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In describing transport phenomena, it is vital to build the
conservation laws of number, energy, momentum, and angular
momentum into the structure of the approximation used to
determine the thermodynamic many-particle Green's functions.
A method for generating conserving approximations has been
developed. This method is based on a consideration, at finite
temperature, of the equations of motion obeyed by the one-
particle propagator G, defined in the presence of a nonlocal
external scalar field U. Approximations for G(U) are obtained
by replacing the 62(U) which appears in these equations by
various functionals of G(U). If the approximation for Gs(U)
satisfies certain simple symmetry conditions, then the G(U) thus
defined obeys all the conservation laws. Furthermore, the two-
particle correlation function, generated as (bG/gU)n e =+I., in-
terms of which all linear transport can be described, will obey all
the conservation laws as well as several essential sum rules, such
as the longitudinal f-sum rule.

Several examples of conserving approximations are described.

The Hartree approximation, Gs(U)=G(U)G(U), generates the
random-phase approximation for L. The Hartree-Pock approxi-
mation for G(U) leads to a natural generalization of the random-
phase approximation in which hole-particle ladder diagrams are
summed. Another conserving approximation for G(U) is obtained
by expanding the self-energy to Grst order in the many-particle
scattering matrix T(U). This T is obtained by summing ladder
diagrams in which the sides of the ladder are composed of G(U)'s.
The resulting L equation, which involves coefficients proportional
to

~

T )', is analogous to the linearized version of the usual Boltz-
mann equation. Finally, in order to obtain a description of
collisions in a plasma, the self-energy is expanded to 6rst order
in a dynamically shielded potential, U, (U). This potential is
obtained by summing bubbles composed of two G(U)'s. The
resulting L equation is similar in structure to a Boltzmann
equation in which the collision cross section is proportional to

I. INTRODUCTION

A MAJOR difhculty in developing a quantum
theory of transport is that most approximations

lead to transport equations that do not include the
conservation laws. This has the consequence that one
is unable, from these equations, to describe correctly
even the qualitative features of the transport processes
of the system. For example, the Bardeen-Cooper-
SchrieGer —Bogoliubov evaluation' of the two-particle
correlation function for a superconductor does not
agree with the difI'erential charge conservation law.
As a result, the longitudinal collective oscillation
discussed by Anderson' fails to appear in their density-
density correlation function. Conversely, one may
derive the existence of sound waves in a gas by applying
the conservation laws of number, momentum, and
energy to a system in local thermodynamic equilibrium. '

' J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.
108, 1175 (1957).N. N. Bogoliubov, V. V. Tolmachev, and D. V.
Shirkov, A eleve Idethod in the Theory of Superconductivity (Con-
sultants Bureau, Inc. , New York, 1959).' P. W. Anderson, Phys. Rev. 112, 1900 (1958); Y. Nambu,
ibid. 117, 648 {1960).

L. D. Landau and E. M. Lifshitz, Fluid Mechanscs (Addison-
Wesley, Reading, Massachusetts, 1959).

These and many other examples point to the necessity
for building the conservation laws into any description
of transport processes in a many-particle system. It is
the purpose of this paper to develop an approximation
method that yields transport equations which auto-
matically include the conservation laws of particle
number Pf, momentum P, angular momentum L, and
energy H.

In order to observe a transport process, one applies
an external disturbance to a system initially in thermo-
dynamic equilibrium. Quantum mechanically, one can
describe the responses to an external disturbance by
computing the changes, induced by the disturbance,
in the expectation values of the densities of conserved
operators. The conservation laws are then requirements
on the allowaMe changes in these expectation values.
For example, the conservation law for momentum is
the condition that the time derivative of the expectation
value of the total momentum must be just the total
force applied by the external disturbance.

The expectation values of the conserved operators
can all be expressed in terms of the one-particle Green's
function, t G(1,1'), defined in the presence of the

4 P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959).
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external disturbance. The linear response of G to the
disturbance may then be used to compute the linear
transport properties of the system. In the next section
of this paper we describe how one may appropriately
define G at finite temperature in the presence of a
general external disturbance. We then devote the third
section to developing an approximation procedure that
leads to G's that satisfy all the conservation laws. The
linear responses to the external disturbance, which are
generated by these approximate one-particle propa-
gators, also include all the conservation laws as well as
several important sum rules. Finally, we give several
examples of conserving approximations for G and the
linear response function, and we discuss some of their
possible applications to transport.

Here, T represents the Wick time-ordered product, P is
the inverse temperature, p, is the chemical potential,
and the operators are in the Heisenberg representation.
For the remainder of this section we shall absorb the
pS into H.

The trace structure of (1) implies that G obeys a
simple periodicity condition along the imaginary time
axis. To see this we first extend the domain of definition
of G to complex values of its time arguments, using the
relation

P(r () —~iHy(r 0)~ iHt—
In particular, if we consider the time variables to be
pure imaginary numbers, then G is well defined as long
as

0&~it & P, 0~&it'& P (3)

One cannot show that the trace representation con-
verges on the entire imaginary axis. To complete the
extension of G to this imaginary time interval, we
redefine the time ordering for imaginary time by'

To exhibit the periodicity boundary condition we

IL BOUNDARY CONDITIONS AND EXTERNAL
DISTURBANCES

Before introducing an external disturbance, we shall
review the time boundary conditions obeyed by the
equilibrium many-particle Green s functions. Since the
form of the boundary conditions is identical for all the
many-particle Green's functions, we shall consider only
the one-particle function. This is defined by the grand
canonical ensemble average:

use (1) and (2) to write

G(r„i—P; r, ', ti')
i—Tr)e & (e& P(ri, 0)e & )Pt(ri', ti') j/Tr(e )

Rearranging this expression by using the cyclic property
of the trace, we find

G(r„—iP; r, ', ti')

i—TrLe &~fr(ri', fi')P(ri, 0)j/Tr(e i'H).

