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Electromagnetic Production of Pion Pairs*
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The Pauli-Weisskopf theory of pion pair production by photons was modified to include the strong pion-
nucleus interaction in the form of a complex optical potential, and the matrix element was obtained by
using "exact" distorted plane waves which were expanded into angular momentum eigenstates. Numerical
calculations were performed for lead to examine the effect of a nuclear charge distribution and nuclear
optical potential on the cross section in the energy region just above threshold. The calculations show that
when the charge distribution and nuclear potential are included, the cross section for lead which leaves
the nucleus in an unexcited state increases slowly just above threshold until approximately 295 Mev, where
it starts to increase almost linearly, attaining a value of 1.07)&10 "cm' at 310 Mev.

I. INTRODUCTION

ECENTLY the Pauli-Weisskopf' theory of pion
pair production by photons has been modified by

Pomeranchuk' and Vdovin' to include the strong pion-
nucleus interaction in the form of an optical model.
Whereas Pomeranchuk simply treated the nucleus as a
black sphere, Vdovin permitted nuclear transparency
and used the optical model of Fernbach et ut. 4 In both
cases the problem was restricted to photon energies
well above threshold and the electrostatic interaction
was neglected.

The purpose of this work was to calculate the cross
section for pion pair production by photons in the
energy region just above threshold which is presently
attainable, and to perform the calculations as accur-
ately as possible. To achieve this objective it was neces-
sary to represent the nucleus as a complex potential
(optical model) in the equations of motion of the pions
together with the modified Coulomb potential of the
nucleus. In this case the interaction between the pion
and radiation field was treated as the only perturbation
and the 6eld variables of the pion field were expanded in
a series of "exact" distorted plane waves.

Some care had to be taken when the complex poten-
tial was introduced into the field-theoretical equations
since it introduces dissipation into a theory whose
framework is essentially nondissipative (dissipation as
used here is meant to refer to the absorption of particles
and energy in a continuous, unquantized manner). The
problem is particularly acute in the case of pair pro-
duction by photons since one must be assured that the
optical potential enters the equations in such a way as to
obtain dissipation (absorption) of both or+ and
mesons, since they enter the theory in a symmetric way.

*Submitted to the University of Tennessee in partial fulfillment
of the degree of Doctor of Philosophy.

f Operated by Union Carbide Corporation for the U. S. Atomic
Energy Commission.' W. Pauli and V. Weisskopf, Helv. Phys. Acta 7, 709 (1934).

2 Iu. Ia. Pomeranchuk, Doklady Acad. Nauk S.S.S.R. 96, 265
and 481 (1954); also, Proceedings of the Cern Symposium on FZigh-
Pnergy Accelerators and Pion Physics, Geneva 1956 (European
Organization of Nuclear Research, Geneva, 1956) Vol. II, p. 167.' Yu. A. Vdovin, Doklady Acad. Nauk. S.S.S.R. 105, 947
(1955).

4 S. Fernbach, R. Serber, and T. B.Taylor, Phys. Rev. 75, 1352
(1949).

In Sec. II the method of introducing the optical poten-
tial into the field equations is discussed and it is shown
that if the real part. of the potential is treated as a world
scalar and the imaginary part as the time component
of a four-vector, it leads, in a consistent manner, to the
scattering and absorption of the pions. The imaginary
part of the potential leads to absorption and is intended
to include, in a phenomenological way, all inelastic
events that leave the nucleus in an excited state. It
acts to remove pions that have been produced within
the nucleus, which in effect reduces the cross section,
in addition to facilitating the momentum transfer to
the nucleus.

The presence of the complex potential in the equa-
tions of motion of the pion field leads to an ambiguity
in the form of the final-state functions appearing in the
matrix element. The usual requirement that the 6nal-
state function having the asymptotic form of a plane
wave plus spherical converging wave' ' can actually be
satisfied by two alternate solutions of the equations of
motion. The choice between them had to be made on
physical grounds as discussed in Sec. III.

As a convenient means of calculating the cross section
in the energy region just above threshold, the wave
functions appearing in the matrix element were ex-
panded into angular momentum eigenstates and the
cross section expressed in this formalism. This develop-
ment is shown in Sec. IV.

Finally, calculations for lead are presented in Sec. V
which show the effects of introducing an optical poten-
tial and the modi6ed Coulomb potential that results
from assuming a charge distribution for the nucleus.
The consideration of the charge distribution for the
nucleus in this theory is necessitated by the fact that
the pion pair production by photons takes place pre-
dominantly within the bounds of the nucleus in the
energy region just above threshold.

