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Simplified Model of Liquid Helium
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A simplified version of a Bose gas with negative scattering length is studied with a model Hamiltonian
similar to that used in the case of repulsive interactions. A new transformation is used which takes into
account the attractive interactions in the system, and the ground-state energy is calculated from experi-
mental values of the sound velocity in the system. Real values for the phonon energy spectrum are obtained,
and the ratio of the effective mass to ordinary mass is deduced using experimental values of interparticle
separation and core radius. A justification for using this modified Hamiltonian is attempted in the Appendix.

scattering length in which one assumes that in the
"free" wave function all the particles are sitting in the
momentum-zero state, that this state is su%ciently
rigid, and that a perturbation cannot change the state
drastically. Ke perform this redistribution by using a
canonical transformation which mixes momentum-zero
states and finite-momentum states, and fix the mixing
parameter by requiring the energy to be minimum in the
Hartree-Fock sense. Finally, we apply to the trans-
formed model Hamiltonian the Bogoliubov transforma-
tion and show that the phonon excitation is in fact
real for negative scattering length.

I et us begin by writing down the usual Hamiltonian
in the second quantized version as

ECENTLY' ~ an intensive study of the Bose gas
has been made using various methods of approach

such as the pseudopotential method, linked-cluster ex-
pansion method, the transformation techniques, and
the propagator formalism. But most of the results ob-
tained so far are confined to a system of a Bose gas with
repulsive interactions for which one has positive two-
body scattering length only.

It will be the purpose of this paper to examine the
consequences in the case in which there is a predomi-
nantly repulsive interaction with negative scattering
length. The situation corresponds to the actual liquid
helium in which particles are interacting with a shallow
attractive potential with hard-core repulsion inside.
We examine the system under the following assump-
tions: that the bare potential which appears in the
Hamiltonian describing the system can be replaced in
some way (which we do not know exactly at present)
with a smeared out E matrix (or pseudopotential)
which has a definite low momentum limit, and secondly,
that even after the replacement, the system can be
described by the Schrodinger equation with a Hamil-
tonian which we call a model Hamiltonian.

In the following, we first seek a possible model
Hamiltonian which corresponds to the case of liquid
helium. Eventually, we arrive at the same model Hamil-
tonian wich was used before in the case of positive
scattering length (low-density limit). It is well known
that if we merely replace the sign of the scattering length
in the results for phonon excitation energy usually
obtained in the case of positive scattering length,
applying the transformation proposed by Bogoliubov, '
we are led to complex (nonreal) excitation energy,
which means that the system is unstable. This shows
the necessity of redistribution of particles among the
various states in the "free" wave function, contrary
to the ordinary treatment for the case of positive
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2m

+s Q po tp —o tvo popo+ c c
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(Sums do not include momentum zero. ) In the above,
p, and p, t are, respectively, the boson annihilation and
creation operators, the q's are the particle momenta, and
rro= potpo, rl, =p, tp, are number operators.

Under the assumptions we have made and by the
reasoning we are going to present in the following, we
would like to examine the system with a model Hamil-
tonian given by
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where n is the scattering E matrix and is taken as con-
stant neglecting momentum dependence (i.e., we con-
sider only low-momentum excitation) as well as density
dependence.

First of all, the model Hamiltonian (2) is the same as
the Hamiltonian used (in the low-density limit) when
the scattering length is positive (n=4vra/mQ; a is the
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scattering length and 0 is the normalization volume of
the system). '-'

In the case of 0, being negative, we have sufficient
reasons to argue that (2) may describe the system.
Firstly, we cannot include the type of interactions
which have the form of the last two terms of (1) in
the model Hamiltonian (2) which is supposed to de-
scribe liquid helium, because if we do so, the energy of
the system becomes proportional to (number of par-
ticles)'+~ (P)0) times a constant (density-dependent)
which is of order one. Hence we are led to a lack of
saturation of energy as is shown in Appendix A. /Note
that we have neglected and actually do not claim to
know in this paper the density dependence of u in (2);
hence we cannot discuss the existence of a saturating
density. The latter, namely, the existence of a mini-
mum in the density-energy diagram, is also another
assumption we have made. On the other hand, the
terms in the model Hamiltonian (2) give as the energy
of the system a quantity proportional to the number of
particles times a constant (density-dependent) which
is of order one (see Appendix A).] We also show in
Appendix C that there can be a few other possible
terms which can be added to our model Hamiltonian
leading to saturation in the same sense as above, but
the conclusions obtained therefrom are quite similar to
those obtained in the following by using (2) only.

