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The spin-wave spectra of simpli6ed two- and three-sublattice models of the rare-earth iron garnets are
obtained, and shown to contain an iron spin-wave spectrum similar to that in ytrrium iron garnet, together
with one and two optical branches, respectively. Intensities for optical excitation of k=0 spin waves are
computed, and the effect of an external magnetic 6eld on the resonant frequencies is also found. The conse-
quences of anisotropic g values, which can be very different from the Lande gz, are explored. Whereas fre-
quencies are determined by the g values along the exchange 6eld produced by the iron, selection rules depend
on transverse g values. This results in absorption at single-ion splitting frequencies as well as at the Kaplan-
Kittel exchange resonance frequency co.=X(ysMq y&M—s) Th.e anisotropy in the g values also produces a
shift in the exchange resonance frequency, which can be related to the macroscopic anisotropy energy
deduced from the anisotropic single-ion exchange splittings. Agreement with experimental data on ytterbium
iron garnet, given in an accompanying paper, is excellent. Application of the theory to anisotropy effects in
ferrimagnetic resonance of rare-earth-doped yttrium iron garnet is also considered. Finally, the speci6c heat
capacity is considered and shown to be well approximated by the single-ion Shottky anomaly approximation
used by Meyer and Harris.

I. INTRODUCTION

~'OR a number of years yttrium iron garnet (YIG)
has played a central role in research and applica-

tions concerning ferromagnetic resonance. This promi-
nence results from its regular crysta) structure, all iron
ions being trivalent, so that g=2 and relaxation times
are long. When the diamagnetic yttrium is replaced by
various trivalent rare-earth ions, we again have a regu-
lar magnetic structure, but with two very different
components. This difference leads to a much more
complex low-lying spectrum than that of YIG, and
increasing effort is now being devoted to unraveling
these spectra. In addition to the purely scienti6c
interest in understanding these systems, the splittings
may have potential technical application in submilli-
meter masers.

The magnetization and static susceptibility of the
rare-earth iron garnets have been studied in detail by
Pauthenet. ' These garnets have the formula 5I'e203
38~03, where R is a trivalent rare-earth ion. The actual

cubic crystallographic unit cell contains four such
formula units. ' The ferric ions are located on 16 octa-
hedral (a) sites and 24 tetrahedral (d) sites; the rare-
earth ions are on 24 (c) sites in the unit cell. Below the
Curie point ( 550'K), the ferric ions order into oppos-
ing sublattices a and d, with a net moment from 8 ions
per unit cell or 2 per formula unit. ' Since the g value is
nearly 2, this leads to a magnetization of 10P (P= Bohr
magneton) per formula unit, when the lattices are
totally ordered at low temperatures. The rare-earth
ions on sublattice c have an antiferromagnetic exchange
coupling to the iron ions on sublattice d, tending to
align their spins against the net moment of the iron
ions. Since this coupling is relatively weak, the rare-

* Supported in part by the U. S. Office of Naval Research, The
National Science Foundation, and the Alfred P. Sloan Foundation.

I R. Pauthenet, Ann. Phys. 3, 424 (1958).
2 F. Sertaut and F. Forrat, Compt. rend. 242, 382 (1956).

earth ions order significantly only at low temperatures
((50'K). At these temperatures, the iron sublattices
are essentially completely ordered. The rare-earth-
rare-earth coupling is weaker still, and is neglected here.
It is the purpose of this paper to discuss the low-lying
excitation spectrum of this system, when it is at low
temperatures so that the iron is largely ordered, and to
relate this to the observable electromagnetic absorption
spectra and the specific heat.

Although the many inequivalent rare-earth sites per
unit cell play a key role in interpretation of the promi-
nent anisotropy eGects in these materials, one rapidly
acquires a formidably complex problem if they are taken
into account in detail. Hence we shall initially ignore
this complexity and treat a simple model in which the
rare-earth ions are all. equivalent and isotropic. Simi-

larly, we treat the iron ions as if all were on a single
ferromagnetic lattice rather than being ferrimagneti-
cally coupled. The latter simplification should actually
introduce little error for the excitations of interest here.
After considering some general properties of this model,
we shall indicate how the complication of anisotropy
and inequivalent ions can be treated, in some cases at
least. Comparison with the detailed experimental
results on ytterbium iron garnet (YbIG) presented in
an accompanying paper' will illustrate the results of
this analysis.

Since the microwave ferromagnetic resonance be-
havior of these systems has already been discussed
extensively by Kittel, deGennes, and Portis, 4 and by
Van Vleck, ' that part of the spectrum will not be
treated in detail here.

' A. J. Sievers, III, and M. Tinkhatn, following paper, )Phys.
Rev. 123, 321 (1961)j.

4C. Kittel, Phys. Rev. 115, 1587 (1959); P.-G. de Gennes,
C. Kittel, and A. M. Portis, Phys. Rev. 116,323 (1959);C. Kittel,
ibid. 117, 681 (1960).

e J. H. Van Vleck, Phys. Rev. 123, 58 (1961).
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IL ISOTROPIC TWO-SUBLATTICE MODEL

A model which gives considerable insight into the
salient properties of the garnet system, yet which is
simple to solve analytically, is a one-dimensional one
in which there is a chain of N iron ions (1), each coupled
to a rare-earth ion (2). The iron-iron ferromagnetic
coupling is given by an exchange constant c, and the
iron —rare-earth coupling constant is X. We assume iso-
tropic exchange coupling, and take X&0 to represent
antiferromagnetic coupling. We neglect the rare-earth—
rare-earth coupling as negligible. If we also include an
external field H, the Bloch equations of motion are
given by

dM»/dt "tlMliXLH+~(Ml, i+1+Ml, i—1) &M—2i]r
(1)

dM„/dt=V2M„X (H —&M»),

where pj and p2 are the effective gyromagnetic ratios
for the two sublattices. (y=ge/2212c, g being the spec-
troscopic splitting factor, which is taken to be isotropic
for the present. ) We solve for small oscillations about
an equilibrium configuration in which M&, =M& and
M2, = —M2 by linearizing these equations in the usual
way, considering only first-order transverse components.
The equations simplify if we introduce circularly po-
larized modes by 3f~=M,+i%„. Finally, we take
cognizance of the translational symmetry of the linear
chain under displacements by a distance u to write for
the deviations