Therefore, the boundary condition is seen to be

G(rl iP rl ~1 ) &G(rl 0 r1,~1 ), 0('i~i &p (4)

This same boundary condition is obeyed by all the
time arguments of the multiparticle Green's functions.
These boundary conditions enable us to integrate
approximate equations of motion and thereby deter-
mine the Green's functions for imaginary time.

The functions for real time are then determined by
the following analytic continuation. In the real time
domain, G is composed of two continuous functions,
one for t) t', and the other for t(t'. Similarly, G defined
on the imaginary time axis is also composed of two
continuous functions, one for it) it', and the other for
it&it . These functions are simply related; in fact, the
t&t' function is just the analytic continuation of the
it&it' function, and similarly for the t&t' and A&it'
functions. Hence if we determine G on the imaginary
time axis, it is fully determined on the real time axis.

Thus the method of determining the equilibrium
Green's functions from equations of motion is based on
an examination of these functions when their time
arguments lie in the interval 0&&it&~p. However, we
are now interested in determining the one-particle
Green's function in the presence of an external dis-
turbance. We must see, therefore, how the boundary
conditions may be stated in the presence of the dis-
turbance.

Let us consider, in particular, a disturbance repre-
sented by a term U(rifi)e(rifi) added to the Hamil-
tonian density. U is an arbitrary external scalar
potential and I is the number density operator. In the
presence of the disturbance, the one-particle Green's
function is changed from its equilibrium value. In
order to define G(U), we need to state the boundary
condition that it obeys.

The most natural way of defining the boundary
condition is to demand that G(U) describe the causal
response to the disturbance. That is, we demand that
before the disturbance is turned on, G(1,1'; U) be the
equilibrium function defined by (1). Then the effect of
the disturbance can be represented by modifying Kq.
(2) to include the effect of U, i.e., we can take

5 Throughout this paper, the upper sign refers to Bose-Einstein
statistics, and the lower to Fermi-Dirac statistics. ' N. D. Mermin and G. Baym, J. Math. Phys. 2, 236 (1961).
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where U is given by

'Q(t)=T exp i —dt'I H(t')
4 —x

+ dr U(r, t')rt(r, t')
I

. (6)

The first-order change of P due to U is

the periodicity condition (4). Thus this G(U) may be
determined conveniently.

Since G(U) is defined in the imaginary time domain,
it has no very direct physical interpretation. However,
once G(U) has been determined [with the aid of
boundary condition (4)j, we may extract from it
physical information about the transport processes of
the system. In particular, we may consider the linear
variation of G with U:

G(1,1'; U)=G(1—1')p p

6$(ri, ti) =i dt2dr2[n(2), p(1)jU(2). (7) —ip

+(—i)' ~ dtpdr2{(T[p(1)pt(1')N(2) j)U=p

dt2dr2 Tr{e ~~[22(1),22(2)])

X U(2)/Tr(e ~~), (8)

where we use the subscript c to indicate the causal
response. Picking out the linear response of (2t) to U,
we find

8(22(1)),/5U(2) = —i([22(1),22(2) 1)i p, ti) t2,

(9)=0

This causal response represents the actual response of
the physical system, initially in thermal equilibrium,
to the applied disturbance. However, the boundary
condition which requires the system to be initially in
thermal equilibrium leads to a G(U) which does not
satisfy the periodicity condition (4). But it is this
condition which enables us to integrate Green's function
equations of motion. Hence it is inconvenient to deter-
mine directly the causal response of G to U.

Let us define a Green's function for imaginary time,
in the presence of an external potential that acts in the
imaginary time interval 0~& it(P.

Writing the operators in the interaction represen-
tation for the external disturbance, we define

G(1,1' U)= —iTr{e '"T[S4(1)4'(1')j)/
Tr(e e~T[Sj), (10)

where H is the unperturbed Hamiltonian. Here S,
defined by

By applying (7) we can see that the change in the
density of particles induced by U is

5(rt(1)),=ai5G(1, 1+),

bG(1,1' U)

SU(2)
= (—i)'{(T[4(18'(1')~(2)1)

-(T[~(1)~&(1')j)( (2))&

=+[G2 (12,1'2+)

-G(1-1')G(2-2')3.=' (»)
This response function is different from that defined

by (9), since the boundary condition is different.
However, once we have analytically continued G2 —GG
to real times we can readily determine the causal
response. For example, it may be verified that for real
times such that t~&t2,

([2t (1),2t (2)j)= —2z Im[G2 (12,1+2+)
—G(1—1+)G(2 —2+)). (12)

We shall find it convenient to introduce the notation

L(12,1'2') =[G2(12,1'2') —G(1—1')G(2—2'))ii=p. (13)

We can generate L(12,1'2+) as +PG(1,1')/8U(2))p p.

To discuss coupling of external disturbances to the
momentum, energy, or angular momentum densities,
as well as to the number density, it is convenient to
define G in the presence of an external disturbance that
is nonlocal in space and time. This G will then be a
generator for the four-point function L(12,1'2'). We
define such a G by Eq. (10), where, now, S is given by

—(T[g(1)gt(1')$)U p(22(2))iJ p}U(2).

The coeKcient of the linear variation we call the
variational derivative of G with respect to U. Thus for
all times in the [0, —ig interval,

s =expI i drpdt2 N(r2, t2) U(rp—,t2) I, (10')
4o

S=exp —i
4o

dt2dt2 dr2dr2 4't(r2 t2)

is the S matrix in the interaction representation. The
time dependence of P is still given by (2). By working
in the interaction representation we exhibit all the U
dependence of G.

Notice that we can again use the cyclic property of
the trace to prove that G(U) defined by (10) obeys

X U(r24, r2'4')f(r2', 4') . (14)

We can see that U(2, 2') represents a disturbance in
which a particle is removed from the system at 2 and
added at 2'. [When U(2,2')= U(2)5(2 —2'), S clearly
reduces to (10').$ With this extended definition of S,
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6 still obeys the canonical periodicity boundary
condition (4).

