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Einstein's field equations for the gravitational field possess solutions having a large variety of topological
properties; among them there are solutions whose curvature goes asymptotically to zero at spatial infinity.
If we restrict ourselves to solutions that are asymptotically Minkowskian, then it is tempting to try to
divide the eGects of curvilinear coordinate transformations into those that correspond to a Lorentz
transformation and those that represent "gauge-type" effects. In fact a number of authors have followed
a variety of approaches toward a reformulation of general relativity that would make the theory resemble,
to some extent, a conventional Lorentz-covariant field theory. In this paper we analyze the group-theoretical
aspects of such schemes. Making a definite assumption concerning the group of curvilinear transformations
that will preserve the asymptotic Minkowski character of the metric field, we come to the conclusion that
the reduction to a Lorentz-covariant theory is in fact impossible. The course of the analysis suggests,
however, that this negative result depends on the initial group of transformations adopted; it is conceivable
that a slightly different invariance group would be compatible with a special-relativistic formulation of the
theory.

I. INTRODUCTION

~ 'HE physical justification for the covariance of
Einstein s theory of gravitation is represented

by the principle of equivalence, according to which the
accelerations caused by inertial and by gravitational
fields at one worM point are experimentally indis-
tinguishable. The principle of equivalence is local; as
soon as we examine the inhomogeneity of the ac-
celeration fields, the presence of a gravitational field
may be established. Accordingly, the principle of
equivalence gives us no guidance for setting global
requirements for the metric field. In particular, there
is no contradiction between the principle of equivalence
and the conjecture that gravitational fields should
approach zero strength at sufficient distance from
their sources.

In cosmological investigations one naturally considers
primarily metric fields, which, far from dropping o6
at large distances, are homogeneous and isotropic.
But if we are concerned with the possible applications
of general relativity to localized physical systems, we
are inclined to view the gravitational field as similar
to the electromagnetic field. The nonlinear aspects of
the gravitational field appear relatively unimportant
in view of the fact that the gravitational potentials
associated with an elementary particle (such as the
electron) are of the order of 10 " (in dimensionless
units) at distances of the order of the classical electron
radius. Hence at atomic distances, at any rate, and
beyond, the gravitational potentials cannot deviate
widely from the solutions of the "linearized" field
equations, i.e., from the wave equations for massless
bosons of spin 2. Whether quantization of the theory
will preserve the meaning of such order-of-magnitude
arguments remains, of course, to be seen. In the
meantime, it is eminently reasonable to render the
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formulation of the gravitational dynamics as intuitive
as possible, in terms of field theories with which we
are familiar.

In the linearized theory, the coordinate trans-
formations are replaced in their role as the invariance
group of the theory by a group that consists of the
inhomogeneous Lorentz transformations supplemented
by transformations of the form

V~' =Vu.+4,.+$., ~ n~ k', p—
In this expression the four variables $„are arbitrary
functions of the four coordinates. Replacing a solution
of the field equations p„„by a field p„„' in accordance
with Eq. (1) leads to another solution, which is con-
sidered physically equivalent to the original solution.
In fact the transitions (1) resemble in many respects
the gauge transformations of electrodynamics; in
accordance with well-established usage we shall call
them "gauge-like" transformations. It is well known
that there are no "gauge-invariant" first-order deriva-
tives of the potentials y„„;the lowest "gauge-invariant"
diGerential forms are of the second differential order,

PLK)Ill 2 (hler, KP+hKP, Ck h'KX, LP hler, KX)1

1h.=zn.v'p —v .,
and linear combinations of the P„),„.Hence statements
about solutions that involve only the expressions (2),
including their derivatives, are "gauge-invariant".
With respect to Lorentz transformations, the fields

y„„, h„„, and P,„~„all transform as components of a
tensor field.

It is tempting to reformulate the general theory of
relativity along the lines suggested by its linearized
modification. It is not surprising that such a program
will not succeed if the theory is deemed to consist
wholly of the field equations, without additional
boundary conditions, for in that case the gravitational
fields to be considered are not bound to be "weak" in
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any sense, and the linearized theory provides no
guidance to intuition. But it has been widely con-
jectured that with appropriate boundary conditions
imposed on the solutions the full theory could be cast
into a form in which the totality of the remaining
coordinate transformations could be separated into
inhomogeneous I.orentz transformations and gauge-like
transformations. This point of view has been presented
most forcefully by Arnowitt et at,.' and by Fock,' but
it is also implicit in some of the work. by Dirac. ' In
this paper we shall examine whether such a classification
of coordinate transformations is in fact possible. The
answer to this question probably depends on the
precise boundary conditions assumed to be preserved
at spatial infinity; in this paper we shall investigate
one set of conditions. We shall comment in the con-
cluding section on the import of the assumptions made.