These arguments on the justification of (2) as model
Hamiltonian are not very strong and, of course, depend
on the assumptions we have made. But in this paper
we shall regard (2) as our basic Hamiltonian and pro-
ceed to obtain a few results.

There have been different ways used to treat the
system with the Hamiltonian (2). In the variational
treatment, in the case of positive n, the type of trial
state vector employed in earlier work is

excited ones), we transform the state vector by a dif-
ferent unitary operator,

Ui= expL —Pk fk(Pk'Po —Po'Pk)], (6)

where fk is an arbitrary pa, rameter (mixing parameter)
to be determined later. The one-particle wave function
corresponding to this will no longer be a plane wave
but a distorted one as it should be.

We see that

UA'Ui ' P—kt——+sk[Qk sk P, t(uo —1)—iopotj, (7)

Ulpo Ui uoPO +&0 Qk skpk

where

sk= fk/(Zk fk')*' uo=cos((rk fk )*}~

Similarly, the transformations for pk and po are, re-
spectively, the complex conjugates of Kqs. (7) and (8).

To fix the variational parameter fk, we evaluate the
ground-state energy by transforming the model Hamil-
tonian (2) by the operator Ui and picking out the
diagonal terms after replacing Po and Pot by the C
number +1Vo, where lVo is the number of particles in
the zero-momentum state. (After transformation, we
suppose that the "free" ground state is su%.ciently
rigid, whereby lVo=lV, the total number of particles. )

Applying the transformations given by Kqs. (7) and
(8) to the terms of the model Hamiltonian (2), we 6nd
the leading diagonal terms to be

KO)=g 0)+g 0)

8,0) =Q, oo'so'lV o«,+2u Q, oo's, 'lV o'uo'

+-,'uuo'lVo'+Q, so'ao'uo'¹', (10)

where
)0)=C exp[&] @o,

& =-', gopo'+Qk gkPk'Pk',

(3)
Zk") = —ou Q uuo'A o-'.

—2e Q

and C is the normalization constant; go, gI, are varia-
tional parameters, and Po represents the free ground
state in which all particles are sitting in momentum-
zero state. Using the state vector (3) is equivalent to
the application of the well-known Bogoliubov trans-
formation U to (2), where

U=expL —&kg„(p,tP kt —P „P„)j,

and the determination of gI, by minimizing the constant
terms obtained after transforming the Hamiltonian.

It is well known that, if we use the above technique
in the case of negative u, we obtain the complex (non-
real) phonon excitation energy. This points out the
inadequacy of taking po as the free ground state.

To incorporate the attractive interaction which
changes the occupation of particles (especially those
between the zero-momentum state particles and the

Besides taking n to be a constant, we also make the
following simplifying assumptions: We take the quan-
tity f, to be a constant for q(q, „and 0 for q)q
(with Pofo' being of order one for the transformation
to be nontrivial), and write

Sg 6@=6.2

Q&Qmax

As a result of these simplifications, we arrive at an
expression for the ground-state energy E,0) )obtained
by transformation of (2) by Uij:

3AXp —6
E,0)= —-,'u¹o cos'$(Q fk')'*j-

5nXp

(3ulVp —«)'
+«¹+ lV o. (11)
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0(8(—2QSp. (14)

In view of this, the minimum energy is obtained when
& =0, and this immediately determines the value
cos'L(gqfs')'1 to be —',. The minimum value of the
ground-state energy is

9nXp~
=-!(9/5) I-l~",g (~)—

10

and this is less than —
s lnlXoq as it should be. The

fact that e is to be zero restricts the number of particles
involved in the transformation U~ in higher momentum
states to almost zero. Considering the fact that &=0
while cos'L(goofs') l) has to be s, we can determine f, as

f,=f/(AM')1, 0&q&2wM/L, (16)
=0, 2»rM/I&q.

