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The Thomas-Fermi method in simplest form is applied to find the radial distribution of nucleons in a
spherical nucleus in the absence of Coulomb forces. Saturation is obtained by hypothesizing a two-body
force quadratically dependent on relative momentum. The effective one-nucleon potential energy is therefore
velocity dependent. Solving the basic integral equation and imposing generally accepted values for the
average and Fermi kinetic energies in the nuclear matter limit (2 —& &e) gives a solution exhibiting surface
and saturated interior regions. Fixing one more parameter (the force range, taken to be fr/m~c) determines
all numerical features (e.g. , surface thickness, interaction strength) at reasonable values.

INTRODUCTION

l
'HIS paper reports the results of a calculation of

the density of nucleons as a function of the
distance from the center of an isotropic nucleus of
finite size, in which four nucleons can occupy a given
momentum state, but in which there is no Coulomb
repulsion. The idea is to take seriously and explore
quantitatively the simplest form of the degenerate-
fermion-gas (or Thomas-Fermi or "classical" ) nuclear
model. The two-body force law is assumed to have a
Yukawa space dependence. A quadratic dependence on
relative momentum is inserted into the interaction to
give saturation by roughly imitating the eRect of a
repulsive core in the true interaction.

We treat a nucleus in its ground state as a degenerate
gas of nucleons. At each point of configuration space,
momentum space is 6lled as densely as allowed by the
Pauli principle up to the Fermi momentum pF. We
consider spherical nuclei, in which case the Fermi
momentum will d.epend on only the distance r(= iri)
from the center of the nucleus: ps pF(r) T-——he nucl. eon
number-density is given by

from different r' throughout the nuclear volume (NV).

t'p pi
V(r, p) == —Ue " dr' t dp'Gi iF

~zrv ~se E Po )

~r' —r~ 4

rD & (2vrA)'

where Uo is a fixed positive energy giving the strength
of the interaction. The function G expresses the momen-
tum dependence of the interaction, I' represents the
spatial dependence, and r& and pD are, respectively,
length and momentum parameters introduced to make
the arguments of Il and G dimensionless. Integration
over the Fermi sphere means over all momenta whose
magnitudes are less than or equal to the Fermi momen-
tum at the particular configuration point. Integration
over the nuclear volume implies summing the contribu-
tions from all configuration space volume elements
which are within the nucleus.

%e adopt, for Ii, the Vukawa function,

F(x)= e */x, —
(3)

(4~/3) LP~(r) 3'
N(r) =4

(2s h)'

Now we assume that each nucleon moves in a self-
consistent potential arising from its interaction with
the other nucleons. Ke assume further that the effective
or average nucleon-nucleon interaction can be written
as central but dependent on relative momentum. The
potential energy of a single nucleon will then be
momentum dependent as well as position dependent. '

To calculate the potential energy of a nucleon with
momentum p at the position r, one must Prsf add the
energy contributions of the nucleon's interactions with
all those nucleons having momenta within the Fermi
sphere, (FS), at r', and second add the contributions

* Supported in part by the Atomic Energy Commission.
f National Science Foundation Predoctoral Fellow.
' V. Weisskopf, Nuclear Phys. 3, 423 (1957), has shown that

the existence of nuclear matter and the independent particle
description of its properties imply that the average potentia. l

energy is momentum dependent.

and for G a simple (from the computational point of
view) quadratic,

G(x) =1—x'.

For the case of infinite nuclear matter, where ps is
independent of r, the assumption of a quadratic
momentum dependence for the potential energy has
been examined by Weisskopf' and Mittelstaedt' and is
known as the eRective-mass approximation. In the
limit of infinite nuclear volume our equations should
describe nuclear matter and will simplify to the
eRective-mass approximation.

THEORY

Ke seek the density distribution of the nucleons in
the ground state of a nucleus. We consider only a
spherically symmetric distribution. Our approach is
to look for a, density distribution which will minimize
the total energy l&.& of a nucleus, subject to the condition

2 P. Mittelstaedt, Nuclear Phys. 8, 171 (1958).
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that the total number of nucleons A is fixed.