II. INTRODUCTION OF THE OPTICAL POTENTIAL

For the purposes of discussing the proper form of
the complex potential in the 6eld equations, it is appro-

~ N. F. Mott and H. S. W. Massey, The Theory of Atomic Col-
/isions (Oxford University Press, New York, 1949), 2nd ed. , pp.
111 and 353.' G. Breit and H. A. Bethe, Phys. Rev. 93, 888 (1954).
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priate to introduce two real world scalars, P and P~,
and the complex time component of a four-vector Vo.
At first, to display the covariance of the equations, all
components of the four-vector will be shown; however,
the space components will be taken to have the value
zero when necessary. The natural units A=c=1 are
used except where noted to the contrary.

With the potentials present, the variation of the
action can be patterned after the equation that appears
in classical mechanics when nonconservative forces are
present':

where

BI=B Zd4x+ (QBP+Q*BP*)d4x =0, (2.1)

1 BA„BA~—[( +P)'—Pt']0*4
2 Bxy Bs

and

B ) B
+ MA—„~qP +seA" ~y, (2.2)

Bx" i Bx„1
B B

Q= ieA„V*"+V—„* seA—&
~

Bx& Bx„

V„*V*o+2i—(p+P)P, y*. (2.3)

Certain terms in (2.3) can logically be included in the
Lagrangian density and will lead to the same results
below; however, for simplicity, because of the con-
venient notation, these terms are retained in the
expression for Q.

Performing the variation indicated in (2.1) leads to
the usual expression for the four-current' and the follow-
ing equation of motion for the pion field:

BZ/By (B/Bx—&) (BZ/By„)+Q=0. (2.4)

With the aid of (2.2) and (2.3), (2.4) reduces to the
equation satisfied by that field variable p (r, t). However,
in order to display the equations that apply to the m

and sr+ mesons, the equation satisfied by the Fourier
transform it (r, ro') of the field variable is obtained first,
and a new frequency a» is defined so that 4o& ——~to'~.

This results in the two equations,

[(oos eA p i Vp—)'+7'—
—(ts+P+iPt)']Ps (r,4os.)=0, (2.5)

[(roe +eAs+4 Vo)'+&'

—(„+P+'P )'$P -(, — ")=0, (2.6)

H. Goldstein, Classica/ Mechanics (Addison-Wesley Publishing
Company, Inc. , Reading, Massachusetts, 1953), p. 38.' S. S. Schweber, H. A. Bethe, and F. deHoffmann, Mesons and
Fields (Row, Peterson and Company, Evanston, Illinois, 1955),
Pol. I, p. 118,

which apply to the x and ~+ mesons, respectively, and
where, in general, &os'= k'+tss.

Examination of (2.5) and (2.6) shows that the
imaginary part of Vo does not introduce a complex
factor into the equations and therefore cannot introduce
absorption. It can represent the real part of the optical
potential however, although it enters the equations
with opposite sign and will be an attractive potential
for one of the pair of pions and repulsive for the other.
In contrast to this, the potential P can represent the
real part of the potential and appears in both equations
with the same sign. Since experiments indicate that the
real part of the potential should have the same sign
and approximately the same magnitude for both x+
and ~, it can be assumed that the imaginary part of
Vo is very much smaller than P and, for simplicity, the
imaginary part of Vo will be set to zero in the subsequent
development.

To proceed in the determination of whether Vs (which
is now real) or Pi should represent the imaginary part
of the potential, it shouM be noted that the Lagrangian
density (2.2) is invariant to the transformation p —+ pe'"—(1+iX)g, where X is a real infinitesimal constant.
Therefore, under this transformation, the variation of
2 must be zero. ' Performing the variation and using
Bg=ilt@ leads to the expression

or

—ie(QQ —Q*&P)= Bj "/Bx"=V j+Bp/Bt,

V j 2Vop 4e(ts—+P)P—rrfpqs*+Bp/Bt=O. (2.7)

than Uo since it introduces an absorptive term which is
not proportional to the charge density. That is, if the
charge and current density change sign, then the term
containing Vo maintains its absorptive properties
whereas the term containing P~ changes from an absorp-
tion to a production term. If Pj is assumed to be zero,
as is done in the subsequent work, then (2.7) reduces
to the continuity equation which can be derived from
the Schrodinger equation when a complex potential is
present '0

Thus we find that when the imaginary part of the
optical potential is treated as the time component of a
four-vector and the real part as a world scalar, results
are achieved which are consistent with elementary
intuition as to the way in which positive and negative
pions are treated by the nucleus.

