
PH YSI CAL REVIEW VOLUME 124, NUMBER 2 OCTOBER 15, 1961

Instability of Antiferromagnetic Screw-Type Structure of an Electron Gas*
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An analysis of antiferromagnetic screw-type structures in a three-dimensional electron gas is given, using
a self-consistent 6eld method, It is shown that a screw-type state appears to be always unstable. The ex-
pression for the susceptibility of an electron gas found by Wolff is also obtained with this method.

SEVERAI arguments have been published recently' '
to show that the screw-type structure of an electron

gas proposed by Overhauser, ' i.e. his "giant spin density
wave, " is unstable. The aim of this paper is to describe
the results of an analysis of this problem using the
self-consistent field (SCF) method and to point out.
that the susceptibility of an electron gas, obtained by
Wolff' using the normal mode method in the random
phase approximation, can also be obtained from the
SCF method.

We take the following Hamiltonian:

H=HI+Hs,
Hl Qk e(k)(akt akt+akc akim)

+pk k(2q) (akps, t'akt —akps, ltakl), (1)
Hs= U Zc act actail act, )

canonical transformation

n, =lV i Qk exp(sk r;)nk,

nk =2k cosgk+$8k slnpPk,

Pk=s4 k slunk+8k cospPk,

with

et.c.,

where
tan2tpk ——Le(k+ q) —c(k—q) j/Up',

I'=I +(~/U), ~=(n"n') (&"&')—
This gives

Qk Ek 4k +k+Qk Ek Ilk Ilk

+i%U(n'+IJ, ')/4, (6)
Ek+ ——Le(k+ q)+e(k —q) j/2

+((Ut '/2)'+Le(k+q) c(k—q)7—/4)', (7)
with

~= (U/») ZkL~'/(Ek+ —Ek )ll:f(Ek ) —f(Ek') j, (g)

where E is the number of lattice points, e is the number
of electrons per atom, and f(E) is the Fermi distri-
bution function. Equation (8) is the SCF requirement.

When k=0 and if, for some q/0, Eqs. (5) and (8)
have a solution @&0, all the one-particle states of Kq.
(6) have a screw-type spin orientation. If p&0 for
q=0, the spins of all the particles A point in the +s
direction, those of 8 in the —s direction, and E~+—El,
= Up. This leads to a ferromagnetic state of the metal.
If p=0 for any q, the one-particle states are pairwise
degenerate: Ek+s Ek s+= e(k) for ——k.)q, Ek+s
=Ek p

——c(k) for —q&k, &q, and Ek s ——Ek+s+ ——c(k)
for k, &—

q (k, is the component of k along q). This
gives a paramagnetic state of the metal.

Taking free electrons, e(k)=h'k'/2tts and t1=1, our
approach is equivalent to that of Overhauser. ' For the
free-electron case, it can be seen from Eq. (7) that the
following three possibilities can be distinguished with
regard to the relative position of the 6lled portion of
the 3 and 8 bands:

a,.=E "* Pk exp(fk-r,)ak.

Here k is the wave vector, i runs over the lattice points,
and k(2q) is an external field with sinusoidal space
variation with a wave vector 2tI. A delta-function
potential (H,) is assumed between electrons for sim-

plicity. It has been used by Overhauser' and others' '
and the validity of this approximation is dificult to
estimate. It is also assumed that the lattice has a
8ravais structure. Anticipating a screw-type spin
arrangement with a wave vector 2q, we make a trans-
formation of the spin quantization axis for any lattice
point r;:

a, t =n, cos(8,/2) —P; sin(0, /2),

a, l =n, sin(8, /2)+P; cos(8,/2),
(2)

where
8,=2q. r;.

Next we replace H2 by H2', which is defined by

H =UK'( " '(P"P)+P"P.( t~') (" )(P"t3))—(3)

The resulting Hamiltonian is diag onalized by the
+x2 y, v' &,ee

x' —2 ac' &e*&x'+ 2'',
(g —2' )

(II)
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with
x=q/kp, v= U/4ep, e*=E%p,

where Ako and eo are the Fermi momentum and the
Fermi energy in a paramagnetic state, respectively, ~ is

326



I NSTAB I L I TY I N ELECTRON GAS

proportional to the reciprocal of the e6ective density
defined by Overhauser, and E" is the Fermi energy in
the screw-type state. The expression of E)r+ for free
electrons is given by

E2+/ep ——(k/k2)'+x'+ 2[v'p" +x'(k, /ko)']l.

We have a maximum of L~"~ at the origin in the k space
if x'& vp,

' and a minimum of E~ if x'& vp, '. Three cases
are illustrated in Fig. 1.

For free electrons in three dimensions at T=O, the
summations (integrations) over k in Eq. (8) and in the
expression for the total energy, obtained from Eq. (6),
can be carried out. For the three cases we find, respec-
tively:
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tot

0.9—
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(II) «.»= ~(1+~')+I-(&+),
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PiG. 2. Total energy vs v. SF indicates the saturated ferro-
magnetic state, UF the unsaturated ferromagnetic state, P the
paramagnetic state, and S the screw-type state.