LM is some arbitrary number ()0 and finite) and L is
the dimension of the quantization box.) Here f» is
replaced by the f~q~ since the angular dependence of f,
is the same for all values of g.

Equation (16) gives e=O(1/I. ') -+0 as i.-+ oo. This
shows that only in the immediate neighborhood of q=0
are particles excited. Our next task is to look for the
existence of the phonon spectrum and study the various
features of these excitations. In all previous work, a
negative scattering length has led to the difhculty of
complex energy values for the low-lying excitations.
We shall see, after applying the transformation VI (6),
that our transformed (model) Hamiltonian becomes

Here we do not include Ego& to the variational pro-
cedure to find a suitable fs which makes the energy of
the system a minimum, assuming that e is a small
quantity and hence treating E&&" as a higher order
correction.

For a negative value of the scattering E matrix n,
the minimization condition leads to

cos'L(+1 f~')&]= (3nlVo —e)/5niVp. (12)

Then E„('& is determined in terms of the parameter e.

(3nlVp —e)'
E,I'& = eiVp+ &o.

10n/p

The limits of t., which is to be always positive, are
set by the condition (12) and the fact that n is negative.
Hence

This procedure, as explained elsewhere, will lead to the
determination of or„ the single-particle excitation en-
ergies of momentum q, and is equivalent to making a
further transformation [namely, Bogoliubov trans-
formation (5)] to our once transformed Hamiltonian
(17). The relevant eigenvalue equation (in the Heisen-
berg representation) will be

[Xq*)Hr]= —oo»X»*+ IJ'q. (19)

H we choose I'q as a small quantity, oI„g„and Pq are
to be determined by the eigenvalue equation.

In applying this method to our system, we have to
remember that since the Bogoliubov transformations
do not conserve the number of particles, we have to
replace qsp

——PotPp by X—Pqe„ in all the terms. ' This,
of course, does not acct the ground-state energy ob-
tained earlier (E,&'&,Ep"'). But we have a term

—nX Qq(9/5)e„ (20)

which arises from the erst term inside the last square
bracket in Eq. (17).This in turn adds to the coefficient
of the gott» term in (17).With regard to other terms in
(17) above, the replacement is equivalent to replacing Po
and Ppt by QX.

g2

Hr=p +(—-ssnX) pqtpq
2m

+-:(l &) Z ~, t~ t+ . .

+(terms which contain Q f»$»"p, )

where
+&."'+&o"'+AS, (21)

W"=-'n(9/5) 1V',

po(&) — L(o)one g —2eq (22)

To calculate the single-particle excitation energies in
our case, we use the method of the equation of motion. '
We take the commutator of the single-particle (approxi-
mate) eigenmode operator X,* with our transformed
Hamiltonian, where X,* is given by

X-»*=Lx-qtL»*+PA'qj

( qq

+(6/5)-.. I~,t~,
~ I 2'
+5!l Ee,te, tpo~o+"
+'telnls wlllcll collta111 Qq fqs»P»]

hS= (ss)'nlV Q n g n, q.—2e~

We regard AS as a perturbation to the "gap" (—spn&)

and discard it from the present discussion. '
With the transformed model Hamiltonian (21) the

(17) commutator of Eq. (19) for finite values of q yields

1
+ —n(9/5)»so(go 1) sn E n(s)'»1o(»Ip —1)—2eq

where we have used cos'L(g of,')&j= s,' e=0.