II. OBSERVABLES AND GAUGE-INVARIANT
VARIABLES

One method of casting the general theory of relativity
into a form in which all statements assume a significance
independent of the choice of coordinates is to reformu-
late the theory in terms of observables. By definition,
observables are quantities that are individually in-
dependent of the choice of coordinate system but
whose values depend on properties of a particular
solution of the field equations of general relativity. 4

They may be constructed by means of intrinsic co-
ordinates, that is to say, a system of coordinates
defined uniquely in terms of geometric properties of a
Riemannian manifold that satisfies the gravitational
field equations. If the definition of intrinsic coordinates
is based on purely local properties, ' then they do not
depend on asymptotic boundary conditions. On the
other hand, intrinsic coordinates, locally defined or
otherwise, do not exist in manifolds that admit motions,
that is to say manifolds that contain Killing vector
fields. Kerr has shown that in the absence of Killing
fields there always exist locally defined scalar fields
that may be used as a complete set of intrinsic
coordinates. '

Intrinsic coordinates are uniquely determined by
the conditions imposed on them; in other words, such
conditions will not be compatible with any further
coordinate transformations. Thus intrinsic coordinates
are naturally associated with the construction of
observables, by definition quantities that will not
change their values under any coordinate trans-
formations. By contrast, we are now searching for

' R. Arnowitt, S. Deser, and C. Misner, Phys. Rev. 121, 1556
(1961),where references to earlier papers will be found.

s V. Fock, The Theory of Space, Time and Graeitation, translated
by N. Kemmer (Pergamon Press, New York and London, 1959).' P. A. M. Dirac, Phys. Rev. 114, 924 (1959).' P. G. Bergmann, S. Helv. Phys. Acta 4, 79 (1956).

5 A. B. Komar, Phys. Rev. 111, 1182 (1958).' R. P. Kerr (to be published).

f(x) =ACg(x) =LAg(x),

Ac =I.A.
(3)

The last symbolic equation characterizes the reduction
of the group of general coordinate transformations
that are consistent with asymptotic fIatness to the
inhomogeneous Lorentz group by means of coordinate
conditions. This reduction preserves the group proper-
ties, so that we have actually generated a homo-
morphism between C and I.. In the nature of things,
the reduction procedure A is not reversible, that is to
say, there is no procedure A

Having gone through this formalization we discover
in retrospect that we could also have interpreted A in
a more general sense than the one in which we intro-
duced it here. Suppose that A simply represents an
algorithm by which we assign to the metric field g(x) a
new set of functions, or functionals, of g(x), which are
not necessarily coordinate transforms of g(x) and that
these functionals f(x) remain fixed functions of the
coordinates under coordinate transformations that go
over into the identity transformation at infinity
("gauge-type" transformations). Then the reduction
relationship (3) still applies, and our previous inter-

quantities that are "gauge-invariant" but not Lorentz-
invariant. If they are to be obtained also by means of
restrictions on the choice of coordinates, then these
coordinate conditions must be constructed so that they
admit precisely the Lorentz transformation, or a
group of transformations isomorphic with the
(inhomogeneous) Lorentz group; this is the point of
view advanced by Fock.-'

Whether quantities of this type are obtained by
means of coordinate conditions or by a more general
procedure is, in a sense, a question of technology. Let
us first formalize the method of coordinate conditions.
We might start with a metric g(x) that merely satisfies
the asymptotic conditions; we assume now the existence
of a certain procedure, or algorithm, (such as the
integration of a set of differential equations with
sufhcient initial and boundary conditions) that leads
from this field to a transformed field f(x) which
satisfies the coordinate conditions. We shall denote
this algorithm by A, so that f(x) =Ag(x). A symbolizes
both the procedure that furnishes us with the desired
coordinate transformation, and with the performance
of that transformation.

Suppose now that we had first gone over from g(x),
by means of a coordinate transformation C, to a new
field g(x), so that g is also a field that satisfies the
asymptotic flatness requirements. Then application of
the procedure A on g(x) should have led us to a field

f(x) that satisfies the coordinate conditions as well.

By assumption, f and f are now related to each other
by an (inhomogeneous) Lorentz transformation L, so
that we may write
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Any transformation law is a realization (or representa-
tion) of the group of coordinate transformations C.

Let us now consider a gauge-type transformation g.
By assumption we have gF =F, regardless of the initial
choice of a particular field F. Clearly, the gauge-type
transformations form a subgroup of C, which we shall
identify by the symbol G. We shall now form the
similarity transform of a gauge-type transformation g,
under any transformation cgc '. We have:

g'F=cgc 'F=cc 'F=F,

cgc

Clearly, the transformation g' is also a gauge-type
transformation, it belongs to the subgroup G, so that,
in terms of group symbolism, we have

cGc-'= G. (6)

This equality is the definition of an invariant subgroup,
a group that is mapped on itself by all similarity
transformations in C.

