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The Mandelstam representation is applied to the invariant amplitudes for photoproduction. By treating
gauge invariance as a subsidiary condition, it is shown that the fixed-momentum-transfer dispersion relations
of Chew, Goldberger, Low, and Nambu (CGLN) are probably valid without subtractions for the (—)
amplitudes while a three-pion resonance would perhaps require a subtraction in the (+) amplitudes. The
two-pion resonance will certainly require a subtraction for the (0) amplitudes, but to a good approximation
the contribution of the two-pion intermediate state is found to produce a simple additive correction to the
CGLN (0) formula. The strength of this new term is determined by a parameter 4, which has been introduced
elsewhere in treating the photon, three-pion problem. Otherwise, the form of the new term can be expressed
in terms of nucleon electromagnetic form factors. Finally, the photoproduction amplitudes are calculated
in the threshold region, and an estimate of the size of h. is made.

I. INTRODUCTION

ECENTLY Chew and Mandelstam have proposed
a method for calculating the behavior of systems

~ ~

of strongly interacting particles and have applied it to
the problem of pion-pion scattering. This method is
based on Mandelstam's generalization of dispersion
relations, ' which provides a means of extending scat-
tering amplitudes into the complex plane for both the
energy- and momentum-transfer variables. The new
method has already been applied to the process y+rr ~
s+a, ' rr+a ~N+N, 4 and N+N~N+N, ' in addition
to x-m. scattering. Our purpose here is to extend the
new approach to pion photoproduction from nucleons
and in particular to investigate the effect of the pion-
pion interaction on photoproduction.

In the case of photoproduction, the invariant ampli-
tudes satisfying the Mandelstam representation will be
the scattering amplitudes for the three processes shown
in Fig. 1(a)—(c) when the variables are in the appro-
priate physical region for each process. The Mandelstam
singularities appear in the energy variables for each of
these processes, N+y~N+rr, y+7r~N+N, and
p+N~rr+N Their locat. ion is determined by the
masses of intermediate states that have the same
quantum numbers as the initial and final states for the
reaction in question.

In the following section, the invariant amplitudes
are dehned in terms of invariant spin and isotopic-spin
matrices. The angular-momentum decomposition of the
invariant amplitudes in terms of multipoles is given for
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II. THE INVARIANT AMPLITUDE

Let Pi and I'~ denote the initial and final nucleon
four-vector momenta and Q and E represent those of
the pion and the photon, respectively. Since we will
consider all three processes in Fig. 1, it is convenient
to define the variables:

s= —(Pr+E)', t= —(Q—E')', s= —(Ps—E)', (2.1)

which are the squares of the total energy in the bary-
centric system for the three processes in Fig. 1. The
amplitudes satisfying the Mandelstam representation
will have singularities in s, t, and 8, corresponding to
the possible intermediate states for each channel.

Conservation of energy-momentum,

Fr+E=P s+Q, (2.2)
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(a) {c)
Fro. 1. The three channels of the pion, photon,

two-nucleon problem.

photoproduction in Sec. III, expressing the connection
between the invariant amplitudes and the eigenampli-
tudes for this channel. Section IV deals with the
angular-momentum decomposition for y+a ~N+¹

In Sec. V, the invariant amplitudes are expressed in
the Mandelstam form. A general procedure to obtain
a complete solution of the photoproduction problem is
discussed in Secs. VI and VII. Finally Secs. VIII and
IX deal with a low-energy approximation for the
photoproduction amplitudes, based on the assumption
that pion-pion and pion-nucleon interactions are both
dominated by I'-wave resonances.
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s+t+8= 2M'+1. (2.3)

and the mass-shell restrictions, Pis=Pss= —M', Q'
= —1)~' and E2=0, lead to

where

q
= ([s—(M+ 1)'$[s- (M—1)'$/4s) '*,

k = (s—Ms)/2+s,

The most general form of the photomeson transition
matrix element has been shown by Chew, Goldberger,
Low, and Nambu' (hereafter CGLN) to be

4

T=P[A,+gp++A, gp +A;sgp']M, , (2.4)

where the A's are scalar functions of s, 8, and t. The
four gauge-invariant spin matrices introduced by
CGLN are

and xf, x; are the Gnal, initial Pauli spinor for the
nucleon. The amplitude F is given by

S=ie crt+(e Qe Kye/qk)r,
+i(e KQ e/qk)Ps+i(e QQ e/qs) $4, (3.3)

where the F's are functions of A~, A2, A3, and A4.
Still following CGLN we deane F~, P2, Ii3, and F4 as
follows:

2W
p» —4~

W—M [(Es+M) (Ei+M))&

M~ ——sy5y ey E,
Ms=2iys(P eQ K. P KQ—e), .