A= ' dr dp
t ~ p s (2m'A)

f\ p2
Er I ——dr dp + U(r, p)

~ p,p 2M 2 (2mb)'
(6)

To minimize Ez while holding A constant, we
introduce a Lagrangian multiplier Ep and require that

B(EzL'q (x)]—EpA Lq (x)))= 0,

which is equivalent to requiring that

8—(E 5v ( )—F( )j+E ~Lt ( )—F( )j)=0
Bc

where U is given by Eq. (2) and M is the nucleon ms, ss.
Ke introduce the dimensionless quantities

x=r/rD,

for arbitrary F(x) in the limit e —+ 0.
Carrying out the indicated operations, we deduce

the following condition on p(x):
xo=E/r~—, ~Xp

&
—

& +&&&
where R is the radius of the nucleon distribution ' and g 0

~(x)=PF (r)/PD—,

4 Uo

/&ape�'t

'
I.

3~ (pii'/2M) ( fi )
(7b)

XL1—5~'(y) —~'(x) jydy+ (1o)

ping/2M

Equation (10) can be written as

Carrying out the integrations in Eqs. (5) and (6) as
far as we can for arbitrary q, we find A and Ez as
functionals of p(x):

0

t"(x)= ( U—( pr—)+E )
PD'/2M

Solving for Er, and using Eq. (7), we obtain

P~'( )r
Ei +U——(r,pp).

M

and

Xp

= (8/(3~))(rDpn/A)' to'(x)x'dx,

R ~@~(r)

x)I= f 4 r'dr I 4~P'dp
~'0 J,

uy(&')

X
( +P"—2 pp')

2~P"dp' 1—
2

(y2+ p'2 2~rr')2—
+1 R 11

X P'/2M ——,'Uo ~ dp I 2m-r"dr' )" dg
—1 —1

6@=
PD'/2M

and rewrite Eq. (10) as

p'(x)

(12)

pep

(e ~' "~—e '*'"')v'(y)(1 —58(y))ydy+e~
X 0

(g) Thus Ep is just the Fermi energy, i.e., the total energy
of a particle having momentum equal to pp(r). (Ei
should not be confused with the Fermi kinetic energy,
Tg, which is equal to pp'/(2M). j We de6ne

+exp
(r'+r" —2prr') &

4
~

4
X

(2mb)' (2~A)'
g (rnpD't '(PD''t t"'

&'(x)x dx —(5C/6)
Sm E A ) 12M) ~o

Xp

X)l xd ydy(e ' " —e '*'"')~'(x) v'(y)

'!Ll-- 5(d(x)+ v'(y))] . (9)

' We shall argue later that y(x) achieves the value zero for a
finite value of x, which we call xp and identify as the nuclear radius.

~ &0

(e ~* "~ —e &*+»)y'(y)ydy+1
x &',

This equation serves as the basic working equation
of our model. Its solution determines, through Eqs. (7)
and (1), the nucleon density distribution.

Physically xo is the distance (measured in units of rD)
beyond which the nuclear density is zero. Thus to be
physically reasonable p(x) must vanish for x)xo.
Therefore we proceed to seek a function which is (i)
a solution of Eq. (13) for 0&:i&.i, aiid (ii) identica11y
2 iO fOr tQ l.

3.t is seeil that a functioIl define(3. ill t/lls Dial::lI1ei foI
all x still satisfies Eq. (13) for x(xo. But since Eq. (13)
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for x)xf) is not satisfied by such a function, it would

appear that we cannot conclude that the energy of the
particular nucleus considered is minimized by this
function. However, an examination of the energy
variation procedure which led to Eq. (13) reveals that
Eq. (13) occurs multiplied by some common factors,
one of which is q (x). Thus this factor being zero also
is a sufficient condition for an energy extremum.
Thus we are assured that the density function obtained
by the above described procedure will, for all x,
minimize the energy of the nucleus being considered.

We now have a procedure [valid for all xs assuming
we can solve Eq. (13) in the region x&xs] for obtaining
the desired nuclear density distribution and have the
assurance that the density function, thus calculated,
is physically meaningful (for the particular nucleus
considered) in that it minimizes the energy of the
nucleus and exhibits reasonable behavior for x) xo.

Ke inject here an interesting point of comparison
between this calculation and that of the Thomas-Fermi
(TF) neutral atom. An investigation of Eq. (13)
reveals that Lp(x)]', the nuclear density raised to the
2/3 power, approaches the point xs (where density
actually becomes zero) linearly as L(as+1)/(ms+2)]
Xei (xo—x), while on the other hand, the TF atomic
potential, the electron density raised to the 2/3 power,
approaches zero only asymptotically. This feature in
the TF atom reAects the infinite range of the Coulomb
force and not quantum mechanical diGuseness. Thus
the 6nite range nuclear force leads to the "classical"
nucleus looking more "classical" than the "classical"
atom, in that its edge is sharp.