Strictly speaking, vie had to use the procedure similar to
Hugenholtz and Pines, Phys. Rev. 116, 489 (1959); Sec. 4 of
reference 6. The procedure is explained in Appendix 8 together
with the meaning of 68 (22) which we have omitted from our
d j.scussson.
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the result, the following:

L&-a*,&~3=pa(4 ah~a+( p~—&)j p~—&X-a)

+P a*(-x—al:p-a+( k~—&)3+p~&4a) (23)
where

4a —ap~&/I 2~,(~a+ p,)1',
x-a= (~a+ pa)/I:2~a(~. +")3', (28)

(29)pa= &a+ ( p+l~ ).Besides these terms, we have for the commutator terms
of the following types: We shall now turn our attention to getting the cor-

rection to the ground-state energy of our system, in-
corporating the Bogoliubov transformation (5) within
the approximation in which we neglect e6ect of "terms"
which contain PfaPa and Ah from (21), by arguing in
the same way as we did in the case of the single-particle
energy. I

We can evaluate the energy by using the in-
verse exPressions for P, and P,* in terms of the Xa's,
putting them into (21), and introducing an ordering
about X„X,*, but here we use the Bogoliubov trans-
formations for convenience. $

The operator U transforms the creation and annihila-
tion operators in the manner shown below

fasapa P skp), &(constant terms,

saIt a P skP), &&constant terms,

sa"pa g s),p~&(constant terms,

saga p s),.' P s)p), &(constant terms

(24)

In addition there are terms which are bilinear in the
operators which we neglect here. In the expression (24)
the quantity s, defined by Eq. (9) tends to zero for
finite values of q by virtue of (16).

Since we are interested only in the energy eigenvalue
of the single-particle excitations, we can neglect these
scattering terms. However, if there appears a resonance
between single-particle states and collective osciHations
in the system, then the scattering terms will become
highly important in determining the normal modes.
But we drop them for simplicity.

Hence, the single-particle eigenvalue equation to be
solved can be written as

UP), t U '= (P),t coshg), —P ), sinhg), ). (30)

We apply this transformation to Eq. (21) and minimize
the energy obtained by collecting the diagonal terms.
This variational procedure gives for coshgA, and sinhg~
the values

coshg, = (p),+.-,)/I 2p), (p)p+;,)g'*,

sinhg), ——-',nN/I 2p)), (p))+ aA) ]&.
(31)

PaaD3A'a+P aX-aj-
=pa{4'aL~a+ ( p~&)j—p~&X —a)- Using the above, we find the energy of the system to be

+P a*( x -.I "+—(-:~&)1+——!~&4a) (25) given by

We can deduce from Eq. (25) that the single-particle
energy eigenvalue is =Q (&)+gpo)+Q ~ p tp

p)a I &a +2&a( p&+)3 ~ (26)
+-,' (-,')'nX Q nX

)The result is, of course, the same as what we would
get if we applied the Bogoliubov transformation to the
first two terms in (21).j For small values of q (q~ 0),
we get the phonon spectrum

+U(terms which contain P faPaS" and 68)U i.

~.=el (1/~)(—k~~)3'.
The constant terms which yield the ground-state

(2y) energy can be written as

For negative 0., this yields real energy values for phonon
excitations. We should note here that the spectrum
(26) is obtained from our model Hamiltonian in which
we have neglected the momentum dependence of the
scattering E matrix completely (low-momentum ap-
proximation), and hence (26) is only valid for the so-
called phonon region. For higher momentum excitations,
particularly near the roton region, we would expect the
repulsive hard core to play a dominant role and the
momentum dependence of the E matrix to become very
important. '

The eigensolutions (in the approximation we are
considering) for Pa and )ca can also be derived easily
and from the fact that X„X,* obey Bose commutation
relations, we are able to normalize them~~'and obtain

Ep ———', (-p, nlV) 3.V
( 1

+l(l &)'I Z —Z I, (33)
a —

Ma
—

pa a —2 pa)

with p)„pa given by (26) and (29).
This energy expression is of the same form as we get

by applying the Bogoliubov transformation only to (2)
if n)0 except for the replacement of n by -,'a and a
multiplicative factor 3 in the erst-order energy. For
a&0, the Bogoliubov transformation yields

