dif-
ferently, and do not measure the same quantity. We
have, thus, a simple model to exemplify the effects
which exchange and correlation can have upon these
properties. In this section we compute these quantities
near absolute zero and in the nonmagnetic case only.

The effect of an external magnetic field is to shift
the 4 spin Fermi level relatively to the — spin level
by an amount 2 uH. This shift will change the occupa-
tions of the virtual levels, leading to relative shifts of
these levels themselves.

In the preceding section, we proved that at least if
the density of states p(ex) in the band was reasonably
constant, any motion of the virtual levels could not
affect the net polarization of the free electrons. That
theorem is still valid here, so that the free-electron band
will contribute its unperturbed susceptibility X,.

The motions of the d electron density are simply com-
puted as follows: The shifts of the effective positions
of the virtual levels are

SEy=—uH~+U{on.),
SE_=pH+U(on,).

The resulting changes in population may be obtained
by differentiating Eq. (27):

(48)

(w/sinfrn){dnyy=—SEL/A, (49)
(w/sin?rn){én_y=—08E_/A,
or, subtracting the two equations of Eq. (49),
(/sinan){dn.— dn_)y=y{dny— dn_)+2ul/A.
Thus, the susceptibility is
M won,—on_)
T m
2u? 2u?
50)

A (w/sin*rn—1y) B (wA/sin®rn)— U '

Equation (50) shows that as the system approaches
the critical condition, Eq. (37), for magnetism, the
absolute zero susceptibility per impurity increases,
becoming infinite at the critical density of states. This
is quite reasonable physically.

14 We have not demonstrated this explicitly, but it is reasonably
obvious from the symmetries of the problem. It is interesting that,
as in the similar case of nonspherical nuclei, the entity which ro-

tates is effectively the Hartree field, not the individual electrons’
moments.
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The behavior of the added specific heat is quite
different. Again, the result is extremely simple although
the argument is rather long-winded. The standard
formulas for the number of electrons and mean energy'®
are, if the density of states is ps+py,

(51)

€

€F 1('2 dpd
i= [ Grtpict =TS
0 6 d

since py is assumed constant for simplicity ; and

ep w2(kT) /  dpa
E——-f e(pd+pf)de+-~6—~(GF—+pd+Pf) (52)
0

In this case, not only er can change with temperature,
but also p4, because if there is a shift &x4 in the occupa-
tion of the d states, the virtual state energy Eq shifts:

8Eq="Ubdna. (53)

First, we express the conservation of # (neglecting pq
relative to p; where possible, and keeping only lowest-
order terms in 7):

dn der F dpg ™  dpa
—=0=—0; f —de+—kT—.
ar aTr 0 3 de
Now
dpa dpa dEg dpg AdEq
—————— (54)
dT dEq dT de dT
SO
der dE; 7w dpa
O0=——p;—pa——+—RT—. (55)
aT ar 3 de
The net change in number of d electrons is
Mg=— an= - 5(:pr,
so we get
dng dng D
0= ——— palU—+—#T—,
ar ar 3 de
or
d’ﬂd (1r2/3)k2T(dpd/de)
— (56)
dT 14+Upa

Now we return to Eq. (52), which we differentiate,
again only to first order in 7', in order to get Cp:

de dep €F dpg Pd
== pr‘l“f e—de+—k2T( F—+pd+pf)-
aT daT o dT de

From Eq. (55), we can combine the first and third terms;
we also use Eq. (54) and get

dE,
)|

15 F. Seitz, Modern Theory of Solids (McGraw-Hill Book
Company, Inc., New York, 1940), p. 150.

€F dpd
o é—*+—k2T (patpy).
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Finally, the second term may be integrated by parts;
the result is

dE; 2
C=— pade+—k*T (patp;y)
dT J, 3

dE; w
=ng—+—kT(p). (57)
ar 3

The new term is almost obvious; it says that the
virtual level’s energy just shifts by 6E; as a whole.
Using Eq. (56), we get explicitly :

? U(dpa/de)| er
c =——k2T{ _
14+Upa

(58)
3
where pgq is the energy density of the impurity state,

Paf,

© wA TA
pale)= = ;
(e— Eq)?*+A2 sin’rn
(59)
dpa 2w A(Ea—¢)

de [(e—E+ATF

Note that in Eq. (58) the sign in the denominator is +;
there is no tendency whatever towards a singularity.
This is because the instability refers only to opposite
motions of the two Fermi levels. At best, the specific
heat from the anomalous term will be 20-309, of the
density of states term pg. Thus, the specific heat is a
much more accurate measure of density of states than
is the susceptibility.