M= ie As[it s"*&its *—it s *Z—ps"*]d'x, (3.1)

S. S. Schweber, H. A. Bethe, and F. deHo6mann, Mesons and
Fields (Row, Peterson and Company, Evanston, Illinois, 1955),
Vol. I, Appendix B.

"N. F. Mott and H. S. W. Massey, The Theory of Atomic Col-
tisions (Oxford University Press, New York, 1949), 2nd ed., p. 12.

III. FORM OF THE FINAL-STATE FUNCTION

The matrix element for pair production by photons
is given by'



ELECTROMAGNETIC PRODUCTION OF PION PAIRS 2031

and it is assumed here, as it was by Vdovin, that this
form applies when the imaginary part of the optical
potential is introduced into the theory. The functions
fz and Pz ~ that appear in (3.1) satisfy (2.5) and (2.6)
where P~=O and Vo is real.

It has been shown previously' ' that the 6nal-state
continuum functions appearing in a matrix element
should have the asymptotic form of a plane wave plus
a spherical converging wave, fz . Usually this form is
related to the function having the asymptotic form of
a plane wave plus spherically diverging wave, f&+, by
the relation fq =P I,+*. This occurs because of the
assumption that the radial part of fq and the phase
shifts are real. In the present case, however, the complex
coeKcients occurring in the wave equation leads to
complex radial functions and phase shifts, and the
equality does not hold, so that a closer examination of
the form of the final-state wave function is required.

In the following, the wave equation for the m meson
will be examined explicitly and no generality will be
lost if it is assumed that Ao is zero. With the aid of
(2.5) the equation satisfied by the radial function
R~(r) = r 'x ~(r) can be obtained from

l(l+1)—
+ k' —2pP —Voo —E'—

dr r'

—2iVocoI xt(r) =0. (3.2)

where x~(0) =0 and y~(r) sin(kr ——',br+a~), the term
g~ being the complex phase shift. Thus the wave function
fq can be expanded as

xi(~) sin(kr —iilor+q &)

O'=Z A~~~(~) -Z A~~~(~)
l kr(2(op) & kr(2(vg)&

(3.3)

where lr is directed along the s axis and p, is the cosine
of the polar angle. The factor (2cuq) & has been intro-
duced in (3.3) for proper normalization. By selecting
A ~

——(2l+1)P exp( ig~), fk h—as the form Pq Whereas,
if A ~= (2l+1)i' exp(ill~), then $1, has the form Pq+
(reference 11). To obtain P z from (3.3) it is only
necessary to make the transformation p, —& —p and to
note that E~(—p) = (—1)'P~(p).

Instead of examining the two possible forms of the
final state functions, f~ and P q+* to resolve the
problem as to which is correct, it is more appropriate
to examine their complex conjugates since this is the
form in which they would appear in the matrix element.

Thus we must consider the two alternate forms,

IV. DEVELOPMENT OF THE CROSS SECTION IN
ANGULAR MOMENTUM EIGENSTATES

The matrix element given in (3.1) was obtained with
the use of the solenoidal gauge, V A=O. This condition
allows simplification of the matrix element since one
of the terms in (3.1) can be converted into a surface
integral over the infinite sphere plus a volume integral
identical to the remaining term. The surface integral is
easily shown to be zero and the matrix element becomes

where

M= 2ie A,—(Pg" *p'P g+)d'x, (4 1)

4n-( —i)" exp(iaido)
k~ = Q Xll

k'r(2(u~ )'

and
X Yii, i*(k') Yis, s(r), (4.2)

2ikr(2coo)&

X)exp(2igl*)~'"" ~'~' —~ ""~~"]I (3.4)

(2i+1)(—i)'Pi( )~+-Z
2ikr(2(og)'*

X[exp(2iil )&i(k~zlw) t,
—i(kr—-,'l~)] (3 5)

which differ only in the way the phase shift enters the
expressions. The one required will be the expression in
which the square modulus of the amplitude of the
outgoing spherical wave is less than that of the incom-
ing spherical wave.

In (3.2) the imaginary part of the coefficient is
positive since Vo is a negative quantity. This leads to
a phase shift which has a positive imaginary part and
indicates ~exp2ig~~'(1 and )exp2igq*(')1. Therefore,
it is clear that f I+* is the desired form of the final-
state function for m mesons. A similar analysis based
on (2.6) shows that Pq is the proper form for the ir+
mes ons.

In the development of the two equations of motion
for the x and m+ mesons, the sign of the electronic
charge |, determines which equation applies to the m+

or m. meson. There is no u priori method of choosing
the sign, since the equations are invariant to charge
conjugation. Thus we have an additional check on
the final waveforms by testing the invariance of the
theory under the simultaneous transformation e ~ —e,
x+~ m, and x —& ~+, and indeed the choice of final
waveforms meet the requirements.

