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respectively. (It must be emphasized that if experi-
mentally ¢, turns out to have a great deal more struc-
ture than is present in our choices, then the qualitative
conclusions that we arrive at need have no bearing.)
Equation (3) yields —1.6<7(K®)Am<-+0.4, where
the lower and higher limits are reached as the scattering
length goes to zero and infinity, respectively. With this
choice we are limited to positive scattering lengths
since for the convergence of our integrals ¢, has to be
finite and positive at high energy.® We utilized the
additional freedom of Eq. (4) to fit the various 7=0
scattering lengths which have been proposed so far*—14
and at the same time yield 7(K\%)|Am|=1.5. For
negative scattering lengths the numerical search yields
the following conclusions: (a) We can obtain 7(K%)Am
= —1.5 for a scattering length ao= —0.8 p~. The result

1 P, Federbush, M. L. Goldberger, and S. B. Treiman, Phys.
Rev. 112, 642 (1958).

1 R, F. Sawyer and K. C. Wali, Phys. Rev. 119, 1429 (1960).
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is sensitive to the high-energy behavior of ¢,; 709, of
the mass difference comes from center-of-mass pion
momenta above 1.3 Bev/c. (b) It is impossible to obtain
a possible mass difference for negative scattering
lengths. For positive scattering lengths, however, the
conclusions are: (a) We can obtain a negative mass
difference which is again sensitive to the high-energy
behavior, 50-909, of the mass difference comes from
center-of-mass pion momenta above 1.3 Bev/c. (b) A
positive mass difference can be obtained for ay=2.81 u™*
but not for ay=1.96 x~1; in this case 999, of the mass
difference comes from pion momenta less than 0.5
Bev/c. Both choices for ¢, support the following
qualitative conclusion that negative and small positive
scattering lengths will give a negative Am and a positive
large scattering length can yield positive mass differ-
ence if ¢, is in the range of 0.5-1.8 for very large
momenta (values appreciably less than this will give
a negative mass difference).

All numerical work was performed on the IBM 650
at the Computation Center of the Pennsylvania State
University.
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In the strong-coupling method of the meson theory two different pictures have been used. One picture
exhibits the isobaric nature of the meson-nucleon interaction by expressing the Hamiltonian in terms of
the integrals of motion of the total system. It may be called the rotation picture. In the other picture the
isobaric dependency comes out by splitting the total system into a free field system and a compound nucleon
system, such that the interaction between them vanishes for infinite g. It may be called the splitting picture.
These two pictures are compared with each other. The difference between them with regard to the scheme
of the strong-coupling approximation method, especially with regard to the calculations of isobaric energy

corrections and resonance scattering, is investigated.

1. INTRODUCTION

HE strong-coupling approximation method of the
meson theory, introduced a long time ago by
Wentzel,! Oppenheimer and Schwinger,? and Pauli and
Dancoff,® has recently been extended to a somewhat
higher degree of completeness. In course of these
investigations two pictures have been introduced to
carry through this line of approximation.
One of these two pictures has already been introduced
by Wentzel'! and has lately been extended by Serber

* Work performed under a grant from the National Science
Foundation and a Fulbright travel grant.

1 G. Wentzel, Helv. Phys. Acta 13, 169 (1940).

2 ].)R. Oppenheimer and J. Schwinger, Phys. Rev. 60, 150
(1041).

3W. Pauli and S. M. Dancoff, Phys. Rev. 62, 85 (1942).

and Dancoff, Miyazima, Tati, and Tomonaga,’
Kaufman,® Pais and Serber,” Nickle and Serber,® and
Chun.’ The main characteristic of this picture is to
express the Hamiltonian by the operators of the
important total integrals of motion of the system, such
as the total isospin operator in the charged and the
symmetric scalar fixed source theories and the total
isospin and angular momentum operator together in
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the symmetric pseudoscalar case. This can be done by
relating all operators of the system to coordinate
systems rotating together with the meson-cloud of the
nucleon in both isospin space and ordinary space.
So we call this picture the rotation picture.