In connection with the previous remarks concerning
the physical meaningfulness of the calculated nuclear
density function, the critical test of the proposed
nuclear model entails the examination of the over-all
behavior of the solutions for various values of xp,

more than a scrutiny of the details of the density func-
tion for a particular value of xo. Specifically we demand
that the solutions of our nuclear model must exhibit the
saturation e6ect as is found experimentally, e.g. , they
must support the conclusion that the "volume" of a
nucleus is proportional to the number of nucleons
present.

where the subscript 00 is used to remind us that we
are dealing with inhnite nuclear matter, and where'we
have made use of a special case of the following
de6nition.

E Er/Ji

po'/2M pos/2M
(16)

We define a dimensionless quantity 0. such that

6~=A 6p&~. (17)

According to the Hugenholtz-Van Hove theorem, ' n
should be equal to unity, and we make calculations for
that case only in this work.

Substituting Eqs. (14) and (15) into (17), we find

n —3/5
C=

v -.L2--1- (2/5) v. (8--3)1'
(18)

The volume term in the Keizsacker semiempirical
mass formula' gives E„=—15.74 Mev and Hofstadter's
nuclear density experiments' suggest that Tp„ is about
38 Mev. Substituting these values and n=1 into (19)
gives the value 0.630 for y . Using this result in Eq.
(18), we obtain C=3.07. The parameter C expresses
primarily the strength of the interaction (o- Us), and
we shall retain this value for subsequent calculation
for finite nuclei.

We note that E„and Tr „enter into Eq. (19) only
in the form of the ratio E„/Tp„which can be treated
as a single input parameter in the computation of a
solution for y(x).

By evaluating Eq. (2) for nuclear matter (ps
independent of position), we can compare our results
in the infinite nucleus case with the nuclear matter
effective mass approximation of Weisskopf' and
Mittelstaedt, ' wherein it is assumed that the energy of
a nucleon with m.omentum p can be represented by

which can be resubstituted in Eq. (15) to give, after
solving fol

1—5(E„/TF„)(2—1/tr)
2=

(18/5) —2 (E„/TF„)(8—3/rr)

APPLICATIONS

Infinite Nuclear Matter

The Coulomb energy of the protons has been
neglected, thus the working Eq. (13) should be
applicable to nuclei with arbitrarily large radii and
uniform density, i.e., to nuclear matter. In this limit
(rp being a constant q„, and as ~ oo), Eq. (13)becomes

—~ s—2Cp s{1—(8/5)p s) (14)

E(p) =p'/2M+ Vs+ Ui(p/pF)'. -

Comparing with (22) we obtain

Vp
—— 2CTp„p„{1—(3/—5)p„'),

Vg —2C rgb, goo

and thus the ratio of effective to free mass is

~Foo

(22)

(23)

e-= (3/5) v-' —Cv.'{1—(6/5) s.'), (15)

and in the same limit the ratio of Eqs. (9) and (8)
yields the equation.

M Tr„+Vi 1+2Cy' '
' N. M. Hugenholtz and L. Van Hove, Physics 24, 363 (1938).

A. E. S. Green, Phys. Rev. 95, 1001 (1954).' R. Hofstadter, Revs. Modern Phys. 28, 214 (1936).
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Using the value of q„given above, we find from (22)
and (23) with the help of (18)

Vp=- —112.0 Mev,

Ui ——+58.3 Mev,

M*/M = 0.394,

which agree with the values given in references 1 and 2

for the case 6 (rearrangement energy) =0, i.e., —Lp ——5
(separation energy).

The saturation property of infinite nuclear matter
implies that the volume per nucleon is a constant. We
write this constant as (4/3)~re', where rs is a constant
length. If we now let A be the number of nucleons in
a sphere of radius E„,which is completely enclosed
within nuclear matter, it follows that

E„~=ro A'

Applying the reciprocal of Eq. (1) to nuclear matter

[pi (r) =p~„g gives a second expression for the volume

per nucleon, which can be equated to the first to give

Pp„——(9s/8)&A/rp . (27)

The Fermi kinetic energy of nuclear matter can the»
be related to re~ through the equation rr „pir—„—'/2M,
where 3f is the nucleon mass, giving

Tp„= (1/2M) (97r/8) i(A/rg )'. (28)

With the help of Eq. (27) and the definition of q„,
we can express Eq. (8) as

pÃp

A=3trn/(rp„q„)]' J" q'(x)x"-dx.
0

(29)

Finite NQclel

We turn now to the solving of Eq. (13) for finite xs
and x(xp. The spirit of the calculation wil1. be to
treat C as being independent of xp and therefore having
the same value, C=3.07, as in the in6nite nucleus, but
to permit ep to depend on xp. As xp ~ co, ep(xp) should
approach e~„whose numerical value, from Eq. (14),
is —0.164.