"L. D. Landau and E. M. Lifshitz, Quantum Mechanics
(Addison-Wesley Publishing Company, Inc. , Reading, Massa-
chusetts, 1958),p. 397. X Ylo,mo(k ) Ytorno*(i). (4,.3)
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where the factor (4n./2&o, )'* is required for proper
normalization. In (4.8) g~ is a spherical basis vector,
and P=+1 and P= —1 corresponds to left and right
circular polarization, respectively.

For unpolarized incident photons the differential
cross section is given by

do. =2or(-,' g ~Mj')(2~) Pk"(ug"k'Mg dQ"dQ'dooi, (4..9)

0
0 0.2 0.4 0.8

Equations (4.2) and (4.3) were obtained using the
addition theorem for the Legendre polynomials so that
k has an arbitrary direction with respect to the axis of
quantization.

The radial functions Xt~ and Xip* in Eqs. (4.2) and
(4.3) are obtained from the differential equations

d2

+ k"—2a)1, eAp —2@I'—Vp' P'+e'Aoo-
dr'

lg(lan+1) —2iVp((op. +eAo) X(,=0, (4.4)
2

d2

+ lp"'+2(og, -eA o 2pI' Vo' —P'+e'—A po—

—mc~
FRACTIONAL KINETIC ENERGY, v =

E —Zmc20

FIG. 1. Comparison of the Born approximation pion pair pro-
duction cross section at a photon energy of 310 Mev for a point-
charge and distributed-charge lead nucleus.

In order to obtain a workable expression for (4.9), it
is necessary to reduce the expression for the matrix
element. When (4.2) and (4.3) are inserted into (4.1)
and the gradient formula" is used, the matrix element
becomes

—2iep(4or)'
P Vly, my (k )F'lp, mp(k )

k k (8cooMo&po@»)

&&I (lglplpL) J(leplpLPm~nzp), (4.10)

I(l,l,lpL) = P'&(—P) "+'s(2lo+1)'C(lg1L I 00)

&&exp/i(gt, +7Iip*)j Jrp(qr)Xi+

(4.11)

where the sum is over all possible values of the indicated
quantum numbers. The functions I and I in (4.10) are
given by

—2iVo(a)I, eA p)
—Xt,*=0, (4.5) 2.5

0

with the boundary conditions such that at r=0 they
have the value zero and asymptotically they have the
form

Myr ISA
x~3* sin k"r——,'lax In 2k"r g~g~ . 4.7

k"

In (4.1) there is considerable simpli6cation if circu-
larly polarized incident photons directed along the axis
of quantization are used. With these conditions and the
Rayleigh expansion of the plane wave, exp(igz), the
following expression is obtained":

4n-

A, = —Pg„P i'~(2l, +1)&jap(gr) Vip, o(r), (4.8)
(2Mo) &2

'~ M. E. Rose, E/e~neetcry Theory of Aef, ular M'orneetum |,'John
Wiley @ Sons, Inc. , New York, 1957), p. 60.

)
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1,0I-
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IJj

0.5

N

0
0 0.2 0.4 0.6 08 &0

E —rnc 2
FRACTIONAL KINETIC ENERGY, v =

E —2rnc~0

FIG. 2. Comparison of the Born approximation and exact wave
pion pair production cross section for lead at a photon energy of
290 Mev. The nuclear potential was neglected.

'3 M. E. Rose, El'emerltary Theory of Angular Monzentum (John
Wiley R Sons, Inc. , New York, 1957), p. 124.
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and I,0

J(/s/s/sLpm&ms) = Yts ms. *(r)Ytso(,r)go TtszmsdQ,

(4.12)

where C(/s1L; 00) is a Clebsch-Gordan coeKcient'4 and
Tt~s ~ is an irreducible tensor of rank L given by

Tt time ——Q, C(L1/s, mt —ms, ms)

XYI,my —ms(r))ms. (4.13)

After inserting (4.13) into (4.12) and noting that
(„)ms——(—1)"h(—ms, p), the remaining integral over
the product of three spherical harmonics can be readily
performed" yielding

0,8

0.6
I- zO~ o
w ~X

b
0.4

0.2

0
270 280 290 500 310

PHOTON ENERGY (Mevj

320

(2L+1)(2ls+1)I= (-1)& C(L1/g, ms+ p, —p)
4sr (2/, +1)

XC(L/s/s, ms+p, 0)

XC(L/s/s, 00)b(ms, ms+ p). (4.14)

The expression for the differential cross section (4.9)
can now be put in a more desirable form by transforming
to the variable v= (tos —tt)(to, —2tt) ' and inserting
(4.10), (4.11), and (4.14) into (4.9) to get

FIG. 4. Ratio of exact wave to Born approximation pion pair
production cross section for lead as a function of photon energy.
The nuclear potential was neglected.