The other picture has already been introduced by
Pauli and Dancoff? and Wentzel® and lately extended
by the author.'® Its main characteristic is that the
total system becomes split into two partial systems,
the compound-nucleon system and the free-meson
system, with separate dynamical variables and separate
integrals of motion. The compound-nucleon system
consists of the bare nucleon and the meson cloud. This
splitting is carried through in such a way to fulfill the
requirement that the interaction between the two
partial systems shall vanish for infinite g. This picture
may be called the splitting picture. The aim of this
paper is to show the relations between these two
pictures and to compare the two kinds of approximation
which can be obtained from them for the isobaric
energy corrections and the meson-nucleon scattering.

2. RELATION BETWEEN THE TWO PICTURES
a. Starting Point

We explain this relation first by means of the charged
scalar fixed source theory, which is the case most
completely treated until now. The Hamiltonian is

H=3 ;f{ppk*pprl— €41} Ik

g
+—2 7, | v(k)godk, (1)
21 ¢

where ¢,x and p,x are the Fourier transforms of the
canonical total meson field operators with the momen-
tum vector k, energy e= (k2+«2)}, and isospin space
vector index p (p=1, 2), 7, is the isospin vector operator
of the bare nucleon, and v(k) the Fourier transform of
the source function.

Then the isospin space direction of the operator

fukq,)kdk 2)

plays the role of a starting point of the method. An
important part of the transformations of Pais and
Serber was initially carried through without any
specification of the ¢-number function #x. But in this
paper we want to restrict ourselves to the case that u
shall be the shape-function of the meson cloud as it
has been introduced in IT and (A), (B), (C) 8*~; the

10 G, Wentzel, Helv. Phys. Acta 26, 222, 551 (1943).

11( H) Jahn, preprint 1959, Nuclear Physics 26, 333 (1961), cited
as (A).

12 H, Jahn, Zeitschrift f. Phys. 156, 633 (1959), cited as (B).

13 H. Jahn, Fortschritte d. Phys. 7, 452 (1959), cited as (C).
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formulations given in these papers are most suitable
to see the relations between the two pictures of the
strong-coupling theory. The direction of (2) in the
isospin space is then the direction of the self-field vector.

b. Rotating Picture

The procedure of the rotation picture is to introduce
a new coordinate system in the isospin-space of which
the 17 axis has the direction of (2), and to relate all
operators to that new coordinate system. Then the
integrated-over-uy part of the new meson field operator
components is the amount of (2) or the canonical
conjugate of this amount, and is in the 17 direction.
But there is still an integrated-over-u; part of the
canonical conjugate field operator which is in the 27
direction. This is just the part containing the total field
isospin operator as the operator which produce that
rotation of the total field given by the angle ¢ between
the 1 and 17 axes of the old and new systems. This
part must be separated in order to bring out the
dependence of the total Hamiltonian on the total
isospin operator. But this separation has the conse-
quence that the field operators in the 27 direction
fulfill the commutation relations

UrUk’

i Par, Qo ] =6 (h— k') — ———,

f[uklzdk

and no longer fulfill the canonical commutation rela-
tions, which remain valid in the 17 direction only.
The new field operators do no longer contain any
¢ dependence; this has been removed by means of
the rotation and the last separation. Therefore all the
quantities composing the Hamiltonian measured in the
rotating coordinate system commute with the isospin
operator of the total system, which for this reason can
be replaced by the quantum numbers of the total
isospin or charge. All details of this procedure can be
seen in the paper of Pais and Serber.” We can collect
the single steps of their procedure into the formula

(2a)

Q/ikzz Sp' 090"k,
o’

_ (s2p(I—Z—373)) 3)
Ppk=Z Spr oDt th—————————,
o’
fukqlkdk
where
cosy  sing
sp,pz( _ ) @)
—sing cose

is the orthogonal transformation leading from the fixed
to the rotating coordinate system, s, being the direction
of (2), and where I is the total isospin operator, 73 the
3-component of the bare nucleon isospin operator and
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2 the isospin operator formed by the §,k, which is
called by Nickle and Serber the free-field isospin
operator. The total Hamiltonian is then expressed by
the new operators according to (3) and (4).