Ms=ps(y eQ K yEQ —«),

(2.5a)

(2.5b)

(2.5c)

$—1
=At+(W —M)A4- (As —A4),

2(W—M)
(3.4)

g~+= ~~3 (2.6a)

(2.6b)

(2.6c)

P being the isotopic-spin index of the pion.
The crossing relations obtained by CGLN give the

symmetry of the A's under exchange of s and s. The
symmetric functions are A~&+'), A2&+'', A3& ), and
A4&+'&, while A~& &, A2&

—
&, A3&+'&, and A4& ) are anti-

symmetric.

III. KINEMATICS FOR THE PHOTOPRODUCTION
CHANNEL

For the photoproduction channel we have

s= (Ei+k)'= (Es+oi)',

t= 1—2cok+2qk cos0,

s =M' —2E2k —2qk cos0.

(3.1a)

(3.1b)

(3.1c)

With reference to the barycentric system, q and k are
the magnitudes of the meson and photon momenta,
E,= (k'+M')'* and. Es= (qs+M')& are the initial and
final nucleon energies, a&= (q'+1)& is the meson energy,
and cos8= (Q I)/qk defines the production angle.

The diGerential cross section for meson production
in the barycentric system was written by CGLN in
the form

d~/Zn= (q/k)~x, ~x;~, (3.2)
5 The units employed throughout are 5=c=pion mass =1 and

the metric used is g;=1 for i =1, 2, or 3 and go= —1.
6 G. F. Chew, M. I. Goldberger, F. E. Low, and V. Nambu,

Phys. Rev. 106, 1345 (1957).

M4=2ys(y eP E—y KP e st e—y K), (2.5d)

where e is the photon polarization and P=s (Pi+Ps).
The isotopic-spin matrices have the following form:

q

= —A i+ (W+M)A4- (A s
—A4), (3.5)

2(W+M)

P3= 4n-

W—M [(Es+M) (Ei+M)]'*q
= (W—M)As+(As —A4),

2W Es+M)& 5:4

P4 ——4s.
W—M Et+Mt q'

= —(W+M)As+ (A s
—A 4).

(3.6)

(3.7)

5:s——g[(l+1)Mi~+/Mi jPi'(x), (3 9)

rs g[Ei+ Mi+ jPi+——,"(x)—
+[Ei +My ]Pi i"(x), (3.10)

r4 P/Mi+ Ei+ Mi Ei )——Pi"(x), — — (3.—11)
where a=cos8. The energy-dependent amplitudes M&+
and E&+ refer to transitions initiated by magnetic and

' K. M. Watson, Phys. Rev. 95, 228 (1954).

It is well known that, for photoproduction, the
unitarity condition requires the phase of an amplitude
leading to an outgoing pion-nucleon state of de6nite
angular-momentum, isotopic spin, and parity to be
the same as the phase of the pion-nucleon scattering
amplitude leading to the same final state. ' To use the
unitarity condition we must decompose the Fs into
definite parity eigenamplitudes. This angular-momen-
tum decomposition has been carried out by CGLN;
they obtain

5'i= EPMi++Ei+Vi+i'(x)
I,=O

+[(1+1)Mi +Ei jPi,'(x), (3.8)
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electric radiation, respectively, leading to final states Superscripts (+, —,0) may be added to each
of orbital angular momentum l and total angular quantityin Eqs. (3.2) to (3.15) to designate its isotopic
momentum /a —', . spin dependence.

These expressions can be inverted, yielding

~)+——

2(l+1)

for /)0,

dx S'iPi(x) —FsPipi(x)
1

Pi i(x)—Pi+i(x)—$3
2l+1

dx S,Pi(x) —rsPi+i(x)
2(l+1)

IV. ANGULAR-MOMENTUM DECOMPOSITION OF
THE SCATTERING AMPLITUDE FOR

THE PROCESS y+e ~ N+N

In a discussion of the kinematics of the process
y+s -+ N+N depicted in Fig. 1(b), it is useful to
introduce the four vectors Pi' and Q' representing the
energy-momentum of the antinucleon and pion. We
can write

(4.1a)

Pi i(x)—Pi+i(x)
+Fsl

'=-Q (4.1b)
2l+1

P (.)-P .(.)-
+m4(l+1)

2l+3
1

2l ]
P ()—P. (*)-

P3-
2l+1

for l)0, and

1

Ei dx riP, (x——)——5'sPi, (x)
21

Pg i(x) Pi+i(x)—r, (l+1)
2l+1

(3.13)