The function S in (4.15) is given by

S=p C(L1/s; m&+p, p)C(L/sl—s, m~+p, 0)
XC(L'1/s, ms'+ p, —p)C(L'/s'/s', ms'+ p, 0)

XIt, (/y/s/sL)Iy*(/t /s'/s L)Yty, my*(k )Yts', mt'(0 )
X Yts,ml+o(&") Yts .~i go*(/s"),

(es -8(1—2tt/co, )ttsS-
do =

i

— dsdQ"dQ'.
k tt /:"0'es

14

(4.15)

where

-(2L+1)(2l +1)-i
C(Llsls, 00)I.

(2ls+1)

)'D CU
Q

b a)0
z'
O
I-
tsJ
V)

(0
V)
O

I-
LIJ

tsJ

O

For purposes of the present problem the integration
of S over all possible directions of k" and k' is required,
hence, we want to 6nd the integral

(4.16)

The integrals over the product of spherical harmonics
appearing in (4.16) yields the product of four Kronecker
delta symbols, 8 (4,/&') 5 (m&, m&') 5 (/s, /s') 5 (m&'+ p, m&+ p),
because of the orthogonality property of the functions,
which permits the sum over lj.', l3', and m~' to be
performed. Equation (4.16), therefore, reduces to

E=Q V(LL'/s/s'/t/s)Is(/g/s/sL)Is*(/t/s'/sL'), (4.17)

0
0 0.2 0.8 1.0

E —mc2
FRACTIONAL KINETIC ENERGY, v =

Eo —2rnc2

0,4

FIG. 3. Comparison of the Born approximation and exact wave
pion pair production cross section for lead at a photon energy of
310 Mev. The nuclear potential was neglected.

'4 The notation for the Clebsch-Gordan coeflicient used here is
that of M. E. Rose, Elementary Theory of Angllar M'omentlm
(John Wiley @ Sons, Inc. , New York, 1957).

ss M. E. Rose, Elementary Theory of Angular Momentum Uohn
Wiley R Sons, Inc., New York, 1957), p. 62.

where

V (LL'/s/s'/g/s)

C(LUs, mg+p, —p)C(L/sls, ms+p, 0)
mI, (@=+1)

XC(L'ilt. ', ms+ p) —p)C(L'/s'ls, my+ p, 0). (4.18)

It is possible to perform the sutn in (4.18) by re-
coupling of the angular momenta. This is facilitated by
noting that L+L' and ls+ls' must be even. The
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2.0

E —mc 2
V

E —2mc0

where

Q(/2/2'LL') = 1

=2
=2
=0

if t,'=t, and L'=L
if /2'=t. and L'(L
if lg'&lg

otherwise.

1.5 and

G(/i/2/iL) =/i' (2/~+1)C(/i1L; 00)
(2L+1)

(2l3+1)

I—

X 0
0

UJ CD

o o
b bo

in which

P(/i/g/3L) = exp[—(8&i—8&,)]

&& C(L/g/i, 00)F(/i/2/3L),

ji&(qr) xi3*

+ly
X +-'[/i(/i+1) —L(L+1)]—«.

dr

0.5 Using (4.22), the final expression for thethe differential
cross section becomes

d~= (e'/p)'[8(1 —2p/(u, )/i'K/k "0'e']de, (4.23)

0
0 1008020 40 60

NUCLEAR CHARGE, Z

io of exact wave to Born approximation differential
f Zfo ho n gyof 290 Mcross section as a function o or p o

recoupling yields

U(LL'la/2'l3)

2 (2li+1) (2l3+1)

3 (2l2+1) (2L+1)
+ (2li+ 1)(2l3+ 1)( 1) (3) C(/2 /&2 j 00)

XW(L1L'1 j /i2)/U(2L/2'/3 j L'/g), (4.19)
where 8' is a Racah coeKcient.