Qf .—Qf ~i(a) t—k Xs)

where the allowed values of k are given by k„Xa=2ex,
with N=O, &1,&2, . . ., & (N —1)/2, thus introducing
spin-wave normal modes. If we temporarily set H=O,
we obtain the following equations of motion for normal
modes:

~ pelf 1+ 7~(~2~1++~1~2+)
—2cylM1(1 —cosku) M~,

~&1M 2P 72~ (~2~1++1lf11'2+) ~ (2)

Note that changing from M+ to M merely changes the
sign of the frequency or. Thus we lose no generality by
considering only M components. Also note that if we
set ) =0 to decouple the two types of ions, the normal
mode frequencies become 0 for the rare-earth ions, and

pl p
= Q2 ——2cylM1(1 —cosku) =4' lM2 sin'(ka/2) (3)

for the iron. This is the usual spin-wave spectrum of a
ferromagnetic lattice, in which cu k' for ka(&1. Intro-
ducing Q2 into (2), we have

(M Qk 71~~2)1M1- (71~~1)~2—

(72ll~2)~1—+ (pl+72li1l'fl)~2—

Solving the associated secular equation leads to the
e1genfrequencies

pip = —,'( (Qp —pl,)a ((Q2—pp, )'+4(p2Qy„.]l),

where
li (721lf 1 711'2)
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FIG. i. Spin-wave spectra of two- and three-sublattice models
of rare-earth iron garnets. Since the branch near the unperturbed
iron spin-wave branch Qy is essentially the same in both cases, it
is drawn only once. The two-sublattice case, shown above, gives
one optical branch, and the three-sublattice case gives two, as
shown in the lower part of the Ggure. Note the tenfold diGerence
in scale between the positive and negative frequency branches.

' J. Kaplan and C. Kittel, J. Chem. Phys. 21, 760 (1953).
7 R. K. Wangsness, Phys. Rev. 91, 1085 (1953);93, 68 (1954).

c02= +2AMy.

In this, co, is the exchange resonance frequency derived
by Kaplan and Kittel' for a two-sublattice system, and
co2 is the frequency of precession of a single rare-earth
ion in the exchange field of its iron neighbor.

The observable spectrum arises from the uniform
modes (k= 0) which can interact with a uniform applied
oscillatory field. Since Q2 goes to zero at k=0, Eq. (5)
reduces to

G)p= 0~ 0)g

there. The zero-frequency mode will become the usual
ferrimagnetic resonance mode in a static external mag-
netic field, whereas the mode at —co, is the exchange
resonance mode of Kaplan and Kittel, ' also discussed
by Wangsness. '

For ka relatively large, Q&))p&„pl2; and (5) reduces to

ppp (Q2+ pl2 C08) &
pl2(1 (pl2 plq)/Q2]. (8)

Thus over most of the spin-wave spectrum, the fre-
quencies of the two modes are nearly equal to the un-
perturbed frequency of the iron spin wave 01, and to the
single-ion splitting co2, respectively. The correction
terms are down by a factor of order li/c, the ratio of the
exchange constants.

The entire spin-wave spectrum for this model is
sketched in the upper part of Fig. 1.The magnitudes of
the parameters are chosen to approximate the situation
in YbIG, but the qualitative behavior would be the
same for the other garnets. The significance of the dif-
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Fe 1 --(
I =0

R2

d~&(cop, by using the Kramers-Kronig relation, '

2 r' Mlle (M 1)dM 1

X.'(M) =- ~"

7I ~ p Gay
—

CO

and simplifying for M such that AM«(M M0)«M0. In
this case, (11) becomes

Fe 1

k = 2r/a

R2

I

I

I

() ~ ()

X*'(M)= X*"(»)dM1=
2I (M0 —M) ~ 0

Hence (10) implies

X*"(Mo)~M
(12)

7l Mp —
GO

ference in sign of the two frequencies is that they have
opposite senses of circular polarization for the case
treated here.

We can get some feeling for the nature of these modes

by noting from (4) that

or

Msl + l=Qk
~ 71 72)

J /Jl =Qk/Mo,

where J =Jl +J2 . Thus when Qk~O at k=O,
J —+ 0 for the exchange resonance mode, since ~,NO.
Because J =0, there is a precessing moment to couple
to an applied oscillating Geld only if there is a difference
of y~ and y2, so that M is not also zero. The resulting
absorption intensity is proportional to (71—72)'. On the
other hand, at high k values, where OI,))~„we see that
J~ =J for the mode near QI, and J~ =0 for the low-

frequency mode. Thus, as expected, the two modes
involve the iron and the rare earth separately when the
frequencies are quite disparate. These modes are shown
schematically in Fig. 2.