A main requirement of the strong-coupling theory is
mostly considered to be that it diagonalizes the coupling
term of the original Hamiltonian. This has been done
in (ITI) by means of the unitary transformation

S=exp[%irs tan‘l( f (k) Gardk / f 'u(k)qlkdk> ], (5)

which rotates the bare nucleon isospin to the direction
of the vector Sv(k)g,xdk in the coupling term, and
affects also the $,x operators.
Then the next step in (I) and (IT) is to introduce the
translation
qix— Q1k+%k, (6)

which doesn’t affect either the other field operators or
the operators I and 2 because of

fukﬁzkdk= fuqu)kdk=0. N

Finally, the terms of the resultant Hamiltonian
containing no g,k and p,x operators are collected as
the static part of the Hamiltonian. By minimizing this
static part, Nickle and Serber® get a determination of
ux with a result of which the lowest order approximation
inl/gis

v(k
AL (®)

2r €

In the remaining §,x, P,c-dependent part of the
Hamiltonian the quadratic or bilinear terms of order
g° are collected together as a free-field part of the
Hamiltonian which is diagonalized by introducing
creation and destruction operators:

€\ ¥
Tie= (2¢) ¥ (@1x+a1c™); i~71k=i(*2‘> (Bt — 1),

QQk=f(260)_%(vkko*d2ko+'v—kkod*2ko)dk0; )
~ . 60 _%
P2k=ft(;) (VkxoB2ko™ — Viko*Bako) K,
with
D(k)voko
vkko=5(k"‘k0)+_‘“—.5
62—602:F’LO£

[2(&)] 1o
2 2
Poko™= —v(k)/ f 2(6 —euz:FlOl)dk,

HELMUT JAHN

fulfilling the relation

fukvkkodk== 0,

in agreement with (7). So the Hamiltonian can finally
be written in the form

(11

H=Hstat+Hfree+ﬁi; (12)
I —I‘r3+% g2
stat=—+_(71+%);
2V 2a

ELo(k) T
1 ?‘f__[f.(ﬂdk; V=f|uk{2dk, (13)

a €

Iifree= Z f(dpko*dpli)de' (14)
P

The terms of A can be seen in detail in (I) and (II).

In these papers also the case of an /-dependent
cloud function is treated, which can be seen by replacing
in (8) the «2 of & by «'2=«2— (I2*—%1)/ V2. This represents
the full result obtained in (IT) by minimizing Hgtat,
showing the spreading out of the cloud function for
decreasing g by means of isobaric excitation. This I
dependency then also appears in vxx, which already
can be seen by (II). But nevertheless these two func-
tions remain ¢-number functions because 7 as the total
isospin commutes in this rotating picture with all
quantities in the Hamiltonian.

c. Splitting Picture

In the splitting picture we remain in the fixed
coordinate system of the isospin space. Then the angle
¢ is no longer related to the total system. But by
giving the direction of the seli-field vector (2), ¢ has
instead the meaning of a dynamical variable of the
compound nucleon, the partial system composed by
the bare nucleon and the surrounding self-field. The
full expression by the original meson field variables of
the total system (1) is according to (2) and (4) given by

_ f gk / (z( f ukq,,kdk)2)%. (15)

Instead of the total isospin operator I the canonical
conjugate to ¢ is then, of course, the compound-nucleon
isospin operator 7 which has to be the introduced by

I= 7417, (16)
In (16),

1
= f (@1x0™ask0— @axo*A1xo)dKo @a7)
7
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is formed by the creation and destruction operators
@poko, Gpoko™ measured in the fixed isospin space system,
and related to the @,x,@,* of the rotating picture in
(9) according to