CONCLUSIONS AND DISCUSSION

A rather schematized model of the electronic struc-
ture of a metal containing a solute atom with one or
more inner-shell orbitals available has been worked
out in the preceding pages. While the schematic charac-
ter of the model should not be ignored, we feel that
nonetheless it contains the essential physics of the
phenomena for such solutions as Mn, Fe, or other iron-
group elements in Cu, Ag, and Au; for the same ele-
ments in early members of the transition series such as
Sc, Y, Ti, Zr, and possibly V, Nb, and Mo; and many
rare-earth solutions.

The essential criteria for our model’s more-or-less
literal validity are twofold: The “inner shell” orbital
must be very different from the Wannier functions for
the free electron bands in the solvent, so that a distinct
localized orbital can be defined apart from band func-
tions; and it must be sufficiently sharply localized that
its Coulomb self-energy integral is not strongly screened
out, while those of the band electrons are.

Under these circumstances, the competition between
this Coulomb integral and the matrix elements—essen-
tially kinetic energy—connecting the local state with the
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band states is undoubtedly the determining element
as to whether or not a magnetic state is established.
The parts of the problem which we have schematized
out will have subsidiary importance.

Some of the things we have left out, with a brief
discussion of their importance, are:

(1) True s-d exchange of the type normally postulated
in s-d exchange theories. This will undoubtedly be
present to a limited extent. Even in the free atoms, s-d
exchange is a relatively small effect—1-2 ev. We may
expect an appreciable screening of the Coulomb inter-
actions for s electrons which may further reduce the
effect. The primary result of s-d exchange will be to
induce a more or less positive polarization of the free
electrons, of the same order of magnitude, perhaps, as
the terms ignored in the compensation theorem.

(2) s-d Coulomb repulsion. We have discussed this to
some degree; as Herring!® has pointed out, this may be
expected to reduce the effective U by compensating for
missing d charge with s charge, but we believe the
magnetic case to be the situation in which this effect
is small.

There would appear to be two distinct situations for
impurities in metals. In such a case as Zn in Cu, the
impurity may be considered simply as an extra positive
charge, which is to be screened out by a deformation
and modification of the free-electron band itself. Butin
the type of situation we envisage—for instance, Mn
in Cu—the charge is expected to be compensated not
by a deformation of the Cu s band, but by emptying
levels approximating to the orbitals of the free atom—
because these orbitals are of an entirely different sym-
metry and size from the functions available in the band.
In other words, in such cases, it is far better to use as a
starting approximation the neutral impurity atom itself,
added to the, say, Cu matrix. This type of situation, in
which the atomic properties of the solute are not
strongly affected by solution, is probably the more wide-
spread, especially when solvent and solute are widely
different. It is in this case that one does not expect
the free bands to be strongly perturbed, or to compen-
sate effectively Coulomb effects in the inner shell.

Finally, free-electron correlation and exchange have
been explicitly ignored ; this is probably well justified in
that we think of the free electrons as “quasi-particles,”
for which these effects are taken into account in the
€, and the screened interactions.

A final question is whether a real many-body theory
would give answers radically different from the Hartree-
Fock results. Since our theory is exact in both limits
(U — 0 or »), we expect only numerical modifications;
in particular, the spin-up and spin-down electrons can
probably correlate the times at which they occupy the
localized state to some extent, reducing the effect of
U and making the magnetic criterion even more severe.

Having justified the model in the cases to which it
does apply, what of situations in which it does not? One

is led to suspect that the philosophy and some of the
results may still be applicable. For example, in Co in
Pd!® one has no right to assume that the Co d shell
function is any more local than the Pd one. On the other
hand, the philosophy suggests to us that the large Pd
susceptibility indicates that Pd is very close to entering
the “magnetic state” on its own hook. In this case, it is
reasonable that the perturbation due to Co could
localize moments on neighboring Pd atoms; this might
explain the observations qualitatively. In general, in
such cases, one does not expect merely the decrease in
d magnetization we have discussed here; generally,
there will be larger polarization effects, which we em-
phatically have not studied, on the solvent & electrons
themselves.

In general, we have not attempted to discuss the com-
plex subject of interactions of d electrons on different
atoms. It is the great conceptual simplification of the
impurity problem that it is possible to separate the
question of the existence of the “magnetic state”
entirely from the actually irrelevant question of whether
the final state is ferromagnetic, antiferromagnetic, or
paramagnetic. We would suggest that it is this concept
of separating these two problems which will be of the
greatest value in the far more difficult problem of the
ferro- and antiferromagnetic metals.