To calculate the intensity of the exchange resonance
more quantitatively, we introduce an oscillating trans-
verse field h in the equations of motion, and find the
susceptibility for frequencies near —co, to be given by

y (M)=M (M)/h (M)

(71 Y2) /(M+Me)[(72/M2) (71/Ml) j (10)

The susceptibility x, for linear transverse polarization
will be just half this value, since half the Geld is then
circularly polarized in the wrong sense. We may com-
pute the integrated absorption, assuming a linewidth

)I

I

CO —Q YY/a

FIG. 2. Normal modes of the two-sublattice problem at k=0
and k =er/u. Two adjacent cells are shown in each case. The modes
at k=0 are observable if y1 and y2 are different. The modes at
k=er/a will be observable if the transverse 7's of the ions of a
given numbered type repeat only with double period 2u, even if
the longitudinal p is the same for all ions of the type considered.
For clarity, the exchange coupling network is shown only in the
6rst case.

(M0)AM=
w(71 —72)'

2l(7/M )—(7/M ) I

2r 71M1M2(71 72)

2 Mt,

(13)

which vanishes as (71—72)' e 0, as expected from the
structure of the normal mode. We can also use (11) to
compute the contribution of the exchange resonance
mode to the transverse static susceptibility. This gives

2 ge (M0)AM AM1M2(71 72)
x*'(o)=-

fr Mg

(14)

I.et us now introduce a static magnetic field H0
directed along the s axis. Since there is no anisotropy
in the model, the only stable configuration is that in
which the net magnetization (Ml+M2) is parallel to
H0. If we assume Ml) M2, then this requires H0 along
+2 for the conventions assumed above. (If Ml(M2,
then the sign of IIp should bc icvcisccI. ln thc following
results. ) Inclusion of H0 changes (4) to

2MO [Qk Me+ (71+72)H0]
&([Qk Me+ (71+72)H0]
+47 7 Ho[7 (M, M) H,]- —

+4Qk72(XM1 H0)) l. (16)—
It is of interest to specialize this to k =0 (QI, ——0) to get
the observable resonance frequencies. In that case,

2MO [ Me+ (71+72)H0j+ [Me 2Me(71+72)H0

+47172H071(M1 M2)+ (71—72)2H02—]f. (17)

Since Hp is usually small compared to the exchange
fields, it is worthwhile to expand this equation to find

8 See, for example, C. Kittel, E/enserltary Stutistica/ I'hysics
(John Wiley R Sons, Inc. , New York, 1958).

(M Qk 71llM2 Y1HO)M1— (71llM1)M2—

(72™2)M1—+ (M+72etM1 72HO)M2 — 0. (15)

The resonant frequencies are now given by
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P2 ~1 Pl ~2
000= —Poe+ Hp.

y2M1 —y13f2

(18b)

Equation (18a) merely gives the usual ferrimagnetic
resonance condition, based on the ratio of net magneti-
zation to net angular momentum. This is the resonance
discussed in detail by Kit tel, deGennes, Portis, and
Van Vleck4 ' for the rare-earth iron garnets. The result
(18b) gives the linear Zeeman effect for the exchange
resonance. Note that it gives a shift of the resonance
frequency, rather than a splitting into two components.

III. THREE-SUBLATTICE MODEL

As indicated in the Introduction, the rare-earth iron
garnets actually have a very large unit cell, with many
inequivalent rare-earth ions coupled to the iron lattice.
Each additional ion per unit cell leads to another branch
of the spin-wave spectrum, and in particular, to an
additional optical mode at k=0. This problem rapidly
becomes very cumbersome to handle, but we can illus-
trate the general process by adding a single additional
ion per unit cell. This is taken as another rare-earth ion

(3) coupled to the iron ion, but we allow yo/y2 and
X3&P,. In this case, in absence of external fields, (4) is
generalized to

Qk 71(l12M2+li3M3) jMl-
(Vlli2M1)M2 — (Vll18M1)M3-

(r2X2M2) Mi—+[po+ r2A2M1 jM2—+0=0,

(yol18M8)M1 +0+[pi+go'A8MijM8 =0. (19)

The associated cubic secular equation may be written
as

01 +01 [pie2+01e8 Qkf+00[pie201e3 0113p012

—(012+C08)Q2j—012N8Q2= 0, (20)

where we have introduced the notation:

2 +2~2~1) a)3=pe) 3%1)

+12 +1~2~22 +13 +1~3~3)

~e2 012 1e112 l12(Y2M1 71M2)e

4'eo = 018 0018 li3('Y8M1 71M3).

(20a)

(20b)

(20c)

Since the general solution of the cubic is not very en-

lightening, we specialize immediately to the optical
modes at k=0, where Q2=0. From (20), we see that in
this case co=0 is one root, and the secular equation
reduces to a quadratic, the solutions of which are

(~e2+pieo ) (1oe2 ~eo 2

Mp=
I
+~»~» (21)

)

the resonance frequencies to first order in Hp. These are

Ml —M2
COp= lip,

(Mi/Vi) —(M2/V2)

a)P ———yA.M1, (21a)

000———'A[yM1 —yi (2M) ].
The root (21b) is simply the exchange resonance found
for the two-sublattice model, with the combined rare-
earth sublattices acting together as one sublattice. The
root (21a) is a new mode whose frequency is the mean
of the single-ion splittings co2 and ~3. Thus we see that
the nonequivalence of the two types of rare-earth ions,
2 and 3, has made possible an optical mode near the
single-ion splitting frequencies, a mode which was for-
bidden if all rare-earth ions were completely equivalent.
The fact that approximately this frequency appears
also at ka=m. in the two-sublattice model can be inter-
preted physically as follows. When ka= m-, adjacent ions
on the chain move out of phase while second neighbors
move in phase. Thus, if alternate ions were to have
slightly different values of 7, the mode at ka=x would
also be optically active. Of course, this inequivalence
amounts to doubling the size of the unit cell, producing
a four-sublattice problem. If the inequivalence were
very slight, one could obtain po(k) quite accurately,
within the half-size unit cell in k space, by taking the
curves in Fig. 1 and folding them at ka= or/2 so that the
end at ka=x fell at k=0 instead.