(3.14) &= —(Q'+E)&= (2E)s, (4.3b)

s= —(Ps—&)'=~'—2Ek'+2pk'cos~', (4.3c)

where p and k' are the magnitudes of the nucleon and
photon momenta, E is the nucleon energy, and cose'
=Ps K/pk', all in the barycentric system. We can
write p and k' as

Then Eq. (2.2) becomes

Q'+K= Ps+P, '. (4 2)

Again, expressing s, l, and 8 in terms of Pi' and Q',
we have

s= (Z P, ')s—=ms—2Ek' 2Pk—' cosg'—, (4.3a)

Pi 2(x)—Pi(x)-—$4/ (3.15)

k'= (l—1)/2+/,

p= —,
' (l—43Is) ~.

The S matrix for a.+7~N+N is

(4.4a)

(4.4b)

y(P, +P,'—E—Q')u(P, )T(—Pi', Ps, —Q', E)v(Pi')
Sf;= M

(2m)s (4EiEs(uk') &
(4.5)

where E~, E2, ~, and k' are the energies of the four
particles in whatever reference system is employed.

The difFerential cross section for y+s ~N+N in

the barycentric system is

(do/dQ) = (p/k') ~x~Gyp~',
where

Gi= -Z.(~+-',)P;P,'(x), (4.12)

The angular-momentum decomposition of the G's
is now obtained by using the helicity amplitudes
treated by Jacob and Wick. ' The resulting expansion is

1 II I If I

G4= sZ~(~~+E~P~+i" (—x')+ (1+1)Pg,"(x')7
—(»+1)~.-P."(x'), (4.15)

(4.10)

(4 11) M. Jacob and G. C. Wick, Ann. phys. 7, 4O4 (t9S9).

sZ~{o'J' PPz+i (x)+(1+1)Pg, (x)7G= (ps'a p Gi+ &0"psXe/p Gs

(s~ psps KXe/p'k')Gs+ (so.KXa/k')G„(4. '7) + (2~+1)~z+PJ"(*')), (4.13)

and x~, yp are the nucleon and antinucleon Pauli G +,+ ( +L&P

( +) — n(r)
Ag, and A4..

Gi= (k'p/16') [A i+ lA s7,

Gs = —(k'p/4n. )As,

G,=HM E)k'/SvrE]PA i+ (t)—A47,

G4= (k'/16m E)L2MAi —lA47.
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where

p~(+i =

P~(P 3)=bt ~/V'6,
and

pi(P, 3)= '[~t,~3]- (4.18)

and while g leads onlyare just proportional to g+ an g w
to the I= I amplitude.

MANDELSTAM REPRESENTATEON
In

V. THE

ch elen1entandelstam's postulate, eac
kine

gtoMn
matrix is an anay ic

t for the dynamica sinmomenta except or
1 rocesses which t isthe three physica pro

'
is

k' propriate traces ove
d b

ts. 3, ta ing ap
d hoton spin in ices,the nucleon an p

hich are analytic unc i
9

constructed w. ic
b the Hal- ig ml vv ht an theorem arementa, and thus y

analytic functionions of the scaar pro u
h assumed to satisfy the

ra
'

b tween these two set
litudes de6ne in

s
o ki t i lrit

T t x which vanisheshe eneral T matrix wthat portion of the g T t x w

1. Danske Videns a .nd A. S. Wightman, Kg .
cad. S1, No. S (1957l.Selskab, Mat. -fys. Me

, .'(s')
dS

S —S(M+1)

i g i g i

+ +-
s—M' t—1 8—M x

+

t.-'(s')
ds

p g'(t') 1
dt +—

4
t' —5 m. ( 8 —8M+1)

bi2'(s', t')
dt'—ds d

)(, ,)(M+ 1)

b,3'(s', s')oo

( i~~+ii ' (s' s) (s' &)
ds

M+1)

/

ds d]
(&+1) 4

b.g'( t)s

(s' —s) (t' —t)

use «o.s. »» is easily d'"' ybetween nucleon splnprs.
h t auge invariancetors. The fact. t a, 1 rojectipn pperators.

constructing the g s is m«e
2'~(+, —,1)&»( '