The coefficient of the term in 6 linear in U is

BG(1,1', U)

8U(2', 2) t p

= al-(12, 1'2').

Thus, G(U) serves as a generator for the two-particle
correlation function I.. When continued to real values
of its time arguments, I. describes all the linear trans-
port properties of the system. '

~«V4'(1) 'V(1)
2m ~

1+- ' «i«8dt& Pt(1)lt t(3) V(1—3)lt (3)lt (1), (16)
2J

where V is the local central potential,

V(1—3)=5(ti—ts)U(
~

ri —rs
~
). (17)

Then the total number of particles, total momentum,
total angular momentum, and total energy are all
conserved when there is no external disturbance. With
this Hamiltonian, the exact G(U) obeys the equation
of motion,

=5(1—1')+ U(1, 1)G(1,1', U)

III. CONSERVING APPROXIMATIONS

Let us consider a many-particle system which is
governed by the Hamiltonian,

In Eqs. (18) and subsequent equations we shall use the
convention that variables with a bar over them (e.g., 1)
are variables of integration. The integrals run over all
space and, in order to include the boundary condition,
over imaginary times from 0 to —iP. The notation 1+
indicates the ordering of the field operators in G2 at
equal time.

It is, in general, impossible to solve (18) exactly, and
hence one must make some form of approximation.
We shall substitute various approximations for Gs(U),
expressed in terms of G(U) and V, into Eq. (18). The
Hartree-Pock approximation, for example, is given by

G, (13,1'3'; U) =G(1,1', U)G(3,3'; U)
+G(1,3'; U)G(3, 1'; U). (20)

The solution to Eq. (18a) with an approximate Gs(U)
such as (20) defines G(U) completely. Alternatively,
however, we could have substituted the form for 62
into the adjoint equation (18b). In general, there is no
reason why these two procedures should lead to the
same determination of G(U). However, for most Gs
approximations that are used in many-particle physics,
these two procedures do indeed lead to the same G(U).

We will show that whenever the following conditions
are satis6ed:
For a given approximate Gs(U), the approximate

G(U) satisfies both (18a) and (18b),

The G(U) chosen satisfies the symmetry condition

Gs(13,1+3+; U)=Gs(31,3+1+; U),

then the approximate G(U) satisfies all the conservation
laws.

The number conservation law for the approximate
G(U) follows from statement (A) alone. Subtracting
(18b) from (18a) we find

&i V 1—1 Gs 11,1'1+; U, 18a
(r)/i)t, +r)/r)t, ')iG(1,1', U)

as well as the adjoint equation,

) G(1,1; U)Gs '(1,1')

+[(Vi+Vi') (Vi—V,')/2']iG(1, 1', U)

~[U(1,1)G(1,1'; U) —G(1,1; U) U(1,1')]

=&(1—1')+ G(1,1; U) U(1,1') +i [V(1—1)—V(1'—1)]Gs(11,1'1+; U). (21)
J

&i IG2(11,1'1+; U) V(1—1'). (18b) When we set 1'=1+ in (21) we find

Here, Gs '(1,1') is the operator defined by

Gs '(1,1') = (sB/c) tijVi'/2') 5 (1—1')

= ( i r)/r)ti'+Pi's/2ns)8(—1 1'). (19)—
r R. Kubo )Can. J. Phys. 84, 1274 (1956)g and Martin and

Schwinger, reference 4, discuss how the dynamic linear electro-
magnetic transport properties may be described in terms of the
two-particle correlation function. D. E. Mc Cumber PSuppl.
Nuovo cimento 17, 8 (1960)g discusses sound propagation in
terms of I.. Also, H. Mori, Phys. Rev. 111, 694 (1958); ibid.
112, 829 (1958); M. S. Green, J. Chem. Phys. 22, 598 (1954).

(c)/Bti)iG(1, 1+; U)+Vi [[(Vl Vl )/2i~]

XiG(1,1'; U)]i'=i+

= ~(~(1(1))t/~t+V '(j(1)}~)

=,3[U(1,1)G(1,1+)—G(1,1)U(1,1+)]. (22)

Equation (22) is an exact statement of the number

conservation law in the presence of an external dis-
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Vi —Vi
,

' drI—
dt) ~ 2i

iG(1,1', U) = ~—(P(&i))~

V&—V&
dr, d3 [U(1,3)G(3,1', U)

2i

—G(1,3; U) U(3,1')]

ivi vi-
+i dri d3

~
[U(1—3)—U(1' —3)$ ~

E. 2i

turbance which adds and removes particles from the
system. If U(2, 2') —+ b(2 —2') U(2), i.e., if the dis-
turbance can be represented in the Hamiltonian by a
coupling to the density, then (22) becomes

a(e)ii/at+v (j)n ——O. (23)

The right side vanishes, since such a disturbance does
not add or subtract particles. We see then, that when-
ever the approximation for G(U) satisfies condition
(A), the approximate G(U) exactly satisfies the number
conservation law, (22).

Equation (22) is a statement of the number conser-
vation law in difkrential form. We can write it in such
a simple form only because we can give the particle
current density as

(1/2 )L(v —v ')ut(1')O(1)j =

We cannot evaluate the energy and momentum current
explicitly' and therefore we cannot state the di6erential
forms of these conservation laws. Instead, we must
state these laws in their integral form.

To compute the time derivative of the total momen-
tum in our approximation we again consider Eq. (21).
We apply ——,'i (V i—V i') to (21), set 1'= 1+ and
integrate over all ri Then .(21) becomes

When U(2, 2') —+ U(2)8(2 —2'), the right side of (25)
becomes

' dri [v U(1)$(ii(1))U.

In this case Eq. (25) says that the time derivative of
the total momentum equals the total applied force.