By assumption, the factor group

is the inhomogeneous Lorentz transformation. Our
task is, thus, given the group C, to 6nd an invariant
subgroup G such that the factor group is I-. If no such
invariant subgroup exists, then there are no gauge-
invariant variables within the meaning of our definition.

pretation of A and f(x) represented merely a special
type of transition to "gauge-invariant" variables.

With this more general formulation we shall now
ask whether "gauge-invariant" variables do in fact
exist. This question is related to the structure of the
group of coordinate transformations C, namely the
question whether there exists a homomorphism between
C and the inhomogeneous Lorentz group J. Of course,
if it does, then the members of C that in 1. are to be
represented by the identity transformation form an
invariant subgroup of C, and L, is the corresponding
factor group. Hence we must search for the invariant
subgroup of "gauge-type" transformations which leads
to the desired homomorphism.

We assume that we have constructed a field of
gauge-invariant variables, F. If we denote the group
of coordinate transformations that preserve our
asymptotic boundary conditions by the symbol C,
then the transformed field which will be obtained
under a transformation c (which belongs to the group C)
is obtained from F by means of a prescribed procedure,
whose result we shall denote by the symbol cF. Again
there is no presumption that the procedure c is linear.
However, it is clear that if the product of two trans-
formations c~ and c2 is c3, ca=c2c~, then we must also
have

c3F=c2cjF.

Before we turn to the actual investigation of the
structure of the chosen group C, we shall make one
additional remark. We shall find in the next section
an invariant subgroup of C whose factor group is the
homogeneous Lorentz group. Fields that transform
in accordance with a law that is wholly determined by
the matrix of coefficients of the homogeneous Lorentz
transformations are constants of the motion. Such
fields cannot reveal the dynamics of the theory in the
sense in which this term is usually, and intuitively,
understood.

xo=g sinhm,

x'=0 cosh' sin8 cosP,
x'= 0 cosh' sin8 sin@,

x =0 coshS cosO)

~2 gl 2 g2 2 ' g8 2 go 2

f2 ]2

u=-', in[(r+i)/(r —t)],
p(0 (oo,

—oo (g,(oo.

These new, quasi-spherical, coordinates span a portion
of the Riemannian manifold which for su%ciently large
values of 0- represents the exterior of the light cone.
We shall call any curve for which the variables u, 0, p
approach constant limiting values for infinite positive
0 a space-like direction.

We shall now require that in any coordinate trans-
formation belonging to C the new coordinates x' possess
derivatives with respect to the original coordinates x
which asymptotically satisfy the conditions

(9)

in any space-like direction. The y&„are to be sixteen
constants forming a Lorentz matrix. Integrating the
expression (9) we can verify that in a space-like
direction the limit of (0-/0) goes to unity; hence the
transformations (9) form a group, and this group will

be our group C.
Parenthetically, it might be remarked that this

definition of C makes no explicit reference to the
metric field, or to its transformation properties.
Although it might be possible to dehne a transformation
group in such a manner that reference to the fields to
be transformed is not completely eliminated, such
references tend to complicate the proof of group
property. For instance, the transformations that lead
from one isothermal (harmonic) coordinate system
to another isothermal coordinate system do not form
a group. This is because the components of the 6eld
enter into the defining differential equation for iso-
thermal coordinates explicitly. After one such trans-
formation the components of the metric held have
changed; hence a particular transformation that would

III. GROUP C AND ONE INVARIANT SUBGROUP

Given a "permissible" coordinate syst, em, we shall
introduce the following new coordinates 0-, u, 0, and cb:
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have been isothermal to begin with will no longer have
this property if preceded by another isothermal
transformation.

We return now to our group C and de6ne a subgroup
J as the set of all those transformations satisfying the
requirement (9) for which p„&=5„P.It is easy to show
that J is an invariant subgroup, and that the factor
group, C/J=Lq, is the homogeneous Lorentz group.

Variables that are invariant under J but not under C
will have transformation laws into which only the
sixteen numerics p, & enter. They might, for instance,
be free-vectors or free-tensors.

IV. SECOND SUBGROUP OF C

The subgroup J includes the translations, and that
is the reason that the factor group is confined to the
homogeneous Lorentz transformations. Any invariant
subgroup whose factor group contains the translations
as well must be smaller, than J, and that is why we
shall look for a group that is an invariant subgroup of J,
and hence of G as well. We shall define the subgroup I
as the group of all those coordinate transformations
which, in addition to obeying Kq. (9), satisfy the
requirement that in any space-like direction

of J, we shall attempt to establish the translations as
a factor group in J,. If this attempt is successful, then
the next step would be to see whether the factor group
J,/T (T standing for the translations) is an invariant
subgroup of C .