One result that can be carried over without much
alteration into even the pure band theory of ferromag-
netism has to do with the polarization of free electrons
by the d electrons. There, as in the impurity case, the
positions of the d levels of the two separate spins will be
radically different, leading to precisely the same two
contributions to the polarization: a positive admixture,
and a negative true polarization, for precisely the same
reason. These two contributions will tend to cancel and
the net result will be that the d polarization will be
reduced relative to that in the absence of such interac-
tion. This reduction may be fairly large, leading to the
interesting possibility that the 0.6 and 1.7 Bohr magne-
tons of Ni and Co may represent an ‘“unperturbed”
d-band polarization much closer to 1 and 2, respectively.
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APPENDIX A

Self-Consistent Theory for a
Degenerate d Level

Let us generalize the Hamiltonian (1) in such a way
as to include two degenerate d levels ¢; and ¢s:

H=E(ny+no+ni_+n, )
+ 3 enwot Y Vie(cjo*crotcrocios)
k,o

k,j,0

+(U—TJ)(nynor+n1n )+ U(nyn). (A1)

Here j=1 or 2 and the new parameter J, the exchange
integral proper, is

e
J= f o (Dot (2 =12 os(Vdradrs. (A2)
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E is again the unperturbed position of the two d levels,
assumed degenerate as they might be in a cubic crystal.
The Vi must be different—in fact, different functions
belonging to the same symmetry under the group of
the Brillouin zone—for the two different 7, but we can
expect the widths and shifts of the two virtual levels
to be the same, nonetheless, because of the symmetry.

By precisely the same techniques as in Sec. IV of the
main body of the paper, we spread each effective d
level out into a virtual level of width A. The effective
Hartree field for each level depends on the occupation
of all the other levels through the terms in U and J in
Eq. (A.1):

Eett(14) = E+ U ((n1)+{ne)+(n24)) — J(m2y),  (A3)

etc. With these equations and Eq. (26) of the text, we
arrive at the fundamental equations:

cot(rniy) =[Eet:(14+)—er /A, (A.4)
etc. We introduce the parameters
y=U/A; x=(er—E)/U; j=J/A, (AS5)
and Eq. (A.4) becomes
cotmnie=1y(ni—+ne_+noy) — JHor—xy,
cotmnar =y (n1_+ne_+n1y) — jri—xy, (A.6)

cotmni_=y(ntno +ns) — o —xy,
cotrne_=y(n1+nor+n1) — jni_—wxy.

We will not work out all the details of the various results
based on Eq. (A.6) but simply give a few general
formulas. First, in the nonmagnetic state, clearly all
the #’s are equal,

Nje=Mn,

and the state is determined by
(A7)

This has the same form as the nonmagnetic case in the

cotmn=(3y— j)n—xy.

text, and a fair approximation is often

s
”‘N"%(l;zx—yﬁ/«)’

which will be valid when x~1.

Second, we can study the condition that magnetic
moments just appear by differentiating Eq. (A.6),
obtaining a set of linear equations in the én’s which have
a nonvanishing solution only on the transition curves:

onry =y (6n1-+8n2)+ (y— 5)dnay,

sin’rn
(A.8)
—————bdngp=y(Sn1—+06ns-)+ (y— 7)dnuy,
sin’rn
and symmetrically for the n_’s. Letting
= 0N+ ney; On_=0n1_+0n., (A.9)

we may add these pairs of equations together, and sub-
tract the two sums, to obtain:

(m/sin’rn) (3n.— dn_) = (y+ 7) (dny— on_),

or
(A.10)

Equations (A.10) and (A.7) must be solved simultane-
ously to obtain the critical concentration for a given
%, 9, and j. Note, however, that the most favorable
possible condition occurs when #,=3, and that then

(A.11)

Thus j makes it easier to form the localized state, in
general at least.

It is also possible that the Hartree field for orbital
state ¢y, for instance, ‘may differ from that for orbital
¢2. The critical condition for such a case to occur is
obtained when we take the difference of the pair (A.8):

w/sin?rn.=y.+ .

ymax=7r—j-

™ (5ﬂ1+— 5”2_;_)
sin’[m (n14+n21)/2]

™

= (y— 7) (61— dnyy),

or

—_—=y S A2
sin?r (714 o’ e ( )
Since j is positive, this condition is always less easily
satisfied than Eq. (A.10). Tt is, however, entirely pos-
sible for both to be satisfied, especially if after polariza-
tion of the spins #y.+#s4 is roughly unity.

As discussed in the text, this latter situation repre-
sents the closest approach to a truly localized magnetic
state, with both an orbital and spin magnetic moment.
The former case, in which E*%=E,,* is probably
more often encountered. We have here in minijature,
as it were, a model of the Van Vleck-Brooks orbital
quenching mechanism in the magnetic metals..