An almost identical argument may be used to
compute the time derivative of the total angular
momentum from the approximate G(U). The result is

(vi —vi
«iriX~ iG(1,1', U) I

dti 2i

=+—(I (~i))~
dt's

V&—V&=
J

dri d2 riX i [U(1,2)G(2,1')
2l

—G(1,2) U(2, 1')j (26)

1( 8 8 vivi)
(e(4))t =+J dr, -~ i i +—

4 ~ Bti Bti' m

When U becomes local, Eq. (26) says that the time
derivative of I. is equal to —j'dri[riXVU(1) j(e(1))~,
the total torque on the system. Thus when conditions
(A) and (B) are satisfied, the approximation conserves
angular momentum as well.

The discussion of energy conservation is slightly more
complex, but it requires no additional assumptions.
The expectation value of the Hamiltonian in the
presence of the external 6eM is

XG&(13-,1'3+; U) (24)
XiG(1,1', U) W — dri ' d2

J

The G2 term in this equation vanishes, since this term
may also be written as

I dri dry vi'U(~ri —ri~)G. (13,1+3+)
~

iq=ii.

X[U(1,2)G(2,1+)+G(1,2) U(2, 1+)j (27)

This may be verified by using the equations of motion,
(18a) and (18b). In the Appendix we show, by using
only conditions (A) and (B), that

+i—G(1,2) U(2, 1) . (28)
BtyI' vi —vi—(P (&i))u ——& dri d3 — [U(1,3)G(3,1')

2i If U is local, the right side of (28) becomes —j'dr,
XU(1)(B/Bti)(p(1))~=j'dr, (—vU(1)) (j(1))U. Thus,
the approximation is energy conserving since the time
derivative of the internal energy is equal to the power
fed into the system,

—G(1,3)U(3,1')] (25)

8 Martin and Schwinger4 determine the momentum current
approximately, and show that it is local in time but not in space,

From symmetry condition (B) we see that the integral
changes sign under the interchange of ri and r, , and di,

' J 'J
hence this term vanishes. Thus our approximate G(U)
satisfies the momentum conservation law,
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G2(&2,1'2') = G2
The Green's function equation is then

G '(1,1') =Gp '(1,1')—U(1,1')—Z(1,1'). (32)

The self-energy function, like G~, is a functional of 6
and therefore U. As an example, in the Hartree-Fock
approximation, (20), Z is given by

(b)

Z(1,1') = Rib(1 —1') ' d3 V(1—3)G(3,3+; U)

+iV(1—1')G(1,1'; U). (33)

(c)

Fio. 1. Diagrammatic statement of conditions (A) and (8).
In Fig. 1(a), we have indicated the Hartree-Fock approximation
for G~(U). The solid lines represent G(U). Condition (8) is
simply the statement that the picture for G& with 1'=1+ and
2'=2+ must look the same when it is turned upside down. To
see the graphical form of condition (A) in the Hartree-Fock
approximation, we form, in (b) and (c), the right and left sides,
respectively, of Eq. (29). The dashed lines represent V. Since
diagrams (b) and (c) are identical for the Hartree-Fock approxi-
mation, it must satisfy (A).

We may conclude, therefore, that whenever condi-
tions (A) and (8) are satisfied, the approximation
leads to a fully conserving G(U).

Condition (8) may always be verified by simply
examining the form of the approximation for Gs(U).
It is convenient to cast condition (A) into a form in
which it too may be verified by inspection. Condition
(A) requires that (18a) and (18b) be consistent with
one another. However, we notice that we can form the
matrix product G(Gp ' —U)G from each of these
equations. We demand that these two evaluations be
identical and hence find the identity

G(1,1)V(1—3)Gs(13—,1'3+)

~Gs(13,13+)V(3—1)G(1,1 ). (A,29)

This equation is equivalent to condition (A). Equation
(29), as a condition on G&, is easily verified by inspection
for a choice of approximation. In Fig. 1 it is shown
how this can be done diagrammatically.

In order to write Eqs. (18) in a more convenient form
we define the self-energy function, Z, by

Z(1,1')=Wi V(1—3)Gs(13 23+)G—'(21') (30)

where G ' is the matrix inverse of G. From (29) we see
that in addition

Z(1,1') = &i ~G '(1,2)Gs(23, 1'3+)V(3—1'). (31)

Once we have a determination of G(U), we can find
the linear response to the external disturbance by
picking out the linear coeKcient of U in G(U). This
linear response is defined by Eqs. (11) and (13) to be

L(12,1'2') = &[8G(1,1')/6U(2', 2)]t p. (34)

The conservation laws for G(U) imply conservation
laws for L. If we take the variational derivative of the
exact number conservation law (22), and then set
V=O, we find the number conservation law obeyed by

—{(cl/Bti) L (12,12')

+V 1 [((V1—V 1')/2im)L(12, 1'2')]1 =1)
=&iG(2 —2') [6(1—2') —5(2—1)]. (35)

It is instructive to consider the results of applying
(2im) '(Vs Vs')—to (35) and then setting 2'=2+.
Equation (35) then becomes

(8/Bti)(T[11 (1)j(2)])+V i (T[j(1)j (2)])
= ib(t 1

—t&)Vg(» —rs)(is)/tit. (36)

Equation (36) indicates that the approximate L not
only satisfies the density conservation law in the form

(2'[(»(1)/~t +V j(1))j(2)])=o, (36a)

but that J has preserved the information that the
expectation value of the equal-time density-current
commutator is given by

([B(rl) j(r2)]) zV15(r1 rp)('+)/111. (36b)

9 This sum rule is also known as the "longitudinal f-sum rule. "
It is quite important in the discussion of the superconductor.
See Anderson, reference 2. In the theory of the inelastic scattering
of slow neutrons, this sum rule is known as Placzek's sum rule
LG. Placzek, Phys. Rev. 86, 377 (1952)).

Since the terms on the right side of (35) come from the
discontinuous time derivative of the time-ordered
product on the left, these terms in general are state-
ments of the expectation values of commutators of e
with the field operators lt and lt t.