(18)

Tpxo=2, Sppolpoko-
Po

By introducing (16), (17), and (18) into the formulas
(3), (9), and (10) we get

7 .
Gok=qpx +UxS1,;

(s ( T+ =I'=}7))

Ppkzppkl+uk (19)

> Slp'f“ka’ wdk’
Y
with

q;zk, = Z (250)—%(7)kk0 ,ppo*ap0k0+v~kk0 ,ppoapoko*)dko ;
po

(20)
€\ ?
PkaZZfi('z—) (vkko,ppoapoko*_'v—~kko,ppo*apoko)dk07
PO

and

v (k) vok o

vkko,ppoza(k—ko)appo—l"'ﬁ— (21)

A SZpSZpr
e—er* T

where I’ is the isospin operator formed by ¢,i’ and p i’
of which it can be shown that I’=Z2. Instead of (2a)
we then have

U Uk

[P ,qo’ J=8(K'— k)8, ,— (22)

§2p782pe

f|uk|2dk

In order to have @,oko, @poko’, and sy, 7, = as
operators of two independent systems the @,ox0, @poxo®
have to commute with the s,/,, 7, =. This is fulfilled
and all the commutation relations of the operators in
(19) and (20) are valid if vkko, »p0 fulfills the relations

Z Uk’ko ,p’pu,ﬂkko,ppo*dkoz 6(kl— k)6p,,,
PO

U Uk
- S20820,  (23)
f | x| dk
vakk",'PPO'*;"')kkc'.ppodkz6(k0,—k0)5p0’90’ (24)
p

as has been shown in detail in (A). Contrary to this,
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the @,x0 [Eq. (18)] of the rotating picture do not
commute with 7 because they contain the s, ,. But
instead, it can be seen by (18) that the @,x, are invari-
ants in regard to the isospin space, so that they com-
mute with the total isospin according to (16), as is
required by the rotating picture. By means of (23) and
(24) the inversion of (19), (20) can also be derived,
which gives!

€p 3
Qpoko™= (;) vakko,ppoqpkdk_l'i(zm)_%
P

€0\ ?
X2f<”—kko,ppo*Ppk>dk_ (‘2‘0) UkoS1po.  (25)

Then by means of (25), (21), (17), (16), and (15), T
can be expressed completely by the original field
operators.

So by means of the substitution (19), (20), and (21)
we have split the total system into two systems: the
compound nucleon system with the operators s,,, 7,
and =, and the free-field system with the operators
@poxo amMd @,0xo*. Especially the total isospin of the
system has been split exactly according to (16) by
means of the substitution (19)-(21).

After introducing the substitution (19), (20), and a
similar = rotation™2 to that given by (5), the Hamil-
tonian of the splitting picture has the form

H=H"+H"+H, (26)
where
72— Tr3+% g
Hocz———_i'_(fl_}'%), = (S},"), (27)
2V 2a
(28)

HOf:Z <apok0*apoko>dk0;
po

and the most important terms of H® can be seen in
(A), (B), and (C). In these papers the results (8) and
(21) for #y and vkxo, ,p0 are obtained by the sole require-
ment that the terms of the strong-coupling perturbation
series shall vanish for infinite g. This replaces the three
requirements in the rotating picture, namely minimizing
the static part, diagonalizing the coupling term, and
introducing and using the normal modes. But the
spreading out of the cloud function treated in (I) and
(II), as remarked after Eq. (14), cannot yet be treated
in the splitting picture because g, being then 7
dependent, would no longer be a ¢-number function as
in (I) and (II). For this purpose a more extended
transformation than (19) and (20) would be introduced
—which has not yet been done. Therefore, we compare
here the two pictures only for the case without taking
account of the spreading out of the cloud function.
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3. ISOBARIC ENERGY CORRECTIONS
a. Rotation Picture