This interpretation is confirmed by examination of
the structure of the normal modes as given by the
equations of motion (19). If we consider the case when

etc. , we find that the mode (21a) has
M2 = —M3, Ml =0, so that the two rare earths are
precessing 180 out of phase, with the iron inactive. On
the other hand, the mode (21b) has M2 /&2

——M3 /p3
= ——,'Mi /71, so that the two rare earths precess in
phase with each other, but out of phase with the iron,
with such amplitudes that the transverse angular
momentum vanishes as in the simple two-sublattice
exchange resonance.

The other simple limit of the three-sublattice problem
occurs at high k where Q~&)co2, etc. Then, neglecting
terms of higher order in X/c, we obtain

010= (Qk+0012+0118)p 002(1 0012/Qk))1

—008(1—0018/Q2). (22)

Thus, the iron spin-wave mode at QI, is slightly raised
in frequency, as in the two-sublattice example [Eq. (8)$,
and we now find the single-ion splitting frequencies for
both types of ion, each being decreased slightly because
of the finite ratio of c/X. (This latter correction depends
on the particular coupling scheme chosen. It disappears
if each rare-earth ion is assumed to be coupled equally

If the sublattices 2 and 3 are quite similar, it is of
interest to let

&2=V—"PV, V3=V+PV,

and similarly for M and X. If these substitutions are
made in (21), first-order terms in 5y, etc. , cancel, and
we have the approximate roots,
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FIG. 3. Normal modes of three-sublattice problem at k=0 and
k =x/u. Two adjacent unit cells are shown in each case. The modes
at k=o are optically observable, assuming p&, y2, and p3 are all
distinct. The modes at k =s/a will be observable if the transverse
&'s of the ions of a given numbered type repeat only with double
period 2a, even if the longitudinal y is the same for all ions of the
type considered. For clarity, the exchange coupling network is
shown only in the 6rst case.

to two adjacent iron atoms in the chain. Such a double
linkage is perhaps more characteristic of the actual
situation in the garnets. ) Given the limits at k=0 and
k=w/a, we can sketch the entire spin-wave spectrum
of the three-sublattice system as shown in the lower
part of Fig. 1. The mode near Q~ is not redrawn since it
is very similar to that in the two-sublattice case also
shown in Fig. 1.

If we now repeat the argument given several para-
graphs above, we may generalize our result to a six-
sublattice situation in which we make adjacent cells
slightly different. In that case, after folding the spec-
trum back at ka= m./2, we would find six frequencies at
k=0, approximately given by 0, rd. , (as+~s)/2, res, ros,

0 ~ . )More exact frequencies are given in (21) and
(22).$ The normal mode configurations are shown
schematically in Fig. 3. Evidently the strength of the
absorptions at the frequencies obtained from ka=x
will depend critically on the difference (p —p') of the
p's in the two adjacent cells. From the argument leading
to (13), we expect the intensity to vary as (p —&')'.

When y is not isotropic, anticipating the case con-
sidered in the following section, it is the value of y
transverse to the static polarization which governs the
magnitude of the precessing moment and hence the
interaction with an external oscillating field. The
jreqlerscy of precession, however, is governed by the
longitudinal value of y along the exchange field. The
folding technique described here should be quite
rigorous if ions in adjacent cells differ only in transverse

y, and the intensities can be high if the difference is
sizable.

To relate this model to the actual garnets, we must
generalize from a one- to a three-dimensional spin-wave
spectrum, and take cognizance of the full cubic unit
cell containing 40 iron and 24 rare-earth ions. We do

this qualitatively by taking advantage of the relative
strength of the iron-iron exchange. We see from our
models that the high-frequency spin waves involve
essentially only the iron spins. Since the iron is relatively
isotropic magnetically, we can roughly view all the iron
ions as belonging to two antiparallel types; those on a
sites and those on d sites. Apart from very-high-fre-
quency modes, the 16 on a sites can be considered
firmly locked to the 24 on d sites, merely changing the
net moment. We can then think of the full cell being
broken up into 24 subcells, each with one iron d site in
it, and identify this subcell size with the dimension a
in the models. The 24 rare-earth ions are coupled to
d-site iron ions, and apart from the complication of
three-dimensional geometry, it is roughly as if one were
attached to each iron ion as in our two-sublattice model.
Because of their anisotropy, however, there are many
inequivalent types of rare-earth ions, and the unit cell
must now be increased back to a size large enough to
include all this variation. This increase in unit cell
produces an inverse decrease in the cell in k space,
accompanied by a multiplication of the number of
branches of the spectrum. Alternately, we could keep
the small cell in coordinate space and large cell in k

space, but recognize that the inequivalence of rare-
earth ions in different cells will lead to optical transitions
not only at k=0 but also at points separated from k=0
by vectors of the reciprocal lattice of the ful1.-sized
coordinate unit cell. In our one-dimensional model with
a full cell size of 2u, the only example of this was at
k=w/a. In the extended zone of the actual three-
dimensional case, however, there would be many more
such points, many with degenerate frequencies.

To give a concrete example of how this works, when
the magnetization is along the t 111$easy axis of YbIG,
the rare-earth ions fall into only two classes when classi-
6ed according to longitudinal y, but there are in general
several very different transverse p's within each such
class. We can view this in terms of the three-sublattice
model, y2 and y3 in the model being the two different
longitudinal y's, with at least two cells having distinct
transverse p's. Alternately, we can think in terms of
the two-sublattice model, with at least 4 cells being
required to take account of inequivalence in both longi-
tudinal and transverse y. From either view, we see that
the frequencies near co~ and ~3 will be allowed in the
spectrum, as observed experimentally. ' If the magne-
tization were turned in a general direction, with only
inversion symmetry left, there would be in general 12
inequivalent rare-earth ions with 6 different longitudinal
y's, and a large number of observable optical modes
would exist.