In the description of electrical transport phenomena,
I may be used to determine the dynamic longitudinal
conductivity. ' Then the commutation relation (36b) is
just the sum rule on the conductivity. '

The integral conservation laws for G(U), namely
(25), (26), and (28), also imply integral conservation
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laws for L. For momentum, Calculating 5G '/SU from Eq. (32), we 6nd

6G(1,1')
d3d4 G(1,3) S(3,2)S(4,2)

5U(2', 2)
SZ(3,4)-

+ G(4,1')
BU(2', 2)

hZ (3,4)
d3d4 G(1,3) G(4,1'). (39)

8U(2', 2)

for angular momentum,

5 d—(P(~~))r I

(bU(2', 2) dt's i ~ 0

(Vx—Vs
dr,

i L(12,1'2')
i

dt's ~ ( 2i 3 x'=a+

~Lg(( ] I) g(( ] )j G(2 2 ) ~ (37a) L(12,1'2') = +G(1,2')G(2, 1')
2i

—(I (&~))~ I

&bU(2'2) dt's ) v-0

f
d&]. &xX

dt's ~

V1 V1—L (12,1'2')
2i

,
r2+r2'

=+$s(t,—&, )—s(~,—t,')$
2

The self-energy depends on U only through its de-
pendence on G(U). Since we know Z as a functional of
G, we can then compute 5Z/8U by the chain-rule for
differentiation, i.e.,

8&(3,4) t' (5Z (3,4; G) q=
i

d5d6(
5U(2', 2) p 0 ~ E bG(6, 5) i v=o

and for energy,

( 5 d—(&(~ )&
(8U(2'2) dr~ ) o o

V2—V2
X G(2 —2'); (37b)

2i
~ 8G(6,3) ixI, I

(40)
(bU(2', 2)i ~ 0

&&/&G is to be understood as differentiating the func-
tional form of Z. We define an effective two-particle
interaction, , by

1 d t' ( 8 8 Qq vy)+
4 dt's " ~ Bfq Btq' m

Z(35,46) =Pe(3,4)/~G(6, 5)j~=,.

For example, in the Hartree-Fock approximation

XL(12,1'2') wp(t, —&,')+s(~,—~,)]

XG(2—2')
-(35,46)= —aQ(3 —4) t d2 V(3—2)G(2, 2+)

5G(6,5)

+iV(3—4)G(3,4)
= W L8 (ti—t2) —5 (ti—t2') fe(B/R2) G(2—2'). (37c)

It is important to realize that Eqs. (35) and (37),
all consequences of the conservation laws, are obeyed
by both the exact L and G, and our approximate L's
and G's. As with Eq. (35), the left sides of Eq. (37) are
matrix elements of the operator conservation laws, and
the right sides, which are statements of commutation
relations, arise from the time derivative of the discon-
tinuous time-ordered products on the left.

In principle, then, we can obtain a conserving L by
erst solving for a conserving G(U). We can then
generate L as &(8G/8U)p 0, the coefficient of U in the
term in G(U) that is linear in U. In practice, we can
almost never solve the equation of motion for G in the
presence of an arbitrary disturbance. Fortunately, a
much simpler calculational procedure is available.
From the relation GG '= 1 we notice that

~G(1,1') t- SG-'(3 4)=—,I d3d4 G(1,3) G(4, 1'). (38)
SU(2', 2) ~ SU(2', 2)

= +ib(3—4)5(5—6)V(3—5)

+Q (3—6)8 (5—4) V (3—5). (42)

When we combine Eqs. (40), (39), and (41) we arrive
at the following integral equation for L:

L(12,1'2') = &G(1—2')G(2 —1')

+ G(1—3)G(4—1') (35,46)L (62,52') (43)

The two-particle correlation function, L, has been
constructed in such a manner that L(12,1'2') obeys the
conservation laws for the conserved operators con-
structed from the I and 1.

' variables. In the discussion
of transport, it is important to have L also be con-
serving in the 2 and 2' variables. For example, in using
L to describe electrical transport, the number conser-
vation law in the 2 and 2' variables is necessary for



G. BAYM AND L. P. KADANOFF

gauge invariance, " while in the 1 and 1' variables, it
guarantees that the currents and charges induced by
the external field obey the continuity equation. We
shall therefore demand that the approximate L satisfy

L(12,1'2') =L(21,2'1'). (44)

Then L will certainly have to be conserving in the
variables 2 and 2'. To ensure this symmetry, we impose
just one more condition on our approximation, namely:

(35,46) = (53,64). (C)

Clearly the Hartree-Fock approximation satisfies this
condition.

LActually the conservation laws in 2 and 2' are much
more easily established than in the above manner.
They follow directly from the local conservation laws
at each vertex. For example, any expansion of Z(U) in
G(U) and Ge(U) leads to gauge invariance as long as
one line enters and one line emerges from every vertex.
Therefore it would appear that condition (C) is not
independent. of conditions (A) and (H). This will be
discussed in a, future publication. ]

We should point out that in our derivation of (43)
we required that the G's which appear in this equation
satisfy

G—'(1—1') =Ge '(1—1')—Z(1—1').

If, by inserting a better evaluation of G, we attempted
to "improve" Eq. (43), then it would no longer satisfy
the conservation laws. Since these laws play an essential
role in transport phenomena, there would be no
improvement at all!

More generally, the conservation laws for L, which
contain discontinuity terms proportional to G, link
the approximations one may use to determine G and L.
If the conservation laws are to be satisfied, the L
approximation uniquely defines G. One of the main
virtues of the procedure described here is the fact
that it automatically builds in the close connection
between G and L.

This link may be stated more physically. The
approximation for G(1—1') is defined by the kind of
correlations which are considered to be important in
the equilibrium situation. Since L describes small
deviations from equilibrium, the same kind of corre-
lations which are important in equilibrium must also
determine the behavior of L.