Ep=-,'(niV) V+g(nS)' Q
GO g 6g 0 26aI

a)a= (pa'+2naaE)' and pa= pa+a%



304 K. SAWADA AND R. VAS UDEVAN

t my' ~ mq 237'X10'
I+2-

K m*.~ ( m*)
(39)2m p 128

so= —~V—3 I-', o I—
m 15+or

(34)

where qp=A/2. 6X10 ' and m is the mass of He'. This
yields a value for m*/m ofIt is now interesting to examine how well our results

derived above for the ground-state energy, etc., agree
with the experimental data relating to liquid helium.
From the vapor pressure curves for helium the ground-
state energy is deduced as —13.2 cal/mole, ' though
different types of experiments allow considerable lati-
tude to this figure. The above value corresponds to an
energy of (—5.715)X10 4 electron volt per particle.
The sound velocity C in the system can be derived from
Eq. (27), and since the experimental value for C is 237
meters/sec, we can write

m*/m=0. 165.

Hence, our first-order ground-state energy from
Eq. (36) is

(4o)E.&') = —5.75X10 ' ev,

which is comparable to the experimental result. We can
proceed further to calculate the second-order energy
assuming an interparticle separation of 3.6 A, and ob-
tain the ratio (using m* instead of m for the p, 's)

If we de6ne the scattering length a by a=4~a/mQ and of m*. A few algebraic operations lead to a quadratic
X/0= p, the density of the system, we get the familiar equation for the ratio (m/m*):
form for the energy with a few changes;

3 L
—n(0)3

-V =C= 237 X10-',
5 m*

(35)

where, instead of m, we used m* which is the effective
mass for low-lying excitations of the system. The first
order ground-state energy from Eq. (11) is therefore
expressed in terms of the ratio (m~/m) as

E(2)/Po) = 0 107 (41)

The smallness of this ratio will assure us that the energy
expression we have obtained is meaningful. Finally,
from the relation which can hold between o. and the
scattering length a,

n=4ma/m~0,

we find u to be of order of —2 A.
E&') =3.485X10 'X (m*/m) ev. (36)

8(x

n(q) =n(0)+q' — =n+ q'6
q=o

(37)

the altered single-particle energy becomes

p)p=
I

+PpA pq'6 Pp~v&
I

(pPA&) (38)

The effective-mass equation is therefore given by

l
+-pp$6.

2m* 2m

Since the core radius is of order 2.6 A, we can expect
the n(q) to change its sign at a value qp which is of order
A/(2. 6A) because at momentum zero, the scattering
length is negative and at momentum higher than
=(h/2. 6A), n(q) is to be positive. Hence 6 can be
expressed in terms of pp(0) which in turn has been ob-
tained from the sound velocity Eq. (35) as a function

K. A. Atkins, Liquid Helium (CMnbridge University Press,
New York, 1959).

A method to 6nd m* is to look into the term
Qsp(vp+'vp)sp of ollr Hamiltonian (1) and find out the
excess contribution to the single-particle energy if we
have not substituted n(0) for n(q) as we have done in
this paper. Since u(q) can be related to n(0) for small

momentum transfers as
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APPENDIX A

If in the Hamiltonian of Eq. (1) we assume a con-
stant attractive interaction o,, apply the transformation

(5), and collect the leading contributions to the ground-
state energy, the last term gives a factor of the form

p~ Z.Z' Z p ~~.~'~'+""p'&pP (A-1)

Since, for the transformation to be nontrivial, Ppfq' is
to be of order 1, and A'p 0 and a 1/0, this term, when

0. is negative, immediately leads to failure of saturation
in the system since it is proportional to —1V'In I, where
A" is the number of particles in the system. In an
analogous way the terms of the Hamiltonian

Qp Qi ~p~ pp p~ppp+c c

present us with leading contributions of the form

Zn Zp»p'&p'~n+p~i~p (A-2)

This also results in the system becoming unsaturated.
The above also implies that No is so chosen to be nega-
tive and vo to be positive or vice versa. It can easily be
seen that the other terms of the Hamiltonian lead to a
saturating system.