IV. DISCUSSION OF PARAMETERS

g Values

In the above treatment, we have introduced g values
Or magnetomechanical ratios y without discussion,
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However, because of unquenched angular momentum,
the rare-earth ions have g values far from 2, and some
discussion is required. If the ions were completely un-
quenched, there would be no question but that one
should use the usual free-ion Lande g& factor, given by

g~= 2+r~(s+1) I-(—I-+1)j/2~(J+1) (2~)

However, the usual case in the garnets is that, although
the spin-orbit coupling is large enough to hold the mag-
nitude J' as a good quantum number, the (2J+1)
diferent Mz states of the manifold are split apart by
the crystal field with splittings' which are typically of
the order of 100 cm '. Thus, at the low temperatures
where resonance Ineasurements must usually be made,
only the lower-lying levels will be occupied. In this case,
the effective g governing the occupied levels may be
very different from gJ and it may be highly anisotropic.

A specific example of some importance is that the
lowest level in the presence of the crystal field, but in
absence of the external field or the exchange field of the
iron sublattice, is a Kramers doublet. Let us review the
situation here with some care. Because of the degeneracy
in zero 6eld, the proper eigenfunctions depend on field
direction. Assume the field and quantization axis to lie
on the 2: principal axis of the crystalline 6eld, and denote
the two eigenst, ates by p. , pb, which are related by time-
reversal symmetry. Thus we may define

(~ I
J.I ~) = —(& I ~*I b) —=g*/2g~ (24a)

(Throughout the paper, angular momentum is meas-
ured in units of 5, so J is dimensionless. ) Since the
magnetic interaction which these states diagonalize is
IJ,,H=gqPJ, H, the energies are E=+g,PH//2, and the
frequency of the transition, if allowed, is given by
hp=g, pH. Since J, is diagonal in the states lt, and pb,
it follows from the angular momentum commutation
relations that the diagonal matrix elements of J and
J„are zero. We de6ne g and g„ in terms of the off-
diagonal elements,

(~IS*I&)=(&I~.lo)*=g-/2g~, (24b)

(~I~.I&)=(&I~.Io)*=bg./2g~ (24c)

If x and y are also chosen as principal axes, these g's
will be real. Then for a field in an arbitrary direction,
we can write

X=gqPJ. H=P(g, s H,+g„s„H„+g,s,H, ), (25)

if we take s= —,'and identify the states s,=%—', with the
states u, b. The corresponding eigenvalues are

~=~ (0/2) I:(g.H*)'+ (g,H„)'+ (g.H.)'j*'=~gW/2,
'

(26)

leading to the familiar expression for the paramagnetic
resonance frequency of a Kramers doublet in a magnetic

R. Pappalardo and D. L. Wood, J. Chem. Phys. 33, 1734
(1960); R. L. White and J. P. Andelin, Jr., Phys. Rev. 115, 1435
(1959).

6eld of arbitrary orientation. "Thus as far as these two
levels are concerned, the system acts as if the angular
momentum were s=-,' and the g values were g„g„, g„
perhaps very different from gJ. Despite this fact, the
ratio of magnetic moment to true angular momentum
of the ion must still be given by g& because J remains a
good quantum number. The question remains to clarify
why these effective g's should be used in the Bloch equa-
tions, which on the surface are based on simple classical
equations governing "true" angular momentum.

Let us conceptually simplify the problem by 6rst.
considering a case with cubic but not spherical sym-
metry. Then g,=g„=g,=gWgz, in general. In a field
II along s, the two eigenstates are separated in energy
by AL"=A(IJ,,)H=gzPA(J, )H=gPH. Now, in the
quantum description of the dynamics, the precessing
transverse moment described by the Bloch equations
arises from the off-diagonal matrix element of p, con-
necting f, and fb, which is proportional to g,. The fre-
quency of precession is a& =AL~/A =g,PII/O, which
equals gzpH/fb= (gee/2mc)H only if A(J, )=1.This will

in fact be the case if the two eigenstates in the Kramers
doublet are also eigenstates of J„as follows from the
AJ, =&1, 0 selection rules for a vector operator p.
However, the crystal 6eld destroys the isotropy of
space, and unless it is axially symmetric about H, it
will in general mix several J, values in the eigenstates
of the Kramers doublet. In this case A(J, )=g/gq can
have any value up to 2J. We require that there remain
some nonzero components of p, and fb which satisfy
the DJ,=&1 selection rule only to give a precessing
moment. So long as we have cubic symmetry, this con-
dition will be met whenever g/0, since g =g,=g, =g.

From this discussion, we see that in treating the
dynamics of these quantum systems one should use
y=ge/2mc. In order to reveal gq when the ion is in the
crystal at low temperatures, one would need to perform
a gyromagnetic experiment of the Einstein-de Haas
sort, in which the lattice recoil implicit in the crystal-
field effect, would be made observable. "The situation
here is similar to the use of an effective mass m* in
transport theory to take account of the interaction with
the periodic potential of the lattice. There, too, account
must be taken of lattice momentum if the true elec-
tronic mass is to be used. The simplification resulting
from use of the effective parameters is evident.

If we now relax the cubic symmetry constraint, new
features appear. For one thing, we note that the fre
qleecy of precession of the transverse moment depends
only on the g value along the 6eld, while the magnitude
of the transverse moment is governed by the transverse
g. This should be contrasted with the classical case,
where the component of the moment along the field

"See, for example, K. D. Bowers and J. Owen, Reports on
Progress in I'hysics (The Physical Society, London, 1955),Vol. 18,
p. 304.