I et us briefly review our method for constructing a
conserving approximation for the two-particle corre-
lation function L. We start by picking an approximate
form for G2(U) as a functional of G(U), which we then
substitute into the equation of motion for G(U). In

1o L. P. KadanoG and P. C. Martin, Phys. Rev. (to be pub-
lished), show that number conservation in 2 and 2', together
with the sum rule on the longitudinal conductivity, is equivalent
to gauge invariance. Since Eq. (35) together with (44) imply
these two conditions, our approximation method necessarily
leads to a gauge-invariant description.

order that this approximation lead to a conserving G
and L, we demand that the approximate G& satisfy
the symmetry requirements (A), (8), and (C). These
three requirements can be verified by merely examining
the structure of G2. If they are met, then we can derive
an approximate integral equation, whose solution is a
fully conserving L, by taking the first variational
derivative with respect to U of the equation of motion
for G(U).

Since G, L+GG=, we start from a nonconserving
approximation for G~ and end up with a fully conserving
G2.

IV. EXAMPLES OF CONSERVING
APPROXIMATIONS

The examples of conserving approximations that we
shall describe in this paper are all nonperturbative in
the sense that all the G's and L's will include terms of
arbitrarily high order in V. We consider only nonpertur-
bative examples because we wish to discuss applications
to transport phenomena, which are by nature non-
perturbative. In fact, all the transport coefficients, such
as the sound-wave damping, diverge as V ' in the
V~ 0 limit.

A. The Hartree and Hartree-Fock
Approximations

The Hartree approximation, which describes the
motion of the particles in the system as that of free
particles in a self-consistent potential field, is the
simplest nonperturbative approximation for G. We get
it by taking

Gg(13,1'3+; U) =G(1,1'; U)G(3,3+; U) (45)

in Eq. (18). The self-energy function Z, which becomes

Z(1,1'; U) = &i5(1—1'))t U(1 —3)G(3,3+; U)

=3(1—1'), «3'U(lri —r3l)(~(r3, /r))~, (46)

is just the average potential at r&, tj produced by the
particles in the system. Hence

G '(1)1' U) =Go '(1,1')—U(1,1')Wi8(1 —1')

X~ V(1—3)G(3,3+; U), (47)

and we see that the self-consistent field is

U(1,1')+8(1—1')~ «3'U(l rt —ral)(~(ra, &z))v

The variational derivative of (4/) yields the following
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equation for I.:
L(12,1'2') = +G(1—2')G(2 —1') + t

Since

%i G(1—3)G(3—1')V(3—4)L(42,42'). (48)

I(34,3'4') =ai5 (3—3')8 (4—4') V (3—4),

(a)

it is clear that conditions (A), (8), and (C) are satisfied,
and L is fully conserving,

Equation (48) and Eq. (47) with U turned off,
constitute a Green's function statement of the random-
phase approximation (RPA)." We see that the RPA
is contained in the Hartree approximation for G(U).
The solution to (48) is

L(12,1'2') = ~G(1—2')G(2 —1')+i G(1—3)

(b)

FIG. 3. The Hartree-Fock approximation.

Green's functions. In an electron gas V, contains the
plasma oscillation as poles in its Fourier transform.

The Hartree-Fock approximation, as given by Eqs.
(20), (33), and (42) in the previous section, also
describes the particles as moving in an average potential
6eM. However, this 6eM now includes exchange eftects.
The Green's function obeys

G '(1,1') =G '(1,1')—U(11')
XG(3—1') V.(3—4)G(4 —2')G(2 —4) (49)

where the "shielded interaction, " V„ is given as the
solution to

V, (1—1')= V(1—1')

~i t V(1—1)G(1—1')G(1'—1)V, (1'—1'). (50)

Equation (49) is of the form of the first-order iterative
solution to (48) with V replaced by V, . The shielded
interaction is a sum of bubble diagrams (Fig. 2) in
which each bubble is composed of just two Hartree

mid(1 —1') t V(1—3)G(3,3+; U)

—iV(1—1')G(1,1', U), (51)

where the last term on the right represents the exchange
e6ects. The resulting equation for I.,
L(12,1'2') = +G(1—2')G(2 —1')

&i ' G(1—3)G(3—1') V(3—4)L(42,42')
aJ

+i G(1—3)G(4—1 ) V(3—4)L(32,42'), (52)

L(12,1'2')

is equivalent to the generalization of the RPA to
include exchange. "The solution to (52) is also a sum
of bubble diagrams (Fig. 3) where now each bubble is
essentially composed of a hole-particle scattering matrix
made of Hartree-Fock Green's functions.

(b)

+ ~~ ~ + ~ ~ ~ + ~ ~ ~

(c)

FIG. 2. Hartree approximation. We use a light line to represent
G0 and a heavy line to represent the approximate one-particle
Green's function. (a) defines the usual Hartree approximation
for G. (b) is a statement of Eq. (49) in terms of V„which is
illustrated in (c).

"P. Nozieres and D. Pines, Phys. Rev. 109, 1062 (1958),
where earlier references are given.

B. The T Approximation

Both the Hartree and the Hartree-Fock approxi-
mations leave out the detailed correlations produced by
interparticle collisions. Thus they lead to the same
description of transport phenomena with the long-
wavelength limit as would be obtained from solving a
collisionless Boltzmann equation, with and without
exchange forces, respectively. These approximations
may be used to describe phenomena, like plasma
oscillations" and zero sound"" for which collisions
are not important.

"G. E. Brown and D. J. Thouless, Suppl. Physica 26, S145
(1960).