(4.16a) has also been used 'n . t t ms in the gener»

ng'+ =
1)(2. p')&

serious as the n g
h 'ection m

J(J+
atrlx c~~~~t

'
his difhculty and also

e removedT (+, -+ 1)%2~( ' '
(4.16h) of Physical Photon

o dition on the analytic-1 '2 u')- tp see the effe«« " g u
d d as a subsidiary

L~(~+ )~ P
ity gauge invariance

l t,c;ty propertiesth
T- a,trix elements fpr

condition tp be impo
].itudes have been

are the

invarlan

and T~(~~ ~~ '
h f helicity +1 l of the no gang . t eneral form of ~'s

ap otono

is case the mos ge

transitions initiate y i d an antinucleon of
investiga, ted. In t is

K.v,B ( t 8)N (pi, p2. )K)6)7)&
argument refers to n o

has been adjusted to

+ ~ ' are a]] pf the independ Lorentz-

maQe the A '»e»tudes ng+ and ~~ where the N's
h f~~~ed containing y an

h e energ . .p .
b magnetic radiatio invar lant m

de endent a,mp i u e
' '

n . '
atrices tha, t can e prm

f tonspf s, $, an

represeilt transltio .
1 6na]. states of

~ a,nd the g; s

i ns initia e y ™
uncleading to tr'piet o

entum. ~. Electric suitable set of &'s»

z ~.~~.g, Ss=vA' ~~

transitions iea "g
wh;le P~

—rePresents

p. , N6=76'Kp "
(5.2)EE.~,

an electric transition to a sing e

N3=2~7gQ e, Ny=v;p.h fE
N = 2i 5K. e, Ns= ygy KQ. e,

g f ', dg+ dg for thi

the following equ

py' g
ained by noticing t a e

'

(5.3)s—8)B,=2(t—1)B3,

B =0. (5.3)

glve11 b Frazer and I"ulco,4

4.17) B +-'(8—s)Bg+-', (t—1 B8=0.

If these conditions are impose on
and 8's have the following connection:

Ai=Bi MBg, A3——— BS, —
A2= 2B2/(t —1), A4= —-', B6.

Appendix lt isshow
matical slngu a

'
rities due to t e c oice

ill satisfy the spectra 1trices and therefore wi sa isma ri
esentation propose y
e may now expre ss the 8's as
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(5.6)

where E.& is a noE. (3) '
k wnconstant. %ecanta ea vantage

of this relation by making a subtraction a
obtaining a spectral representation for

B2/(& —1)= —-', A2.

The resulting form for A~ is

e,g„ 1 1
Aq(+ 0) =

1s—M'—8 M2I—

+— ds' dB'
$ —$, S —S(3f+1) (M+1)

I I I I l I I I I

28-
t

20-

Ieg
!

l2-

I f I I f I f I I
4M+0 62 66 70 ?4 78 82 86 90

I I I I

94 98 I02 I065
5

for a &')(+ ). The dashed lines a,reFzo. 2. The boundary curve or a»
'

the asymptotes of the curve.

The one-dimensional spectral function
'

q. ,s in E . (5.5)
represent re uci e ed ible Feynman diagrams which have the

oles.f as the diagrams that produce the po es.same orm as e
r an am litudeTh the basis of perturbation theory, an amp

'
us on e

ill in eneralthat as a po eh h le in a particular variable wi
'

g
in thatne-dimensional spectral function inalso have a one- im

-all subtractionvariable. The possibility of an over-all su ra
s t and s~ or of polynomialsconstant (independent of s,

i 1 in the one-dimensional terms is remove y
the unitary requirements on t»e asymp o

'

of the eigenamplitudes in each channel.
S' A A and A contain no kinematic factors inSince 1, 3, an 4

their relation to t e s,h 8' they have the same represen-
tation as t e s L q.h B's [E . (5.5)7; furthermore, s(nce they

1 th t variable, they will have no one-
dimensional spectral function in that varia e.

and 83. 1A'e see that if 83 is to remain finite as s ap-
d ' must be zero. Ifproaches infinity then E~ an pt,

Eq. (5.3) is evaluated at 1=1, we obtain

(s—M')B2(s, 1)=R,('),

It should be noted that this subtraction procedure has
removed all one-dimensional spectral terms.

The crossing condition now requires

a (')(+ ),s' t') = &a 3(')(+0)(s',t')12 ) (5.8)
alld

(')(6,0)&& &')= ~((, (')(+,0)(& & ) (5 9)I
S~S

'=1 2 3 4. The upper sign in Eqs. (5.7) throughfor 2
y y y

~

(5.9) is to be used with the even A s, while

goes with the odd functions.
(i)The double spectral functions a12 a (" and a23'

d ithin the regions discussed below.are real an nonzero wi in
he A 's haveThe I' s, the residues of the poles in the A; s, ave

been given by CGLN:

F)(+')= e„g„/2
I1'3'+' =1'4'+'= 2gr(~sr—y~r—))

&3"'=1'4"'= 2g. (—p p'+ p .),

(5.10a)

(5.10b)