"C.Kittel, Phys. Rev. V6, 743 (1949);J. H. Van Vleck, ibid.
78, 266 (1950).
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plays no role in the torque equation. In the extreme
limiting case where g —+0, there is no oscillating
moment in the x direction, and no transition could be
induced by an rf 6eM in that direction even if g,~0, so
that a well-defined resonance frequency wouM exist.
[When the static field is not along a principal axis, the
g defined in (26) is the appropriate longitudinal g and
a different expression may be derived for the transverse
g values. ]

This distinction between longitudinal and transverse

g values is very important in determining the observable
modes in the garnets. The implication is that even when
the exchange field lies on a symmetry direction, such
as the [111]easy axis in YbIG, where only two different
splittings are observed, the number of sites with dif-
ferent transverse g values is generally much larger. Thus,
modes which would be optically unobservable if the
ions had isotropic g values may be quite strongly
allowed with the actual anisotropic g tensor. Another
way of stating this is to say that ions are equivalent
only if both longitudinal and transverse g value are
equal for the given applied field direction. Because this
restriction is much more severe than the requirement
on the longitudinal g alone, the number of inequivalent
sites, and hence of observable modes, is increased
Inarkedly by anisotropy. This is the basis of the remarks
at the end of Sec. III.

Exchange Field

The other parameters requiring some discussion are
the exchange field parameters c and X;. Since the iron
ions are in '5 states, it is known that their g values are
quite nearly isotropic and quite near to the spin-only
value of 2. We also expect that the exchange coupling
between them should be nearly isotropic. Thus, we
assume that t. is a simple scalar parameter. Because of
the anisotropic magnetic properties of the rare-earth
ions, the situation is less obvious with the parameters
A, ; giving their coupling to the iron.

To get a concrete approach to the problem, letus
recall that this exchange energy arises from the anti-
symmetry of electronic wavefunctions. In the familiar
Hartree-Pock approximation, this appears as a spin-
dependent potential energy term" arising frominter-
action with other electrons with net unpaired spins.
This exchange potential U acting on the rare-earth ion
will have a symmetry dictated by the environment, and
it can be analyzed in a manner similar to the ordinary
electrostatic crystal field potential V, which acts on
electrons of both spins equally. The question then is:
How does the magnitude of the exchange energy split-
ting of the rare-earth Kramers doublet depend on the
orientation of the unpaired iron spins which produce the
exchange 6eld'? We shall not give a detailed treatment

'~ J. C. S1ater, Phys. Rev. 81, 385 (1951); 82, 538 (1951);
G. W. Pratt, ibid. 102, 1303 (1956).

here, but instead summarize the conclusions of an in-
vestigation along this line.

First, so long as J is a good quantum number, the
net spin angular momentum in the wave function bears
a fixed ratio to the total true angular momentum,
namely, S= (gq —1)J. The spin part of the moment is
then ass=[2(gg —1)/g~]p~. From this, it follows that
the total spin moment will show exactly the same
anisotropy as pJ or g,«. Thus, the spherically symmetric
term in the exchange potential will give rise to a split-
ting which has the same anisotropy as the g tensor.

Second, if we take a rare-earth wave function for the
case of cubic symmetry, no first-order anisotropy in the
exchange splitting will result, even from noncubic terms
in the exchange potential. Thus, effects of anisotropy
in the exchange potential come in only in second order
in terms like UsVs/V, or Uss/V„where U„, V„are the
coefficients of spherical harmonics of degree e in the
exchange and crystal Geld potentials, respectively, and
V, represents the dominant cubic crystal-6eld term.
Unless the exchange potential is so anisotropic that
U2 Uo, one would expect the anisotropy from these
terms to be considerably less than that coming from the
g value itself. About the only relevant experimental
evidence is that of Wickersheim" on VbIG. He 6nds
several times as much anisotropy in the exchange split-
ting as in the g tensor of Yb when it is present in the
homologous diamagnetic yttrium gallium and yttrium
aluminum garnets. This suggests that either the ex-
change is actually increasing the anisotropy of the g
tensor by changing the wave function or else that the
exchange potential is very anisotropic, or some combi-
nation of these effects. A direct measurement of the g
anisotropy in YbIG by measuring the effect of a very
strong external field on the spectrum would be most
helpful in resolving this question.

V. EFFECT OF ANISOTROPY ON THE SPECTRUM

In Secs. II and III we considered in detail some
simple model situations characterized by isotropic g
values as well as isotropic exchange. In Sec. IV we
noted that inequivalence of transverse g factors was
sufficient to severely affect election rules by making
more ions per unit cell inequivalent even when the
exchange field is along a symmetry direction. We now
proceed to consider the effect of the anisotropy on the
resonance frequencies themselves.

The effect on the single-ion splitting frequencies has
been implicitly discussed above. For any given direction
of exchange field with respect to crystal axes, there will
be various splittings for the various ions per unit cell
because the principal axes of their g tensors are differ-
ently oriented. For example, Wickersheim" has shown
that in YbIG there are six diferent splittings for a
general direction, four different splittings if the field is
restricted to a (110) plane, and only two different

"K.A. Wickersheim, Phys. Rev. 122, 1376 (1961).
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splittings if the field is along a [111] or [100j
direction.