»K. Gottfried and L. Picman, Kgl, Danske Videnskah.
Selskab, iMat. -fys. Medd. 32, No. 13 (1960).
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However, transport processes like ordinary sound
and heat conduction only take place when there are
collisions capable of restoring local equilibrium. The
importance of the collision term is seen in the Boltz-
mann-equation description of these processes. We shall
now describe a conserving approximation that includes
collision effects. As a starting point we use t'he Gs(U)
which is obtained as a solution to the Bethe-Goldstone"
equation,

Gs(13,1'3', U) =G(1,1', U)G(3,3', U)

+G(1,3'; U)G(3, 1'; U)+i I Gs(13,13; U)

X V(1—3)G(1,1'; U)G(3,3'; U). (53)

This 62 is a sum of ladder diagrams, in which each line
represents the propagator G(U). The Bethe-Goldstone
approximation is conveniently described in terms of
the many-particle scattering matrix &13 I TI G(U) jI 1'3'&

that satisfies

(13
I TI 1'3') =P(1—1')8(3—3 )

~b(1—3')S(3—1')]V(1'—3')+sJ~(13 I
T

I 13)

XG(1,1'; U)G(3,3'; U) V(1'—3'). (54)

&13 I TLG(U) jI 1'4)
KING(2', 2) &

XG(4,3+; U) I

U=o= +1&12
I
T

I
1 2')U o

-
~a(13I TLG(U) jI14&-

SG(2', 2)
G(4 —3). (57)

We may then use Eq. (54) to evaluate 8T/8G as

&&13ITI1'4)
p &(13ITI13&

G(1,1')G(3,3') U(1'—3')
5G(2', 2) & 8G(2', 2)

(13
I
T

I
12'&G(1,1')U(1' —4)5(2—4)

The reader may easily verify, using Fig. 3, that
conditions (A), (B), and (C) are satisfied, so that the
T approximation leads to a fully conserving G(U).

To derive the equation of motion for I. we must
construct . Now from Eq. (56)

(12,1'2')

= I:~&(1»'i G)/IlG(2', 2) jv=o

Therefore

IIere T represents the scattering amplitude for a (13 I T I 2 3)G(3,43 V(1 43)(2

process in which two-particles in the medium, initially
at the Points 1' and 3', collide and are later found at Again using Fq. (54), we solve for gT/bG as
the points 1 and 3. In the low density limit, (T)tr o

reduces to the scattering amplitude of conventional (
scattering theory. " 5G(2', 2)

Now TLG(U)j appears in the equation of motion
for G(U) through the relation

V(1—3)Gs(13,1'3')

(13
I TI G(U)] I

13)G(1,1', U)G(3,3'; U). (55)

(12,1'2') =+e(12 I
T

I
1'2'&

W ~&13ITI2'4)G(4—5)G(6—3)&25ITI1'6&, (59)

The self-energy function is therefore

Fquation (56), called the "T approximation, "has been
used by Brueckner and others" to describe the equi-
librium propagator G in nuclear matter. It is also a
useful approximation for classical gases.

"H. A. Bethe and J. Goldstone, Proc. Roy. Soc. (London&
A238, 551 (195/).

"N. M. Hugenholtz, in Lectlres irt Theoretical Physics (lnter-
science Publishers, Inc. , New York, 1960), Vol. II.

'6The relation between the Brueckner approach, the Bethe-
Goldstone equation, and graphical perturbation theory is described
by Hugenholtz. "

where the T's are taken at U=o. The equation for I.
is thus (see Fig. 4):

I.(12,1 2) =~G(1-2)G(2-1)

~, I'G(1-3)G(S-1)&34ITI S6&I.(62,42)

W
J G(1—3)G(3'—1')(35

I
T

I
4'6')G(6' —6)

XG(5'—5)(46
I TI 3'5'&I-(4'2, 42'). (60)

Notice that .(12,1'2') = .(21,2'1') so that the I.
derived from Eq. (60) is fully conserving (see Fig. 4).
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2

=-2' a~+ where

V, (1,2) = V(1—2)

2 = 2'

1: 1'

l

+
i

+ exchange terms (1~2)

(a)

l
+ 0 ~ ~

I
&s I V(1—1)G(1,2; U)G(2, 1; U) V, (2,2). (62)

Unlike the RPA in Eqs. (49) and (50), the Green's
functions in Eqs. (61) and (62) are G(U)'s and not just
the Hartree Green's functions.

We then find that Z is given by

(b)

+ T:

Z(1,1', G) =aib(1 —1') V(1—3)G(3,3+)

—i V, (1,1')G(1,1'). (63)

FIG. 4. The T approximation. (a) indicates the ladder structure
of the solution of the Bethe-Goldstone equation for G2. Condition
(8) is clear from this 6gure. (b) is the form that both sides of
condition (A) assume. (c) shows Eq. (60) in diagrammatic form.

The one-particle propagator thus defined,

G '(1 1') =Gp '(1 1')—U(1,1')

WQ(1 —1') ~V(1—3)G(3,3+)+iV, (1,1'), (64)

In this way we derive an approximation for L that
includes collisions, while maintaining all the conser-
vation laws. A slightly modified version of this approxi-
mation has been used by Gottfried and Picman" to
discuss the damping of zero sound. In a future publi-
cation, we intend to show how, in the long-wavelength
limit, a linearized form of the ordinary Boltzmann
equation may be derived from this equation for I..
This Boltzmann equation will contain a collision term
in which the collision cross section is proportional to

C. The Shielded Interaction Approximation

The T approximation gives a useful description of
systems in which the force range is much smaller than
the interparticle distance. However, when a long-range
force, such as the Coulomb force, is present, there are
important polarization effects, and we must use a
different approximation when including collisions.

The random-phase approximation, Eqs. (49) and
(50), is a convenient starting point for the discussion
of such systems, since the shielded interaction given by
Eq. (50) provides a very simple description of how the
long-range forces are dynamically shielded by the
particles in the system. We therefore take a Gs(U)
which is given, in form, by the solution to the RPA:

is very useful for the description of a high-density
electron gas.

Equations (62) and (63) can easily be extended to a
two-component system. Then, these equations can be
used to describe a gas of ions and electrons. If the mass
of the ion is much larger than that of the electron,
V, contains not only the plasmon poles but also
photon-like sound-wave poles. Thus this approximation
is a useful starting point for a two-component plasma
model of a metal.