(5.10c)

where p~„an pn„arewh py„d the rationalized anomalous static
are the rationalized andnucleon moments and e, an g„are e r

renorma ize e ec1' d electronic charge and pion-nuc eon cou-
pling constant, respectively. These have the o owing
values:

(','/4~= 1/137, g,'/4~ 14.

and

[s—(M+1)'7[s—(M—1)27( (t—16)
—8/(9s+3IP —1)—16(M'—1)=0. (5.12b)

a ")(+ ) and a23('" can beThe curves bounding
obtained from Eqs. (5.11), (5.12a), and 5.1

Mandelstam has given a general method for deter-
Ii ions in which the spectral functions u12,mining t e regions in w i

result fromd are nonzero. ' These boundaries resu813, ail Cg3 al'e ll
ossibleconsi enng e ow'a '

th 1 west mass intermediate states p
in any pair of the variables s, t, and 8.

Examining rs efirst the t spectrum, we must consi er t e
processes y m —+ em.—+ ex. Conservation of G parity requires
e to be odd for the isotopic-scalar part. Thus the (+, —)
s ectra will have intermediate states containing odd
numbers o pions, s ar int t ~ with the three-pion state,
while the 0 spectrum will contain only interme iate

startin with thesacs w't t with even numbers of pions,
'

g
t te. The s and 8 spectra both start w'ith thetwo pion sta e.

ion and nucleon intermediate state; w)th no differen
f the various isotopic combinations.or

nd that the
region in which the functions u1q(i)(+ ' are nonzero is
bounded by the following curve (see Fig. 2),
[s—(M+1)'7[s—(M—1)'7(t—9)

—8(3s—M'+1) =0. (5.11)

The spectral functions a»(') are boun e y(i)0 n e b thetwo
curves (see Fig. 3),

[s—(M+2)'7[s—(M—2)'7t (t—4)
—2t(9s+31M' —28)—(4M' —1)=0, (5.12a)
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40

36-

28-
t
24-

20—

are now obtained from Eqs. (5.5), (5.7), and (6.1):

Fixed s:
,p'(s')

A;(s, t, 8)=Poles+ — ds'
(M+1) ' S —$

1 " Imr&A, (s,t')
dt'

4
l6 f-

I

l2-

I i I l I I I I i i I I4
58 62 66 70 74( ~68 82 86 90 94 98 l02 l06

FIG. 3. The boundary curve for u»(')(". The dashed lines are the
asymptotes of the curve.

Fixed t:
1

A;(s, t, 8) =Poles+—

1 " Imrz&A, (s,8')d8', (6.2)
(M+1) ' 8 8

ds
M+1)

changing s to 8. The spectral functions a13(')(+ ) are
bounded by the curve (see Fig. 4)

[8—(M+ 1)'][8—(M—1)')[s—(M+ 1)')
)([s—(M—1)'j—(4M' —1)[2s8

—2(M' —1) (s+8)+2M4 1j=0.—(5.13)

VI. ONE-DIMENSIONAL DISPERSION RELATIONS

It is now possible to obtain one-dimensional disper-
sion relations with either s, t, or 8 held fixed. We define
the following functions:

Fixed 8:
1

A, (s,t, 8) =Poles+—

1
XImrA '(s', t)

~
& ~, (6.3)

ks' —s s' —8l

,p'(8')
d8

M+1) ' 8 —8

1 " ImzrA;(8, t')
dt'

4

1 " Im»rA &(8,s')
ds' . (6.4)

(M+1) ~ s —s

The crossing symmetry has been employed to produce
Eqs. (6.3) and (6.4). These are, of course, simply
different ways to representing the same functions.

In previous work on pion-nucleon scattering and on
photoproduction, only the fixed momentum-transfer
dispersion relation, Eq. (6.3), has been employed. It is
noteworthy that, according to the above considerations,
this is the only one of the three for which a subtraction
is not required by elementary perturbation-theory
arguments. In practice, however, a strongly interacting

1 " a "&(st')
+— dt', (6.1a)

7l 4

1 " a&2&'& (s', t)
Imr&A;(s, t) =— ds'

s $

1 " a&3&'& (s,8')
Im&A;(s, t) =p;(s)+— d8'—

&~+» 2 8'+t+s 2M' 1— —

a23&'& (8', t)00

+— ds', (6.1b)
7r &sr+u 2 8 +s+t—2M —1

1 " a, a&'& (8,t')
dt' . (6.1c)

4 t'+8+s 2M' 1——

1 " a&3&@(s',8)
IminA;(s, 8) =+p;(8)+— ds'

(M+1) s $

94

90—

86—

82—

It can be seen from Eqs. (5.5) and (5.7) that Imz A;
is the imaginary part of A; when the variables are in
the physical region for process I, y+N ~7r+N, and
represents the analytic continuation of Im A; outside
of this region. Functions Im~z A; and Im~~z A; have
the same meaning for process II, y+77 —& N+N, and
process III, 7+N ~ 77+N, respectively.