An additional simplification can be obtained by* in (4.17). In that factorexamining the product liIi in, .
it is found that
I I *&x ( /)~~+i8(g)&~+~8

&&exp[i(qi, +iti3*)] exp[ —/(nii*+qi», )

so if the real and imaginary parts o p
~ ~

of the hase shift)

+i8 then (4.20) becomesare separated by letting &&=0.&, i ~, e

IiIi~ 0- exp( 2/iii) ex—p(+28i3), ,4.21)

and it is seen that there is no need to obtain the real
art of the p ase s i s.h h'ft " With this development inp

mind and noting ath t E is a real quantity and that
and L

'
nt to the simultaneous exchange o l2 anis invanan o e

an be written aswith I2' and L', respectively, then E can be w
'

X=Q Q (l2l2'LL') U(LL'/g/2'lil i)
)&Re [G(/i/g/3L)G*(/i/2'/3L') ], (4.22)

' From (4.4)—(4.7) it can be seen that Bl1)0 and 30 and Bl3(0, so both
factors on t e rig oh ht f (4.21) are less than unity.

which was programmed for compm utation on an elec-
tronic computer.

V. CALCULATIONS OF THE CROSS SECTION

Since there is some interest in the e ect on the value
oes from a oint charge to0f the cross section as one goes

d' b t d charge nucleus, this effect w'will be discusseistll u e c
i is advanta eous tofirst."To investigate this point it is a va

ntial cross sectionth Born approximation differen
given by Pauli and Weisskop

m.e'
~
C (P) ~

'I'~P sin8 sin8+d8 d8+dPd
do=

A'cE03 (2ir) '

10080

10
4b

I-
LLI

O —20

0
I—

o —30 I
0 STORK

40 ~ SHAPIRO
22~ PEVSNER

equal.

a & BYFIELD et al.23
IJJ

I

20 40 60
PION ENERGY (Mev)

. 6. Values of the real part of a square-wel p pell o tical potential as
d f ion-nucleus scattering data.determine rom pion-

and —on a quantity indicates it is a varia
mesons, respectively.

cted b a factor of ~~ missing in' E ation (5.1}has been correcte y aqua
'

e 1.the equation given in reference
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0

-10Z
IJJ
I—
O
CL

—20

CL
O
tio —&0

~ —400-

C9

—50

0 STORK

SHAPIRO
21

PE VSNE R et a I.

BYFIELD et ol.
~ SAPH I

R24

20 40 60
PION ENERGY (Mev)

80 100

where

E 'I'+' sin'8+ E+ I sin 8

(E~ cP+ cos8+—)' (E=cP cos8 )'

2E+E P+P sin8+ sin8 cosP

(E~ cP+ cos8+—) (E cP cos8 —)

C (p) = Ao(x)e*'& *dax.

Fzo. 7. Values of the imaginary part of a square-well optical
potential as determined from pion-nucleus scattering data.

which is reasonably close to the actual charge distribu-
tion for medium and heavy nuclei as obtained for
electron scattering experiments. "The constant pp is for
normalization, and the constants a and b for. best ht
to experimental data are a=0.546)&10 " cm and
&=1.0u ~X 10-» cm.

A comparison of the cross section with the charge
distribution with that for a point-charge nucleus is
shown in Fig. 1 for a photon energy of 310 Mev. The
cross section is given in units of eR'= 7.762&(10 "cm'.
The two curves have similar shapes, but the point-
charge cross section is approximately a factor of 10'
larger than that for the distributed charge. This factor
persists in the energy range below 310 Mev.

A comparison of the cross section obtained with the
exact wave calculation (4.23) with the Born approxi-
mation solution for a distributed charge is shown in
Figs. 2 and 3. At the photon energies of 290 and 310
Mev, shown in the 6gures, a striking difference in the
spectral shapes obtained from the two calculations will
be noticed. The enhancement of the cross section for
higher energy m+ mesons is well known and occurs
because of the repulsive Coulomb potential. The ratio
of the total cross section obtained by the exact wave
and Born approximation calculations is shown in Fig. 4.

The difference between the two calculations can be

2.6

In (5.1), Eo E++E and——Ap=P —P +P+, where Sy
is the momentum transmitted to the nucleus and P is
the momentum of the photon.

For a point charge, C (p) = —4m. eZ/p', in which case
(5.1) can be integrated to give

= ~ ~ ~
'+'-

d = Z'(-,'R') L 1)dZ—, —
P+CI C

where n= e'/Ac is the fine-structure constant, R= e'/mc'
is the classical pion radius, and

P+cP c+E+E +m'c4
I =ln

P+cP c+E+E—+m'c'

P~cP c+E+E +m'c4
=2 ln

8 AC

2.4

2.2

2.0

1,8
b

1,6
O

Oi'
(A

1,2

1.0

0,8

0.6

-Mev PHOTON ENERGY

For the case of a distributed charge density, Zp(r), 0,4

c(p) =-4xZe
p (x)e'& 'dax

2
(5.2)

0.2

0
0

290 Mev

0.2 0,4 0.6 0.8 1.0

and (5.1) has to be integrated numerically.
The cross section for lead (Z=82) was obtained from

(5.1) for a cha, rge density

E —mc2
FRACTIONAL KINETIC ENERGY, v =

Eo 2 f1lc 2

p(r) =
1+exp[(r —b)/a j

FTG. 8. The differential pion pair production cross section (by
photons) for lead including the Coulomb and nuclear optical poten-

(5 3)
tial (I'= —16Mev, V= —5 Mev).