The equation for I., from which we may find linear
transport properties, is found from Eqs. (62) and (63).
From (63),

(12,1'2') = &i8(1—1')8(2—2') V(1—2)

+iV, (1—1')5 (1—2') 5 (2—1')

bv, (1,1' i
+iG(1—1')I, I (65)

4 5G(2', 2) ~ U=p

However, Eq. (62) implies that

)8V,.(1,1') y = ~r LV, (1—2') V.(2—1')

KING(2',

2) ) c=p

+V,, (1—2) V,, (2' —1')jG(2—2'). (66)

Gs(13,1'3', U) =G(1,1'; U)G(3,3', U) +G(1,3'; U)

XG(3,1', U)+i)~G(1, 1; U)G(1,1'; U)

X V, (1,2)G(2,3'; U)G(3, 2; U), (61)

Hence becomes

(12,1'2') =&i5(1—1')b(2—2') V(1—2)
+iV, (1—1')8(1—2')5(2 —1')
WG(1 —1')G(2—2') Lv, (1—2') V, (2—1')

+V.(1-2)V.(2'-1')j (67)
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similar technique may be applied to the description of
the transport properties of a hard-sphere Bose gas.
Also, other conserving approximations can be obtained
by expanding Gs(U) in a series in G(U) and V.

All of the approximations mentioned in this paper
lead to integral equations for I.. In future publications,
we shall describe how the transport properties of the
system of interest can be determined from these
integral equations.

(b)

Dc"

and I obeys

L, (12,1'2') = +G(1—2')G(2 —1')

I'IG. 5. The V. approximation. (a) is the form that both sides of
condition (A) assume. (b) is Eq. (68) in diagrammatic form.
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APPENDIX. PROOF OF ENERGY CONSERVATION

~i G(1—3)G(3—1')V(3—4)L(42,42)

+i "G(1—3)G(4—1')V, (3—4)I-(32,42')

jw "G(1—3)G(3'—1')G(3—3')G(4—4')

X[V.(3—4') V.(4—3')+V.(3—4) V, (4'—3')j
XI.(4'2, 42'). (68)

It is again easily verified that conditions (A), (8),
and (C) are satisfied (see Fig. 5) and therefore this L,
a function of the shielded interaction, is fully con-
serving.

In a future publication we shall indicate how Eq.
(68) for L may be converted, in the long-wavelength
limit, into a Boltzmann equation in which the collision
terms involve a collision cross section ~V, ~'. This
Boltzmann equation may be applied to a description
of transport in a two-component p1asma model of a
metal.

D. Other Approximations

The four approximations (Hartree, Hartree-Fock, T,
and V,) that we have described by no means exhaust
the list of conserving approximations obtainable by the
techniques outlined above. On the contrary, one can
construct an almost unlimited number of such approxi-
mations. For example, by extending the Gor'kov"
equations for a superconductor to include an external
field, one obtains a very economical derivation of the
Anderson collective oscillations. " A formally rather

To show that our approximation is energy conserving,
we first prove an identity which must be satisfied by
the approximate Gs(U), if G(U) is to be number
conserving. We multiply Eq. (18a) on the right. by
Gs ' and Eq. (18b) on the left by Gs '. Then, sub-
tracting the second resulting equation from the first
and setting 1'=1+, we find

+ijI d3d4 V(1—3)[Gs—'(1,4)G, (43—,1'3+)

—Gs(13,43+)Gs—'(4) 1')], t+

= j"d2d4[U(1, 2)G(2,4)Gs '(4 1')

—Gp '(1,4)G(4, 2) U(2, 1')]. (A.1)

This is the identity that we shall use in the calculation
of the time derivative of Eq. (27), the expectation
value of the energy. From (27),

+—(~(~t))~
dt~

~I drtdrs[U(1, 2)G(2, 1)+G(1,2) U(2, 1)$

+ ~ dr, -', [(i8/Btt —i8/Btt'+~i Vt'/m)

X(i8/Btt+s'/'tt')G(1, 1', U) ji i. (A.2)

We can evaluate (iB/Btr+iB/Rt')G(1, 1'; U) from Eq."L. P. Gor'kov, J. Exptl. Theoret. Phys. (U.S.S.R.) 34, 735 (21) Th t (&+&,)(1958) /translation: Soviet Phys. —JETP 34(7), 505 (1958)j.
"V.Ambegaokar and L. P. Kadanoff I',to be published). not contribute to the r& integral, since it is proportional
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to a total divergence. Hence By use of the identity (A.1), expression (A.4) becomes

a—(H(t,))p
dt~

r=ai dr, ,'(i8—/Bti i8—/Bti'+V i p'i'/m)

d3LV(1 —3)—V(1'—3))Gi(13,1 3+)
J 1~1

Z

«i«3 &(lri-r3 I)2J

Xi/(&/&4 &—/&(i)G2(13„1+3+))ii = i,,
1

+— ~d2d3LU(1, 2)G(2, 3)GO '(3,1')
2

1y- "dr, d2(L —ia/a~, '+ ~, V,'/2m)
2J

X U(1,2)G(2)1')+$—i8/Bti —vi vi'/2m)

XG(1,2) U(2)1') }i i+.

—Go '(1,3)G(3,2) U(2, 1'))i'-i' (A 5)

The 6rst term in (A.S) vanishes from the assumed
symmetry of G2(13,1+3+) under the interchange of 1

(A 3) and 3. Collecting our results, we find

The G2 term in (A.3) we rewrite as

Z P r

dri d3 V(1—3)i(il/84 —8/84)Gi(13, 1+3+)
2~ 4

dri d3 V(1—3)([iB/Bti+iB/Bti'

8—(H(ti))i ——W dri d2 U(1,2)i—G(2,1)
dt's & ~ Btg

8
+i—G(1,2) U(21) . (28)

Bfy

This is the energy conservation law that we set out to

XG&(13,1'3+)}i i . (A.4) p~o~~.