The dispersion relations with one variable held fixed

70—

66—

62—

I I I l I I I I

LI 62 66 70 74 78 82 86 90 94
S

FIG. 4. The boundary curve for a»('). The boundary lines are
the asymptotes of the curve.
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I'"J.G. 5. A typical dia-
gram representing a two-
pion state connecting
y+m. to EÃ.

intermediate state connecting (pm) to cVN may necessi-
tate a subtraction. To illustrate this point, we consider
for example a resonant 2z intermediate state. This can
be represented schematically by the diagram in Fig. 5.
As the ~-x interaction becomes stronger, the lifetime
of the 2x state becomes longer, and more pion pairs are
exchanged between the resonating pions. This can be
represented in Fig. 5 by adding more pairs to ladder of
pions representing the intermediate state. If we now
look at the singularities produced in s by this diagram,
we see that as more pairs are added, the contribution
of this diagram comes from higher values of s'. Finally
as the interaction becomes strong enough to produce a
bound state, the contribution to the s spectrum moves
to infinity, requiring a subtraction. Another way to
understand this effect is to recall that if there were a
2m bound state, we should certainly have to add a new
pole in t together with the associated p&. Thus if one
wants to treat only the lower intermediate states in
the s spectrum, approximating Imz A; in Eq. (6.3) by
the first few terms of a polynomial expansion, a reso-
nance in an intermediate state of the t spectrum may
necessitate a subtraction. The approximation of re-
placing Imz A; in Eq. (6.3) by its polynomial expansion
in the physical region, will be discussed in a later
section.

The 6xed-s dispersion relation, Eq. (6.2), is useful for
the photoproduction channel in that the cosg depend-
ence of 3; is given explicitly. This allows the use of
projection operators to obtain an integral representation
for the eigenamplitudes.

and ~y states. Mandelstam has shown that Eq. (7.1)
is valid in the nonphysical region 4M'&t&4."We see
that only for t) 4M' does the right of Eq. (7.1) contain
(NN ~7r&). Thus, for 4M'&t)4 the imaginary part of
the 2 s will be a function that must be supplied by
solutions of other scattering problems. At present, the
only information available is for p+~~~+m and
~+7r —+ N+X, therefore we are restricted to treating
only the 2x intermediate state. It shouM be noted,
however, that in the treatment of 7+~~~+~ by
Wong, it has been necessary to introduce a new coupling
constant, which if large enough would make the 2x
intermediate state an important singularity. ' A further
enhancement of this state would arise from the pion-
pion P-wave resonance proposed by Chew and Mandel-
stam.

In order to make use of all the information obtained
from the unitarity conditions, it is convenient to
develop dispersions relations for the individual eigen-
amplitudes. The first step toward this end is to insert
Eqs. (3.4) to (3.7) into Eqs. (3.12) to (3.15), obtaining
projection operators to be applied to the 2,'s. These
projection operators are then applied to the fixed-s
representation of the A, 's, Eq. (6.2), yielding an
integral representation for each eigenamplitude. By
examining these expressions we can obtain the ana-
lyticity properties of the eigenamplitudes.

In general, the eigenamplitudes will have the singu-
larities present in the A; s plus kinematical singularities
arising from the relation between the F's and the 2 s,
and from expressing 8 and t as functions of s and coso.
It is possible, however, to construct a function from
each eigenamplitude that is free from kinematic
singularities in the Qs or W plane.

A simple reQection property in 8" for the eigen-
amplitudes can be obtained by noting that 5'z( —W)
= —F2(W) and F3(—W) = P4(W), and using these
relations in Eqs. (3.12) to (3.15).The resulting relation
for the eigenamplitudes is

VII. THE APPROACH THROUGH
EIGENAMPLITUDES

Before we use the basic machinery developed in the
preceding sections, it is useful to examine the type of
information provided by the unitarity conditions for
photoproduction and 7+~ —+ N+N. For photoproduc-
tion below the threshold for production of two pions,
unitarity gives the phase of each eigenamplitude in
terms of the corresponding pion-nucleon phase. Of
course, the pion-nucleon phase must be supplied as
starting information.