"R.Hofstadter, Revs. Modern Phys. 28, 214 (1956).
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and they were assumed to be constant. "The potential
was taken as a square well with radius 1.4 A:&(10 "
cm and is typical of the value selected for analysis of
pion scattering experiments.

The calculated differential cross section including
the modified Coulomb potential and the nuclear optical
potential are shown in Fig. 8. These data still show the
effects of the Coulomb potential which tends to make
the spectra unsymmetric about v=0.5, although the
cross section has been considerably increased from the
corresponding case without the optical potential. The
data at 310 Mev shows a hump which can be accounted
for on the basis that within the nuclear mell the effec-
tive momentum of the pions is increased and the
spectrum should be expected to tend towards the
symmetric shape given by the Born approximation.
Figure 9 presents the total cross section as a function
of incident energy and indicates a sharp increase in the
cross section about 15 Mev above threshold.

Frc. 9. The pion pair production cross section for lead including
the Coulomb and nuclear optical potential (P= —16 Mev,
U= —5 Mev) as a function of photon energy.

expected in the case just cited since the conditions for
the Born approximation to hold, ZnE+/I'+C and
ZnE /E C((1, are certainly not obtained. It is of some
interest then to see how the spectral shape of the exact
wave solution approaches that of the Born approxi-
mation as Z —&0. This also provides a badly needed
check on the computational procedure. Figure 5 shows
the ratio of the cross section for the exact wave solution
to that of the Born approximation as a function of Z
for v=0.5 and 0.1 at a photon energy of 290 Mev. In
this comparison the extent of the charge distribution
in (5.3) was kept constant; so the numbers refer to
fictitious nuclei for Z(82.

For the calculations with the nuclear optical potential
the parameters for the well depths were obtained from
pion scattering experiments'~24 and are shown in Figs.
6 and 7. The depth parameters for the real part of the
potential shown in Fig. 6 had to be adjusted by the
factor E/mc' to make them applicable to the present
calculation, since it has been customary to introduce
both the real and imaginary part of the potential as a
time component of a four-vector in the analysis of pion
scattering experiments (in contrast to the method
discussed in Sec. II).

The potential parameters in the range 0—30 Mev
pion energy were required in this calculation. The
values selected were —16 Mev and —5 Mev for the
real and imaginary part of the potential, respectively,

so D. H. Stork, Phys. Rev. 98, 868 (1954l.
2' A. M. Shapiro, Phys. Rev. 84, 1063 (1951) and H. A. Bethe

and R. R. Wilson, ibid. 83, 690 (1951).
A. Pevsner et g/. , Phys. Rev. 100, 1419 (1955).

~3 H. Byfield, J. Kessler, and L. M. Lederman, Phys. Rev. 86,
1P (19S2).

~4 G. Saphir, Phys. Rev. 104, 535 |,'1956).

VI. DISCUSSION

Although the present calculation maintained at
least 1% numerical accuracy throughout, a larger error
no doubt occurred because of the uncertainty in the
applicability of an optical potential which is inde-
pendent of energy and in the optical potential param-
eters selected from the spread of experimental data.
More data from pion-nucleus scattering experiments
with improved methods of analysis would establish the
potential parameters more accurately and ultimately
lead to greater accuracy in calculations of the type
described in this paper.

The strong pion-nucleus interaction, as characterized
by the optical potential, is obviously very important to
pion pair production by photons. Although the cross sec-
tion is remarkedly reduced in the energy region just
above threshold as one considers the distributed charge
nucleus in comparison with the point charge nucleus,
this loss is fully regained by including the consideration
of the optical potential. The increase in the cross section
is very significant, putting the values in an experi-
mentally interesting region especially for photon ener-
gies above 295 Mev.