The justification for studying the system with the
last two terms of the Hamiltonian removed (as has
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been done in this paper) may be grasped if we try to
construct the E matrix of the system with a mainly
positive interaction (e)0), but with a negative scatter-
ing length a&0. In this procedure, we will see that the
last two terms in the Hamiltonian (1) which cause the
processes represented in Fig. 1, modify the rest of the
terms of the Hamiltonian. Hence, we can take as our
model Hamiltonian

0 .0

g2
EE"'=g P ~P +'sooeo(no 1—)+Q 2nn, eo2'

+! Z P, tP, tP.Po+" (A-3)

0 0
FIG, 3. Second orcler diagram in n obtained from (A-3).

which is represented in Fig. 3; but in inserting this
term we are overcounting some of the contributions
from the diagram one would obtain from the Hamil-
tonian (1).The original Hamiltonian gives second order
contributions to the energy which can be represented
by summing up the diagrams of Fig. 4 in which the 6rst
interaction point is to be a eo interaction instead of e
interaction. Hence, II"' supplements H ("& to give the
correct result. By adding (11) and (12), and using

0. 0 0 n=eo+'o Q]—
2eo)

(A-5)

r
0' we get as our model Hamiltonian

FIG. 1. Diagrams showing effects of last two terms in the qs 1 t' 1
Hamiltonian (1) on the others, ; is the momentum of the excited Q-,&,t

—g p tp +—
~

n —n g n
~
"o(~o—1)

particle. 2m 2( ' —2c' ]
To obtain the above, we consider n in (11) as a E
matrix obtained by summing diagrams in Fig. 2 and
omitting the momentum dependence of o & and o ~ for
simplicity. We note here that H"' de6ned in (A-3)
must be supplemented by a term

f 1 E

(—2eo]

0 0 0

/
.+

/
/

//
0 0

0r'
/

/I

0

iO 0
/ /

/

0

FIG. 4. Diagram obtained from (1) representing
two-particle scattering.

+P e,2nmo+tsg P, tP, tnPoPo+c. c. (A-6)

+ o Z PotPotPoPo (A-4).
2~/

The addition of this can be accounted for in the follow-

ing manner. The second order correction to the first
order energy obtained from (A-3) is given by

1
~npo'potpopo,

o 5-2eo)
APPENDIX 3

It is obvious from our observations for attractive
interactions that II',d, i for a saturating system with
negative scattering length should not have interactions
of the form represented by the last two terms of Eq. (1)
which we have included in the K matrix. Hence, it can
be said generally that the model Hamiltonian is to be
of the form (2).

0 0
/

/
I

The procedure to be used in a more rigorous treat-
ment for the system with the Hamiltonian (17) is to
replace eo by a number N which is determined by the
condition

~+ (4'17)Ek "4'17) (B-1)

Here fg is the eigensolution of the equation

y 0

FIG. 2. E matrix for forward scattering and for pair creation,

[~r(&) pZs "s]pm= ~~P~-,

g= BEg/BE. (B-3)
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The ground-state energy becomes

&o=&st+p(giV, Z tss4Z). (8-4)

hence is approximately the free ground-state wave
function. Ke can write

Taking the definition of ii given in (8-3), if we assume
for the energy Eg the approximate value given by the
last two terms in the square bracket of Eq. (1"I) with eo
replaced by E, we see that

Hence the number of particles in nonzero momentum
states is given by

(4o, &i Zs iUt '@o)=no' Qa &a'&= s& (8-6)

In determining the above we have made use of Eqs. P)
and (8) and taken the value of cos'I (gifts)'$ to be -'„, .