In the rotation picture the zero-order approximation
eigenstates of the problem are the eigenstates of
Hgpor+Hsreo according to (12)-(14). The zero-order
approximation eigenvalues to order 1/g% in the coupling
constant are given by

(Hstat+Hfree) ® (Il,k()l,pl e kOn,Pn)

2 3 I/2~l
=[g_( 2)+ 4+Z 5n]
2a\—% 2V n

X O koy,p1-* - Kon,pn)  (29)

the 73 term giving only 1/g* corrections and the zero-
point energy being omitted. The orthogonal system of
these eigenstates O (I’ko1,01- - -Kon,pn) With the total
isospin I’, containing » mesons with wave numbers
koi- - -ko, and isospin polarizations pi---ps, can be
constructed by means of the production and destruction
operators @,xo", G,xo introduced by (9). Since these
operators &,xo*, @,xo commute with the total isospin
operator I, they don’t change the total isospin quantum
number I’ if they act on (I’ Kkoyp1-+ -Kon,pn). So if
the meson charge is increased or decreased by applying
Bixo™= (1/V2) (@1xo*+il2ko™) on O(I'koy,01° * “Konypn),
the compound nucleon charge is decreased or increased
automatically. But this cannot be seen explicitly in the
zero-order approximation of the rotation picture be-
cause meson charge and compound nucleon charge
are not good quantum numbers there. To investi-
gate this question in the rotation picture the first
order eigenvalue corrections have to be considered.
In this connection the most important term of the HA*
expression of Pais and Serber and Nickle and Serber is

HAyi=—213%/2V, (30)

which also is of order 1/g% as well as the I'? term of the
zero-order eigenvalue (29). 20 is the part of 2 belonging

only to the §(k—ko) part of vix, (10),
0=1/, (30')

Taking into account the first-order eigenvalue correc-
tions of (30), we obtain the expectation value between
the zero-order eigenstates:

(I,kaI,Pl‘ ‘ 'kOn;Pn] Hstat+Hfree+ﬁ0il I/,kOI,Pl' . kOn,Pn)

A ) W
=2 2)+ + e (31)
2a\—% 2V n

The main difference between (31) and (30) is that the
expectation value (29, being the meson charge, has
been subtracted from I’ so that I’ is replaced by the
compound nucleon charge

T'=1"— (9. (32)

HELMUT JAHN

It is characteristic for the rotation picture that the
dependence of the eigenvalues on the compound nucleon
isospin or on the free meson charge initially appears in
the first-order perturbation approximation, not in the
zero-order approximation. For meson vacuum states
|0I’) the first-order contribution of (30), and so the
difference between (29) and (31), vanishes because of
(2%=0. But if mesons are present, so that (Z°)0,
then (30) plays an important role as can be seen by
the calculation of Pais and Serber of scattering including
the thresholds for isobaric excitation.

To see the contributions of (30) to the higher order
isobaric energy corrections, we begin with the 1/g*
corrections which are composed, according to Nickle
and Serber? [see (43)-(46) in their paper ], of the terms

H, yi= (g/4m)qxy?, (33)
and
A, =—[=0/v] fugudk, 68
where
1 1
X=— fv(k)qmdk; y=- fv(k)qzkdki
q g 35)

g= fukv (k)dk.

By inserting these terms into the second-order pertur-
bation correction expression,

0,I'| Hi| k,p,I")|?
A<2>€I,=_zf[< |Hi|k,p >|dk’ 36)
3 €

Nickle and Serber?® obtained, besides the I’-independent
contributions coming from (33), only the I’-dependent
1/g* contribution

¢ D) wall) 1
2 (A2 dk= I2—1(y, (37
o [ k=0, 61

which is mixed by (33) and (34). According to (36),
this is a correction to the meson vacuum state with the
one-meson state as intermediate state. Because of the
commutativity of the production and destruction
operators @,x*, @,x of the rotation picture with the total
isospin operator I, the transition from the meson
vacuum to the intermediate one-meson state in (36)
does not change the isobaric total isospin quantum
number I’ of the zero-order states so that only the
energy e of the produced meson but no isobaric energy
difference appears in the denominator of (36).