~=~'(3~/2)G(&+)

1=V' 0-.),
(III) «,»= v(1+ p')+I (g+) I(g ), -

V =9'(»/2) [G(f+)—G(f-)],
1= -.'[&-(~.)-&-0=)],

with

(14)

(15)
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Fn. I. Energy spectra of Eq+. The z axis is taken along the
direction of q. In the cases (I} and (II), the solid lines are for
x pup' and the dashed lines for x )vp,

'

Ip 0') = (e
' —x' —4v'p")g —2v'P ——'g'

2+(2+ (~2&»2/4x2)](~2912+ x2(2)»

+[2x—(v'p"/2x')]v'p" sinh-'(xP/pp. ') },
G0-) = r—0-14")("~':+x'r')'

+ (1/2x) [e*—x'+ (v2p"/2x')] smh —'(xP/vp'),

P~Q) = (e*—x2)g —2(2~ [)(vs,'2+x2P) &

+ (v2p "/x) sinh —'(xP/vp')],
and

f~= 2*+x2&2(v2p"+x2e")*

Here «„is the total energy per elect;ron. Equations (11),
(14), or (17) is the SCF requirement from Eq. (8), and
Eqs. (12), (15), or (18), is an auxiliary equation to
determine e~ as a function of x and v.

Unfortunately, the complexity of the expressions in
Eqs. (10)—(18) does not permit a complete analysis of
all solutions. However, we can examine several par-
ticular cases. First of all, when h=o, as is well known,
we have three stable solutions: ferromagnetic with only
one band occupied (saturated) or with both bands
partially occupied (unsaturated), and paramagnetic,
depending on the magnitude of the parameter v.
Putting x=0 and k=0 in Eqs. (13)—(15), we have the
saturated ferromagnetic state with p = 1 and total
energy e&,»

——3(2)&/5. In this solution the energy sepa-
ration between the bottom of the 8 band and the filled
position of the A band decreases as v decreases and
this energy separation vanishes at v=2&/4. As v

decreases further, the unsaturated ferromagnetic state,
obtained from Eqs. (10)—(12) with x=0, becomes stable.
The quantity Ep is equal to difference between the
number of electrons in the A and 8 bands; it decreases
from the value X to 0 as v decreases from 2'/4 to 22.

That is, the unsaturated ferromagnetic state becomes a
paramagnetic state at v= 3 ~ The paramagnetic state is
also obtained from Eqs. (10)—(18) with y=0 for any q
value, and 2»,» of the paramagnetic state is 2'+v (Fig. 2).

Secondly, when k/eo and p are very small, the ex-
pressions (11) and (17) both become, with the help of
Eqs. (12) and (18), respectively,

9=9'(»/2)F(x),
where

F(x)=1+[(1—x')/2x] ln[(1+x)/
~

1—x
~
].

Since p'= p+(k/U), we have

~= (k/6o) P'(x)/[1 —(»/2)F(x)].
The approximation (19) also holds for case (II), as
follows from Eq. (14) with use of Eq. (15) after a
careful expansion.
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Equation (19) gives the same expression for the
susceptibility as that derived by WolG, ' and we have
also the same results for the stability of the paramag-
netic state as those obtained by Kohn and Nettel, '
Wol8, ' and Brout. ' That is, as long as v(3) the para-
magnetic state is stable in such a sense that it does not
go smoothly into a screw-type state with a very small p.

Equation (19) can be obtained not only for a very
small p, and h/e0 but also for a very small v and finite

p,
' and x, because v appears as a product vp' in the

functions G, F+, and f'~, and the expansion for a small

p, ', used in order to derive Eq. (19), was actually that
for a small vp'. Therefore, we have no screw-type state
for h=o in a limit of a very small v.

Thirdly, we shall examine the stability of the satu-
rated ferromagnetic state. This state belongs naturally
to the case (Il) (p, =1 and @=0).U x is very small, an
expansion of e~,~ with respect to x gives

«.~=3(2) /5+[1 —(2'/5~)3*' (20)

At i =2i/5, the saturated ferromagnetic state becomes

unstable relative to a screw-type state with a very
small x. The saturated ferromagnetic state, however,
has already become unstable relative to the unsaturated
ferromagnetic state for v(2&/4 (Fig. 2).

Finally, for 3 (v(2'/4, we can derive an expression
similar to Eq. (20), but the coefficient of x is positive
for every value of v in this interval. Therefore, a screw-

type state with a very small x is never realized for this
this range of v values either.

We conclude that a screw-type state in a three-dimen-
sional free electron gas appears never to become stable.
A possibility for the existence of a screw-type state in
a band model electron remains for a more compli-
cated e(k).
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