—fin&+pisi

where p, "' is given by

—ii "& Ps e„= ng P—,(9/5)v„

which is the same expression as Eq. (20},and pt" by

—p"' Ps iso=ah,

where i18 is the same quantity found in Eq. (22). Then
the Hamiltonian )Hr(g) —pgsls] in Eq. (8-2) be-
comes exactly the same as our model Hamiltonian (27)
except for the fact that X is replaced by ¹

Ke have discarded the quantity 68 from our dis-
cussions in the text. Here we 6nd that 68 is a part of
the second order chemical potential p, "'. But this p, ~'
is really to be derived from the actual value of Eg
taken up to the second order, which is the equation for
Eo given by expression (33}in the text Hwe .do so, we
And that the divergences in p() arising from the dif-
ferentiation and summing up of the second order terms
cancel each other. It is easy to see that Ah is the con-
tribution obtained by differentiation of the second order
factor containing the term +L1/( —2eo)) in Eq. (33).
The other second order factor, which is the result of
the Sogoliubov transformation, after differentiation
yields another divergent term similar to 68.

Hence in all our expressions in the text X given by
(8-1) should replace X. To calculate the quantity g,
we can use Eq. (8-1) and obtain

X=g+2.8(m*/m)sg=gX1. 013. (8-5)

In evaluating the above we have used the approxima-
tion that p=p which, in view of the small depletion
effect indicated by (8-5), is a good approximation.

It is interesting to observe that while the result (8-5)
shows that the mean number of particles in the excited
states, corresponding to the situation represented by
the transformed Schrodinger wave function, is very
small, the mean number of excited particles correspond-
ing to the original untransformed Schrodinger wave
function, namely the quantity (f,pons') where lt is
the eigensolution of the equation II .s,gP=EQ, is not
so small. To estimate this wave function P we take the
transformed model Hamiltonian and remove the inter-
action terms therefrom. Then the wave function P
should correspond to the Hamiltonian represented by
Eq. (17) without the terms in the square bracket and.

APPENDIX C

On the basis of the arguments employed in Appendix
A to analyze the saturating properties of the various
terms of the Hamiltonian (1), and in view of the struc-
ture of our transformation U~ which mixes the excited
states with zero-momemtum states in a nontrivial way,
we wouM like to point out that after eliminating the
nondiagonal (scattering) interaction terms (by incor-
porating them suitably into the E matrix which is not
achieved here) there remain, in addition to the terms
found in our model Hamiltonian (2), a few other terms
which even with a negative scattering length for the
interaction lead to the saturation of the system in the
sense of Appendix A.

These additional terms are

The corresponding diagrams representing these inter-
action terms are given in Fig. 5. But in taking our
Hamiltonian as II~,o,~+II~,o,t"& we are committing
the error of overcounting some of the processes of
second order represented by the diagrams given in
Fig. 6. Hence, to evaluate energies correctly up to
second order we should delete these processes from the
interaction; this can be done by adding to the Hamil-

(a)

Pro. 5 (a). Diagram showing forward scattering of excited particles.
{b)Diagram for pair to pair scattering.
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In arriving at this value, we have as a 6rst approxima-
tion discarded the second order El, &'~ terms [Eq. (10)]
and similar terms obtained from H,q, i&"'. Also we
have made variations of the parameter fl, only.

The total transformed Hamiltonian can be written as

i Q +tra, nsformed

0

FIG. 6. Second order diagrams in 0.' obtained from (A-3) and (C-1)
together which appear in addition to diagrams in Fig. 3.

+1(Hmodel+Hmodel +Hmodel )0 1

tonian a supplementary term II,&,&"".'

+2~zzo g zz,+ z2 X3nzzoz ,'n g——nzzo'
Q 26@&

ql I
Q

We apply now the transformation U& to the total
Hamiltonian, H,d„l+H,d,l""+H,d,l"", and pick
out the leading diagonal terms. After that we use the
variational procedure. This leads to the following
conditions:

cos'[(Pl, fk')&]=0, ~=0;

and the minimum energy itself becomes

(C-4)

+ (terms which contain Q, f,P,s,). (C-5)

The above expression is just the same as Eq. (17)
obtained by transforming the first term II,d, & only by
the operator Vi, except for the fact that the term —', n
in (17) is replaced by n here.

Hence, in this case also, all our previous results calcu-
lated with II .&,& alone follow in exactly the same way
with the only change mentioned above. Since we have
used the value of the phonon velocity determined ex-
perimentally to calculate the energies, etc., the nu-
merical values arrived at earlier remain unchanged.