Employing an iteration method of solution we
rewrite Eq. (13), for a particular value of xs, as

C r*p

(e
—~'—"~ —e

—&'+&') t, v '"'(y)]'(1—-'Lq '"'(y)]'}ydy+e~ " (xs)
g p

L+(n+1) (x)$s
Xp

(e ~' "~ —e "+"&)[p'"'(y)]'ydy+1
x Q

(30)

with the hope that as e becomes large (i.e. , large
number of iterations) &p&"&(x) and epi i(xs) approach
definite limits, say q&(x) arid ep(xp), respectively. To
complete the definition of the iteration procedure we

specify a first guess, pi'&(x), which we insert into the
right-hand side of Eq. (30), and require io&'&(x) to be
zero for x=xp which determines ep"'. This procedure
is iterated until two successive iterants are within an

arbitrary prespecihed tolerance of each other for all
X(Xp.

Since we expect the interior of all except the very
lightest nuclei to have properties similar to those of
hypothetical "nuclear matter, " we select the constant
y„as our first guess, i.e, , we set

q "'(*)= q for x(xs.
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The iterations were carried out on an IBM 650
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FIG. 2. The variation of
n(x) (density in 10 s nu-
cleons per cubic fermi) as
a function of x near
s=sp = 10. The functional
dependence of n ( )xnear
xp can be given as

~(*)=0.668
X {L(xo+1)/(xo+2)]

X~z(xp —x)}&

FIG. 1.The variation of q (the Fermi momentum in units of pL))
as a function of x (the radial distance in units of rD) for x&sp.
Curves are superposed for six different values of xp, namely:
4.5, 5, 6, 7, 8, and 10. The value of q in the limit xp —+ ~ is
indicated as p„,
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FIG. 3. The variation of the ratio es'/es „(the ratio of the Fermj
energy of a finite nucleus of radius x0 to the Fermi energy of an
in6nite nucleus) as a function of xo. The right-hand legend gives
the Fermi energy, Fz, in units of Mev, where Ez„ is taken as—15.74 Mev.

FIG. 4. The variation of A & (cube root of the number of nucleons)
plotted in units of Q 3(rn/rs„) as a function of go (the nuclear
radius in units of rD). The higher values of Ai can be connected
by a line whose equation is given.

R= 1 67rD+1 0.Ore~A &. (32)

The following remarks apply to those nuclei lying
on the line in Fig. 4, i.e., those nuclei whose radii are
given by Eq. (32). (Only the very light nuclei fail to
fall into this category. ) The first term in Eq. (32),
I.67r~, is independent of A and can be interpreted as

evaluated numerically by dividing the interval 0 to
xp into 100 points.

The solutions for a half-dozen values of xp ranging
from 4.5 to 10, (we shall show that this corresponds
to the total number of nucleons, A, varying from
approximately 30 to 1100) are exhibited in Fig. 1,
from which it is seen that the inner density
(proportional to io') of a nucleus is a constant approxi-
mately equal to the density of nuclear matter and
essentially (except for the very light nuclei) independent
of xp.

In order to exhibit the detailed behavior of the
density in the vicinity of xp we have included Fig. 2 in
which we have selected a particular value of sis(=10),
blown up the x scale near @=10, and made use of
Eq. (1) in the form n(x)=0.6676(q(x)]' 111 nucleons
per cubic fermi.

In Fig. 3 we present graphicaBy the dependence of
op on xp. The infinite nuclear matter value, ey„,
(—0.164) is used as a standard for comparison. The
right-hand legend gives PI in Mev with Ep„ taken as
—15.74 Mev. ~g approaches the nuclear matter value,
es„, in the limit xs —& ~. The dependence of es (or Er)
on A is weak (particularly for higher A) as expected.

Figure 4 exhibits the dependence of xp on A'
(plotted in units of 43rD/ro~) The calculated points
at the higher values of xp lie on a straight line the
equation of which is graphically determined to be

ms = 1.67+ 1.00 (rs„/rr)) A &. (31)

Upon multiplying by r& we have for the nuclear
radius

the constant "surface thickness" of the nuclei. (We
define the "interior" of a nucleus as the region remain-
ing when the surface region is imagined to be removed. )
From Eq. (32) the radius of the region interior to the
surface region is proportional to A& and consequently
its volume is proportiona1 to A.