The effect of the anisotropy on the exchange reso-
nance near or, is more subtle. We have noted above that
this mode is one in which all the rare-earth ions precess
in phase with nearly equal amplitudes, despite modest
differences in g. Thus, some sort of average effect of the
anisotropy over all the inequivalent ions must enter.
For YbIG, this problem has been attacked through
direct computation by Henderson and White. " They
have computed the exchange energy and free energy of
the crystal as a function of temperature and of orienta-
tion of the exchange field with respect to crystal axes
in the (110) plane. This calculation is straightforward
once the exchange splittings (as a function of angle) are
available input data for the statistical mechanics. Of
necessity, this over-all energy has cubic symmetry and
it can be Gtted quite well by the usual expression,

F(&s lT) Fp(T) +1(T)(&1 &2 +&2 &"'

+np'elJ')+Ep(T) (nJ'npnp), (27)

where o.~, e~, o.3 are the direction cosines of the iron mag-
netization with respect to crystal axes. Such an expres-
sion can be used to account for the effect of anisotropy
on the ferrimagnetic resonance mode, as is well known.
Its application to the exchange resonance is, however,
not familiar, and will be treated here.

The simplest way to introduce anisotropy into the
dynamical equations is by an eQ'ective anisotropy field
along the easy direction. However, with two inequiva-
lent sublattices, it is not clear how to do this. In fact,
since we known that the origin of the macroscopic
anisotropy energy is in the anisotropy of the exchange
splittings which depend mutually on the two sub-
lattices, it is clear that the anisotropy 6eld on one sub-
lattice must be proportional to the magnetization of
the other sublattice. Rather than try to force this
problem into the H~ approximation, let us consider an
alternate simple semiclassical model of two sublattices
coupled by exchange, one sublattice being isotropic, the
other having an anisotropic g value. Provided there is
an easy axis of at least 3-fold symmetry (such as the
[111jin YbIG), there must be axial symmetry in the
average effective g tensor about this axis. That allows
us to write the exchange energy as

II = —X'r JA'Ss(r„' cos'OJ+rJ' sin'OJ) *) (30)

which shows the characteristic angular dependence
found in (26). Differentiating twice, we find

1 8'
L 888

(31)

This relation allows the model parameter yJ(T) to be
evaluated in terms of the derivatives of the free energy
(27), if use is made of the fact that the torque can be
computed equally well as the isothermal derivative of
free energy or the isentropic derivative of the energy
so that [O'F/88'jp [O'F/88'——]p. Ep(T) is simply pro-
portional to the product of the two sublattice
magnetizations.

Now let us compute the resonant frequencies of a
system with (28) as the Hamiltonian. To be certain of
proper handling of this system, we use the quantum
equation of motion (but with reversed sign of i to agree
with our conventional e+'"' time dependence):

(d/dt)S = —(i/A) (HS SH), —

and a similar equation for s. This leads to

(Xy,y„As,+Jp)S —(XyJyJAS, )s =0,
—(XyryJAs, )S +(XyJyl, AS,+pl)s =0. (32)

Setting y&AS, =M~ and y«As, = —M2, we have the
secular equation

(—XyJMp+ pl) XyJ3IIJ-
=0.

~vJvJMp/7ll (vllMJ+~)

The solutions are

(33)

pl8+ [Jpa +4~ MIM271( Yl l YJ )/Vll j
(34a)

To evaluate y&, we make contact with the macro-
scopic energy by letting OJ be the angle between S and
the easy axis and 82 the angle between s and the opposite
easy axis. Then the energy becomes

E= X'rJA Ss(pll cosOJ cosOp+pJ slnOJ slnOp). (29)

Minimizing this with respect to 8~ for given 0~ leads to

F.= PyJA'fy„S, s,+yJ(S,s,+—S„s„)$, (28)

where S represents the iron and s the averaged rare
earth, with y«4y&. In this expression, y, is a tempera-
ture-dependent parameter which is adjusted to re-
produce the anisotropy of the macroscopic exchange
energy for small angles from the easy axis (assuming X

is isotropic so that all anisotropy is in y). Obviously, the
approximation fails for large angles, because it lacks
the full cubic symmetry of the problem.

' J. W. Henderson and R. L. White, Phys. Rev. 123, 1627
(&96&).

where

(34c)

Jp.=X(y„MJ—yJMp), (35)

4MJMypyJ„f 1 O'F-q
1& 1+

(y, lM, y,3IIp)' E F. 88') p

(34b)

and we have used (31) and Zp ———XMJMp. We note
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that this reduces properly to (op=0, —or when there is
no anisotropy.

At an easy axis, L82E/88272)0, so the anisotropy
increases the exchange resonance frequency in magni-
tude. To calculate coo(T), the 6rst approximation is to
compute co,(T) using Mr(T) and M2(T) in (35). The
correction for anisotropy may then be made using (34),
in which

O'E 82I'
= —ster(&)+a&2(&)7, (36)

80' o ~0' p

where the second equality holds if the easy direction is
a (111)direction. The temperature dependence is most
conveniently found via (34c), but dimensional normali-
zation is more straightforward in the form (34b). Note
that since Ej and K2 drop much faster than M~ as the
temperature is increased, the simple approximation
&oo M, (T) b——ecomes quite good at the higher tempera-
tures. We note further that as the rare-earth sublattice
disorders with increased temperature so that M2 —+ 0,
then co, ~ Ayi lM~, the average single-ion exchange
splitting for the rare-earth ions. This type of tempera-
ture dependence should be characteristic of the ex-
change resonance mode.

Our result (34) not only gives the effect of anisotropy
on the exchange resonance, but by taking the negative
sign we also obtain the frequency of the ferrimagnetic
resonance mode which is raised from zero by the anisot-
ropy. So long as the anisotropy is small, we Inay ap-
proximate (34c) by too = (»7„)./&o, ) (828/882) o. The
effect of an applied field Hp along the easy axis will be
to shift the frequency upward by the amount given by
(18a). If the anisotropy is large this expression must be
corrected to

cop(Hp) = top(0)

(&717ti) (Mi —M2)+ (7r+7»)~o(0)
&o, (37)

(h7 171 I)p (M 1/71) (M2/72) 7+2co0 (0)

where &oo(0) is the low-frequency root of (34).
Another application which may be noted is to the

case of dilute samples of rare earth substituted into
YIG." In this case, the formalism should still hold,
but of course M2 is reduced in proportion to the con-
CentratiOn, aS iS 82K/882, and to, apprOaCheS 7~AM&.
Therefore for low concentrations (37) takes on the
limiting form

in ferrimagnetic resonance frequency (or decrease in
resonance 6eld) when Bs lies along the easy axis. It
could be generalized to an arbitrary direction, but we
will not go further into that here.