It can furthermore be shown that (30) does not give
any contribution to the 1/g* isobaric energy correction.
Formally, this contribution could only come from the
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third-order perturbation theoretical expression,
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! i ! ! agrih WA 7} (2 WA i A
A(a)eI,= Z ff <0;I Iﬂ —1 lk;pyl ><I ;k7p|H0 |k P 7I ><I )k P IﬁlI*l [0)'[)

to which, besides (30), only (33) contributes. But the
matrix elements of (33) occurring in (38) can only
lead to intermediate states in (38) with p=1 having a
resultant meson charge equal to zero: also

alz[1)=0. (39)

- dkdk/, (38)
€€

Therefore (38) does not give any I’-dependent 1/g*
contribution.

But to higher order than 1/g* in the reciprocal
coupling constant, Eq. (30) gives I’-dependent contri-
butions from higher order perturbation theoretical
expressions; e.g., to 1/g%, from

A® fff <07I’ Iﬁa—li] k>1;I,><k,1;I, lﬁol[ k’y271/><‘ll7kl,2 I'ﬁﬂzl k”,l,IIXk”,l,I, |Hﬂ“1i[ OI/)
€ =—

because then
1]12]2)£0

is the essential contribution and (39) does not occur.
This is also the case for all even-order perturbation
theoretical expressions, which are of the type of (40).
If summed they give a geometrical series in powers of
I?/V? which is the total contribution of (30) to the
isobaric energy correction. The meaning of this result
will be seen in the following by considering the splitting
picture.

b. Splitting Picture

In the splitting picture the zero-order-approximation
eigenstates of the problem are the eigenstates of
H%+H according to (26)-(28). The zero-order
approximation eigenvalues to 1/g% are given by

(H+H)O (T’ Ko1,001° * - Kon,pon)

2 3 T72-1
)
2a —‘% 2V n

XO(T" ko,p01- * - Kon,pon)-

(41)

(41) differs from (29) by having the compound-nucleon
isospin quantum number 7" instead of total isospin
quantum number I’, and the » mesons with wave
numbers Koi- - -ko, and isospin polarization posi- - - pon
are created and destroyed by the creation and destruc-
tion operators @yoxo®, @poxo iltstead by &,xo*, &pxo [S€€
(18)7]. Since, contrary to the @,xo*, @,ko, the ¢poxo™, @poxo
commute with the compound-nucleon isospin operator
7, instead with the total isospin operator I, they do
not change the compound-nucleon isospin quantum
number 7”7 but instead the total isospin quantum
number I’ if acting on the eigenstates of (41). This
shows the independence of the free-meson system and
the compound-nucleon system in the splitting picture.
Now the eigenvalues in (41) are identical with the
right-hand side of (31). That means that the first-order

dkdk’dk”, (40)

r

€€ €

perturbation theoretical contributions of (30) of the
rotation picture are included in the zero-order approxi-
mation of the splitting picture. The reason for that is
that the corresponding parts of (30) are no longer
contained in the interaction part H? of the splitting
picture [see (26)] but are instead included in the
zero-order compound-nucleon part H% [see (27)] of
the splitting picture by means of the subtraction (19)
according to

T=I—1/, [see (30")].
This has the following consequence for the calculations
of the isobaric energy corrections:

In the expressions (35) one has to consider in the
splitting picture, instead of the @,ko*, @,xo, the right-
hand side of (18). Then the change of the compound-
nucleon isospin quantum number 77, necessary for
total isospin conservation, is done by the compound-
nucleon operators s, ,. Therefore, in the second order
perturbation theoretical expression for theisobaric
energy corrections formed in the representation relative
to zero-order eigenstates (41) of the splitting picture,
we have a change in 7”7 between the meson vacuum
state and the one-meson intermediate state. But
according to (41) this has the consequence that,
contrary to (36), isobaric energy differences must
appear in the perturbation-theoretical denominators
of the splitting picture so that, instead of (36), we have

(42)

(0,I'| Hi | Koo, T') |?
Aep=— % fl L dk,,  (43)
0. T’ eo— B
with
Bropr= (I"—T")/2V. (44)

To compare (43) with the results of the rotating picture,
we expand

1 1 BIITI (BIITI)2
.l 4 4 ...