Furthermore, upon comparing Eqs. (26) and (32),
we see that the coeKcient of A& given by the present
calculation agrees to within 1% with the coeKcient
deduced for nuclear matter, thus enabling us to conclude
that the interior of actual (excluding Coulomb effect)
nuclei is made up of nuclear matter.

All foregoing results have been deduced as a result
of assigning numerical values to only txo input
parameters, n and the ratio E„/Ts„.

In order to determine the value of A corresponding
to a particular value of xp, it is necessary, as seen by
Eq. (29), to know a third parameter, rn/rs„, which is,
by Eq. (28), proportional to rD(Tp„)l. And finally,
to assign numbers to quantities like the interaction
strength Us (averaged over the two-body spin and
i-spin states occurring in nuclei) and the surface thick-
ness, we must specify one additional constant, for ex-
ample r~ itself.

In other words the specification of the four constants
n, E„, T~„, and r~ is sufhcient for determining com-
pletely all other quantities but is not necessary for
deducing the qualitative results of the model. Using
for these four constant the values u=1, E„=—15.7
Mev, TI;„=38 Mev, and r~ equal to the Compton
wavelength of the s.-meson is/m c=1.4 fermi, we 6nd
the following values for other derived quantities:

Surface thickness (1.67rii) =2.34 fermi,

Up= 24.8 Mev,

$11=2.26X10 "g cm/sec,

(PDs/2iV = 95 7Mev), .
r{)no= 1.13 fcrDll.
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Conversely, given the single model parameter C
(proportional to the product Uoro'pD), one needs only
to solve Eq. (13) for enough successively larger values
of xp so as to be able to predict the limits p„and eI „
I which can be checked by Eq. (14)$ in order to deter-
mine n, the ratio E„/I'r:„, and the qualitative saturation
properties. The additional knowledge of pn (or
equivalently Uor&') is necessary to determine the
individual quantities E„, T~„and the slope of the E
versus A& curve. Finally we need r& (or equivalently Uo)
to find the value of A corresponding to a particular
value of xo and to find the value of the surface thickness.

CONCLUSION

Treating the ground state of a nucleus as a degenerate
gas of nucleons and assuming simple expressions for
the space- and momentum-dependent potential energy
between two nucleons (averaged over spin or more
precisely, between two differential nuclear volume
elements) we have deduced a nonlinear integral
equation for the self-consistent nucleon spatial density,
through the use of a variational procedure. The
solutions for all but the very light nuclei show saturation
(e.g. , a linear 2 ' versus E relation).

Ke have shown that in the limit of very large nuclei

(A —+ ~) the spatial densities describe nuclear matter
and moreover, two of the model parameters pD and
the combination UorD' can be fixed so as to give, in

this limit, (i) the usual nuclear matter values for the
Fermi kinetic energy (38 Mev) and the average energy

(—15.7 Mev) and (ii), agreement with the Hugenholtz-
Van Hove theorem (in our notation n=1). For finite

nuclei it is possible to define a surface region, whose

thickness is independent of the size of the nucleons,
such that the interior (rema, inder of the nucleus) is just
nuclear rnatter.

Since rD represents the range of the Yukawa spatial
interaction, it is natural to evaluate it as the Compton
wavelength of the m meson. This choice for ra Gxes

(i) the relationship between A and R, (ii) the magnitude
of the surface thickness (2.3 fermis), and (iii) the
strength of the interaction, Uo (—25 Mev).

The possibility of exhibiting saturation with reason-
able parameter values does not constitute a verification
of the details of the especially simple nuclear force law
which we have used.

Ke are currently investigating the inclusion into the
model of the Coulomb repulsion energy of the protons.

IVote added As proof. The present paper shows that the
gross features of nuclear structure can be exhibited by
a "classical" model with velocity-dependent interac-
tions. The treatment above is rather schematic, in the
neglect of Coulomb effects and in the discussion of the
surface thickness. The further work including Coulomb
e8ects promised above has now been done. Coupled
nonlinear integral equations for separate neutron and
proton densities„~vith Coulomb interactions among the
protons, have been solved. A Yukawa space dependence
of the nucleon-nucleon interaction is again assumed.
The force-range r~ is now not a free parameter, but is
determined by the solution procedure; and it takes a
value substantially smaller than the 5/(m c) arbi-
trarily assigned in the earlier work. Nevertheless, the
surface thickness, now defined as the 90 jo to 10'
dropoG distance in nucleon density, retains a value
close to the experimental value. Quite accurate values
of binding energies and neutron-proton ratios are found.
This work will be submitted for publication shortly.
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