VI. SPECIFIC HEAT CAPACITY

Although spectroscopic studies of the excitation
spectrum give the most precise information about the
garnets, the specific heat measurements of Meyer and
Harris" have provided a most valuable initial survey
which could be made independent of concern about
selection rules or relaxation times. In the analysis of
their experimental data, they have treated the rare-
earth ions as if each had two (or more) levels split by
the exchange field, leading to a Shottky anomaly in the
specific heat, from which the level splitting was inferred.
Dreyfus" has pointed out that the optical spin-wave
modes at 4 =0 have energies of the same order of mag-
nitude as these splittings, and he suggests an analysis of
the specific heat in terms of optical spin waves. On the
basis of our results in earlier sections, we can clarify this
situation.

In Secs. II and III we noted that the complete spin-
wave spectrum (shown in Fig. 1) was well approxi-
mated by an almost unmodi6ed iron spectrum coo(k) =0&
plus a number of optical branches equal to the number
of rare-earth ions per unit cell. Further, beyond ktt or/5,
these branches flatten out at. nearly the single-ion split-
ting frequencies. Since the volume in phase space goes
as k'dk, this means that 99/o of the spin-wave modes
will have frequencies near the splitting frequencies,
while the remaining ones on the branch only are sub-
stantially lowered toward ~,. Since co, is typically no
less than half the single-ion frequency, even this change
is not serious. Thus we conclude that the specific heat
should be well accounted for by adding the contribu-
tions from the iron spin waves to the contribution from
Qat optical branches at the various single-ion splittings.

Since the number of spin-wave modes equals the
number of ions, S, we have the following specific heat
contributions for a type of ion with a single low-lying
doublet with characteristic frequency ~p, depending
on whether we use the spin-wave or single-ion
approximation:

2 cosh@—1

7t (8'~i (72—7r)M2'
coo(ao) =c

I I +71EE0 1+c
Mt E 882) o

(3g) 2 cosh@+1

where c is the fractional concentration of rare-earth
ions, and E' and M2' represent the values for the un-
diluted compound. This expression gives the increase

'li J. F. Dillon, Jr., and J. W. Nielsen, Phys. Rev. 120, 105
(1960).

where x=A&oo/kttT, ktt being the Boltzmann constant.
As seen in Fig. 4, these agree when k~T&&A~p, both

"H. Meyer and A. B. Harris, J. Appl. Phys. 31, 49S i1960)."B. Dreyfus, Proceedings of the Seventh International Conference
oe Lozv-Tensperutlre Physics (University of Toronto Press,
Toronto, 1961),p. 127; J. Phys. Chem. Solids (to be published).
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FIG. 4. Comparison of heat capacity of two-level system, repre-
senting single-ion splitting, with that of oscillator, representing
spin-wave mode.

giving Sk~x'e '. At higher temperatures they disagree,
C, approaching the constant Ek as required for an
oscillator by equipartition, whereas C, ; goes to zero
as (5~0/kgT)' when the two levels approach equal
population. It is physically evident that the latter be-
havior is the correct one for the system at hand, since
each ion can Rip only once. The spin-wave approach,
being linearized, fails to take this into account. Finally,
we note that a completely Oat spin-wave spectrum
would mean no propagation. In that case, we could set
up spin-wave packets which Qipped a single localized
spin, which would still have the same frequency Mp. But
for these wave packets it is clear that the single-ion
specific heat expression is correct. Thus we conclude
that the simple method of analysis used by Meyer and
Harris is justified.

VII. CONCLUSIONS

We conclude that the spin-wave spectra of the rare-
earth iron garnets consist of branches very similar to
those in YIG together with a number of new optical
branches equal to the number of magnetically in-

equivalent rare-earth ions in the unit. cell. Inequivalence
can arise from different g values transverse to the ex-

change field as well as from different longitudinal g
values. However, approximate account can be taken of
the many inequivalent rare-earth ions, if the differences
are not too great (and particularly if they differ only in

transverse g), by the device of neglecting differences for
the purpose of finding the normal modes, but taking
account of them for the purpose of determining which
modes are optically observable. In this approach, one
considers a small unit cell containing only a few ions,
together with the correspondingly large cell in k space.
Observable transitions can th en occur not only at k=0,
but at other reciprocal lattice points of the full-size unit
cell. This viewpoint is closely related to the use of the
extended zone scheme for approximating the energy
bands of nearly free electrons.

One of the optical branches at k=0 will have a fre-
quency near the exchange resonance frequency
M X(|2M/ pgM2) of Kaplan and Kittel, with an
averaged rare-earth g value entering y~. This mode will

be raised in frequency by a term proportional to the
second angular derivative of the macroscopic anisotropy
energy at the easy axis. As the temperature is raised,
this mode will shift in frequency, both because the rare-
earth magnetization M~ drops, and because the anisot-

ropy energy drops even faster. The other observable
modes will have frequencies depending quite directly
on single-ion splitting frequencies, so that they will be
relatively independent of temperature. Because the
bulk of the spin-wave modes lie on branches having
nearly the single-ion splitting frequencies and very
little dispersion, the specific heat is well approximated
by the single-ion Shottky anomaly treatment used by
Meyer and Harris.
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