= T I T

«—Brr e e

; (45)
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Then if the expansion (45) is introduced into (43),
the first term gives the I’-dependent 1/g* contributions
(36) and (37). From the second term the 1/g* contri-
bution is identical with (38), of which the I’-dependent
part had vanished because of (39). In the splitting
picture, this vanishing of the I’-dependent 1/g* part of
the second term can be shown by considering the
summation over 7" which reduces to

20 (I [ $10| T ) (T2 —=T") (T | 51,0 I")
= | (I[s1p0| I+1) [2(21+1)
11U s1p0| I=1) [2(—21+1).

Here we have used

(46)
T'=I'+1, 7

which follows as a property of the matrix elements of
S1, Which are

1 1(,i0 —1¢Q
T’):— f{z(e +6 )}ei(T"‘I,)“’dqo

2 L(ete— %)

S1p

a

S1p

1{ AR o J O
2

}. (48)

Or 141~ 0p 171

So the (I’|s1,|T") are independent of I’ and 7”. For
this reason the I’-dependent contributions to (46),
which are linear in I’, cancel, so that the vanishing of
the I’-dependent 1/g* term of the second term of (45)
is proved. This corresponds to (39).

The third term of the expansion (45) gives the same
contribution as (40). Its I'? dependency to order 1/g®
follows in the splitting picture from the fact that in
the sum over 7”, which now reduces to

S (I |51, TY(T2 =TT |51,] I
= [ (I s1,| I+ D) [2AI AT +1)

+ [, | =DA% —41'+1),  (49)

a I" dependency remains.

In this way it is evident that the perturbation series
of the rotation picture produced by the interaction
term (30) as shown from (33) to (40) can be considered
as consisting of expansions like (45) introduced into
(43). But in the splitting picture these contributions
are obtained in an unexpanded form like (43), which
is also valid for Byp: of the order of magnitude of e,
when the expansion is no longer valid. This would be
important for resonance-scattering damping calcu-
lations where, for the resonance energy correction and
the resonance width, the following expression has been
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obtained:

ARep =

—dko, (50)

J |1 Ko, T
00, T (14-ar) (eo—wr —iar)

where'* a7/ is a certain coefficient and wy is given by
Briyt+Aer— Aey

wp=€ey— —————————————,

1+dT/

(51

with the energy ey of the outgoing meson Bry see (44)
and Aer—Ae; is a certain isobaric energy correction.!
Now by considering (50) it is obvious that 1/(es—wz-
—ia), which corresponds to 1/(eo—Brq) of (43),
cannot be expanded as in (46) because the expansion
corresponding to (46) would be

1 1 Bryt+Aep— Ay
i

€— €N (e0—ew)?

(BT/%+AGTI_A€§)2
+ 4. ,
(e0—en)?

€— wrr —1a

in which the denominator surely will have a zero
within the space of the integration.

From this it seems necessary to conclude that only
the splitting picture and not the rotating picture can
be used for such damping calculations to give the
resonance width. For T=% the denominator of (50)
has a zero for e=ey; the integral (50) then has to be
carried through according to

1 1
=P

€=wpr —Iia

+ l:n 5 (60*’601'/),
€)W

where the principal-value integral gives a resonance
energy correction and the imaginary §-function part
gives the resonance width.!®
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4 gp, Aep—Aey are given in (A).
18 The detailed derivation and a numerical calculation are given
in (A).