Let us consider the possible asymptotic behavior of
the diGerence between old and new coordinates in
transformations that belong to J. If f is such a differ-
ence, we can easily verify that in order to satisfy this
requirement the derivatives with respect to our quasi-
spherical coordinates (8) must obey the requirements

Bf/Bo=O(1/o); Bf/Bu, Bf/80, Bf/8@=0(o') (1.2)

It follows that the difference between the values of f at
two points with the same 0- and two sets of values of
(u, 8,&) has an upper bound &(u~,e~,@~., u2, 6,&2) for
large values of o., but that f, independently of the
direction, may be a function of the order O(lno). If we
characterize an individual member of J, by the asymp-
totic behavior of the four functions fp, we have, then

lim f&= g&= ep(o)+k&(u, 8,4)),

e&=O(lno).

This new subgroup consists of all those members of C
which asymptotically go over into the identity trans-
formation. Its factor group, C,=C/I, represents a
classification of all transformations of C into equivalence
classes characterized by asymptotic behavior. The
subscript a is to call attention to the importance of the
asymptotic behavior.

The inhomogeneous Lorentz transformations, or
rather the transformations that are asymptotically
Lorentzian, are contained within C,. It remains to be
seen whether we can construct an invariant subgroup
of C, such that its factor group is the inhomogeneous
Lorentz transformation. In view of the fact that the
homogeneous Lorentz transformations form a factor
group of the inhomogeneous Lorentz group (the
translations being the invariant subgroup), we can
reduce our task by excluding from C, first the homo-
geneous Lorentz transformations. We do this by
forming the factor group J,=J/I, which obeys the
equation

C/J = /C=Jy, .I
J, represents a classification of all transformations J
(which are those transformations in which new and old
coordinate axes are asymptotically parallel) in terms
of their asymptotic properties.

The group J is commutative. Hence every subgroup
is an invariant subgroup, and the whole group may be
considered the direct product of any subgroup and the
corresponding factor group. Because of this property

The product of two members of J is represented by
the sums of their respective g&. The translations are
characterized by constant values of all four g&.

A group J,/T would exist if there were a unique
manner in which we could split every set of g& into a
set of constants and a remainder. The prescription
would have to be linear. Such a prescription could be
developed for the && alone, but not for the e&. Hence
our search has failed, and we must conclude that the
inhomogeneous Lorentz group is not a factor group of C.

Our result might not hold if we assume analyticity
in 1/o for all coordinate transformations considered.
In that case the term e& would actually be proportional
to lno. and could be split oG from the remainder. In
that case, one can separate a constant out from k& by
taking its mean over the Lorentz sphere, identifying
this mean with the translation vector, and assigning
the remainder (whose mean vanishes) to the gauge-type
transformations. Even then our task is not over. The
mean over the Lorentz sphere is not a simple average,
as the area of that sphere is infinite. One might say
that almost all of the Lorentz sphere is adjacent to the
light cone, and the average is defined only if the limit
of the k, exists for in6nite values of N. But even if we
restrict ourselves to transformations in which this
limit exists, the averaging procedure outlined is not
invariant under the transformations Ly„and thus the
program breaks down at the last stage, where the
invariance of the subgroup is tested under the full
group C,. Our end result is, then that, with or without
assumptions concerning analyticity, no homomorphism
exists between the full Lorentz group and the group C.
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V. CONCLUDING REMARKS

The strategy of this paper has been to examine the
structure of the transformation group, in preference to
the examination of the transformation laws of specific
functionals. Where this approach is successful, it leads
to results of considerable generality, with a relatively
slight expenditure of computational effort.

From the course of the argument it is obvious that
the negative result depends on the structure of the
initially chosen group C. Our construction was based
on the assumption that one is interested in situations
with nonvanishing rest mass and that one is, accordingly
interested in the transformations that preserve the
asymptotic flatness of order 0(1/r) of the metric field.
If we were to concern ourselves with the set of solutions
of the field equations whose metric field at spatial
infinity goes as 1jr', then we should find that the
inhomogeneous Lorentz group is available as a factor
group. One might well search for other assumptions
concerning the metric field, and hence different appro-
priate transformation groups that admit a variety of

homo morphisms.
Another argument to circumvent the results of the

group-theoretical analysis is the following: Granted
that there is no homomorphism between the group C
and the Lorentz group I., might it not be reasonable
to represent the invariant contents of the general
theory of relativity in a formulation that is Lorentz-
covariant but which is unrelated to the original in-
variance group of the theory' From a purely formal
point of view such a presentation is entirely possible,
but only on condition that the coordinates of the
Lorentz-covariant formulation are unrelated to those
of the original formulation. Not only would the co-
ordinates not coincide at spatial infinity, there would
be no rule by which a particular Lorentz frame would
be related to a particular curvilinear frame. It is the
assumption of the existence of such a rule that forms
the point of departure for this, paper.
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