The unitarity condition for a particular angular-
momentum state of the process y+vr —+ N+N is

2 Im(NN j 7r7) J 2 (NN ~'+)J'(~ ~')rv) J, (7.1)

where the sum e runs over all physical intermediate
states having the same quantum numbers as the EN

and

L(~+2)~(~»-(W)
)+1

+&(~+»-(W)j (7 2a)

E)+(—W) = PI()+» —/Eo+» (W)j. (7.2b)
3+1

—(M+1)

F)'(W) =G)'(W)+—
Im F)'(W)

d8"
8"—8'

1 " Im F('(W')
+— dW', (7.3)

(~+g) 5"—W
' S. Mandelstam, Phys. Rev. Letters 4, 84 (1960).

If Eqs. (7.2a) and (7.2b) are used together with the
analyticity properties of the eigenamplitudes, the
following dispersion relation results:
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1V&/D&=Ri(W) sin8&~ exp(ski+) for W)M+1
=Ri(W) sin(&(i+i) exp(sb(i+i) )

for W( —(M+1). (7.4)

where Ri(W) is the factor needed to remove the kine-
matical singularities. The phase requirements on Ii&

will now be satisfied by a solution to Eq. (7.3) of the
type employed by Chew and I.ow":

Fi'(W) = Gi'(W)

Gii(W )Qi(W )d8"'
(W' —W)Ri(W')

—(M+O

Di(W) n.

1 " Gi'(W')Si(W')
+— d W' . (7.5)

(W' —W)R&(W')

This approach to the photoproduction problem is
based on the assumption, discussed by Chew, that
nearby singularities in the complex plane dominate the
behavior of amplitudes in the low-energy region. "The
solution given by Eq. (7.5) includes the lowest singu-
larities and must be considered the 6rst step in a series
of approximations that will include successively higher
singularities.

"S.W. MacDowell, Phys. Rev. 116, 774 (1959).
'~ G. F. Chew and F. E. Low, Phys. Rev. 101, 1579 (1956).
"G.F. Chew, Ann. Rev. Nuclear Sci. 9, 29 (1959).

where the eigenamplitudes Fit(W) and FP(W) differ
from M&+. and E~, respectively, by factors that remove
the kinematical singularities. The function Gi'(W)
contains all the singularities arising from the t and 8
spectra and may be obtained from Eq. (6.2) if Imn A,
and Imzzz A; are replaced by their appropriate poly-
nomial expansions in the physical regions for channels
II and III, respectively. When the projection operation
is applied to Eq. (6.2) after the above replacement has
been made, Gi'(W) will now result.

It is now possible to write a solution to Eq. (7.3)
imposing the unitarity requirement on Ii &' in the
physical region for photoproduction. The reQection
law in the 8' plane for the pion-nucleon eigenampli-
tudes has been given by MacDowell to be" f&~(W)
= f(ii, t) (—W), where fi~= sin5&~ exp(Q(~)/q. Thus it
is seen that the function fi~(W) that has the same
phase as Fi(W) for W)0 will also have the correct
phase for 8'(0. We will now assume that the pion-
nucleon problem has been solved by use of the N/D
technique employed by Chew and Mandelstam in the
pion-pion problem.

The function X& will be a real analytic function of 8"
for W)M+1 and W( —(M+1), while Di will have
two branch cuts running from (M+1) to ec and from
—(M+1) to —eo and will be analytic elsewhere. The
function Ei/Di will be the eigenamplitude for pion-
nucleon scattering that is free of kinematical singu-
larities. The relation of 1V&/Di to the pion-nucleon
phase shifts will be

The main obstacle preventing the use of Eq. (7.5) at
present is the lack of information about the pion-
nucleon problem. The only pion-nucleon eigenamplitude
that has been studied by the E/D method so far is the
resonant I= —,', J=—,', p wave. "If only the 3—3 amplitude
and the pole terms are to be treated, Eq. (7.5) repre-
sents little improvement over the fixed4 dispersion-
relation approach which has been used by CGIN.
Since they included the 3—3 amplitude, we must con-
clude that, with the pion-nucleon information presently
available, no significant improvement can be made in
the treatment of the s or 8 spectra. However, the 2x
branch cut in the t spectrum can now be included,
which will be the first modification to the pole terms
for the (0) amplitudes.

VIII. PHOTOPRODUCTION NEAR THRESHOLD

The threshold region provides us with a situation in
which the contribution of the 2x intermediate state is
maximized, erst by virtue of a small denominator in
Eq. (6.2) and second because the measurable cross
sections will not be dominated by the 3—3 resonance
of the pion-nucleon system.