Since the present calculation made no attempt to
take the ~—m interaction into account, the experi-
mental data might be expected to deviate from the
spectral data presented in Fig. 8 beyond the obvious
inaccuracies of the calculation. The onset of the inter-
action should be observed first at @=0.5 as the photon
energy increases, since the pions have their greatest
center-of-mass energy at this point. At the energies
considered in this study, however, the c.m. energy of
the pion pair is relatively low and well below the energy
of the proposed resonance in the isotopic spin 1=1

'5 The constancy of the potential parameters in the low-energy
region is based on the multiple scattering analysis of R. M. Frank,
J. L. Gammel, and K. M. Watson, Phys. Rev. 101, 891 {1956),in
which they took the nucleon motion into account.
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state." At these lower energies the 3=0 interaction
might be expected to dominate as pointed out by
Carruthers and Bethe" and be observed first as the
photon energy increases. In this connection, it should
be noted that the produced pair of pions, as calculated
here, is a mixture of t=0, 1, and 2 isotopic spin states
and is not restricted on the basis of charge parity
arguments since all orders of interaction with the

"W.R. Frazer and J.R. Fulco, Phys. Rev. Letters 2, 365 (1959).
'7P. Carruthers and H. A. Bethe, Phys. Rev. Letters 4, 536

(1960).

Coulomb field of the nucleus were taken into con-
sideration.
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The gamma-ray spectra for the decays It ~ p, vp and E~ eve
as well as 7r ~ @vs and 7r —+ eve are calculated in full: Terms in
the spectra proportional to lepton mass are retained so that the
results are applicable to the muon decay mode, and the calcula-
tions take into account both inner bremsstrahlung radiation and
radiation arising from structure in the meson vertex. The latter
contributions are expressed in terms of two form factors.

The modes E ~ tmvy and E —+ eve can be used to test the va-
lidity of Wigner time-reversal invariance. Two ways of doing
this are given, one based on measurements of the gamma spectra

and the other on measurements of the transverse polarization of
the muons from the E —+ pvp decay.

Calculations have been carried out on the eRect of a possible
intermediate vector boson on the decay E —& eve. The calculations
are in substantial agreement with those of Kanazawa, Sugawara,
and Tanaka (KST). Contributions from internal bremsstrahlung
radiation, not calculated in KST, are given in the present paper.
The strongly interacting intermediate states which give rise to
structure-dependent radiation are listed, and a discussion of possi-
ble ambiguities in the KST test, arising from these states, is given.

I. INTRODUCTION

" "N this paper, differential rates are calculated for the
~ - decay modes

&+~t++v+V,
E+ —+ e++ v+y,

as well as for the decays in which the E meson is re-
placed by a pion. These results extend the calculations
of earlier workers'; in particular, the present calcula-
tions are applicable to the muon mode in (1.1) because
all terms proportional to lepton mass are retained. The
rates depend on photon energy, on the angle between
photon and charged lepton (alternatively, on the
kinetic energy of the charged lepton), on the known
nonradiative decay lifetimes, and on two unknown func-
tions of photon energy. Rates integrated over the angle
are also given.

Electromagnetic and weak couplings are treated to
first order in perturbation theory, while the effects of
strong interactions are given without approximation in
terms of form factors h1 and h2.

*Work done under the auspices of the U. S, Atomic Energy
Commission.

t National Science Foundation Predoctoral Fellow.
' S. A. Bludman and J. A. Young, Phys. Rev. 118, 602 (1.960);

V. G. Vaks and B.L. Ioffe, Nuovo cimento 10, 342 (1958).These
papers contain further refgreocqg.

Besides Lorentz and gauge invariance, it is assumed
that the leptons couple to K mesons via the V and A
variants (i.e., vector coupling with the two-component
neutrino). This assumption seems reasonable because in
the related Ets processes (t= muon or electron),

112~ tt++v
K+~ e++v,

(1.2)

' T. Fazzini, G. Fidecaro, A. W. Merrison, H. Paul, and A. V.
Tollestrup, Phys. Rev. Letters 1, 247 (1958); G. Impeduglia,
R. Piano, A. Prodell, N. Samios, M. Schwartz, and J. Steinberger,
ibid 1, 249 (195g). .

the muon mode of decay predominates. Just as in z-ts

decay, such a result points to vector coupling.
The leptons are taken to couple "locally, " with no

particles mediating between the emission of the v and
charged lepton. As a consequence the form factors h1

and hs for muon and electron modes in (1.1) are the
same; therefore, such an assumption can be checked by
measuring the h, (tt) and h, (e) in turn and comparing
results. In this manner several authors' have verified
a local coupling hypothesis for the decays z.~ (2 leptons).

The complete expressions for the photon spectra of
(1.1) are given in Sec. II, Eqs. (2.7) through (2.15),
and the Appendix. Magnitudes of the various terms of
the decay rates are discussed in Sec. III in connec-