The approximation now employed is to assume that
the I=—,

' phases for pion-nucleon scattering are negli-
gible, meaning that the s and 8 branch cuts may be
ignored for the (0) amplitudes. The amplitude Fi' will
then just be given by its projection from the poles and
from the t spectrum. For this reason we can do the sum
over the F~'s, undoing the projection and allowing us to
work directly with A;&". The resulting functions A;& )

will just be given by Eq. (7.2) in which the polynomial
expansion is used for Imzz A;, with Imzzz A; =0.

We will now employ unitarity for process II to
obtain Im» A, . The unitarity condition resulting from
the 2m. intermediate state is

2 Im 2' x(iv), x(P),x(»(t) —r x(N), x(N)(t)t x(»(t) (8 1)

where rz~(~) ~(~)(t) is the helicity eigenamplitudes for
s.+s.—& J)'/+E and tJ "(»(t) is the helicity eigenampli-
tudes for y+s. —+w+s. . This relation is exact for
4&1(16and will be assumed to be approximately true
for larger t.

As the process &+s —+ m.+s. contains only odd
angular-momentum states, we will neglect F-wave and
higher states, keeping only the p-wave state. We are
concerned only with photon helicity X(p) =+1,because
Eqs. (4.12) to (4.15) are expressed for this photon
state. Equation (8.1) becomes

(8.2)
and

Im Tt+ '= —'rt+ ti*'=Im Tt +' (83)
'4 W. R. Frazer and J.R. Fulco, Lawrence Radiation Laboratory

(private communication); and S. Frautschi and D. Walecka,
Department of Physics, University of California (private com-
munication).
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where we denote +-,' helicity as + and —i as —.The
relation between T«++' and Ti ' and between T«+ '
and T«+' arises from the fact that only the odd-parity
part of the J= 1 nucleon-antinucleon system con-
tributes.

The amplitudes v«++ and v «+ have been treated by
Frazer and Fulco. 4 They de6ned

The 6nal expressions for the A; 's are then:

e,g, 1 1 ) 1 " t'h(t')g2v(t')
A io = + i+— dt', (8.17)

2 s—M' s M—'j
e,q, 1 " h(t')g2v(t')

A 2' ——+ —— dt', (8.18)
(s M')—(s 3P)— 2r 4 t' t—

and

T+'= (2V'/p) "i",
T '= (2q'/p)lri+-,

( )
1 1

A8'= —2g.( p.'+t ")I

(8 5) ks —M' s M—'I
where g' and p are the magnitude of the initial meson
and final nucleon momenta in the barycentric system. A4'= ,'g2(ti—pr —+tier)i +
If we now define ks 3P s——M')

ti'/h'= (2ct'/h') '*Mi, (8.6)

6+E
Im A« ——— ET+'—

p2h'
MI*

v2
(8.7)

where g' and k' are the magnitudes of initial photon
and anal meson momenta in the barycentric system
for the process y+2r ~ 2r+2r, the following expressions
for the imaginary parts of the A's are obtained:

"
,h(t')g '(t')dt', (8.20)

vr 4 t' —t

where the factor (—1) arises from the sign of ie tha, t
appears in the t denominators when s is given a small
imaginary part and 8 is held 6xed.

It is now possible to take advantage of the appearance
of the functions g2~ and g«~ in these integrals. From
FF we observe that

ImA2 ——+ ET '—
2p'O'E

M'*, (8.8)
V2

",gi'(t')
G, '(t) = dt'— (8.21a)

Im A3=0,

3' T 1-
Im A4 ———- MT '—E M'~.

p'h' v2

(8.9)

(8.10)

It is now convenient to introduce the notation of
Frazer and Fulco (hereafter denoted FF)":

"
,g8'(t')

G (t) =— dt'
7l 4

(8.21b)

where G«~ and G2~ are the nucleon form factors. The
function h(t) has been shown by Wong to be well
represented by the form'

eP.*(t)(t—4)-:-ET '(t)
g (t)=+, -MT+'(t), (8»)

4p' v2

3A t'1+a
h(t) =

8V2F, (1jsk t+a)
(8.22)

eF„*(t)(t 4)' —M-
g2v(t) = ET+'— T', —

8p'E v2
(8.12)

where P (t) is the pion form factor. If we now use the
factor that the P wave y+2r —+2r+-2r amplitude will
have the phase of 2r —2r scattering, then M'*(t) may
be written

where, if FF's solution of the F is used, we have a=5,
F (1)= 1.08, and h. is the arbitrary constant previously
mentioned. Knowing the form of h(t), we can by
forming subtracted forms of Eqs. (8.21a) and (8.21b)
express the integrals in Eqs. (8.17) to (8.20) directly in
terms of Giv(t) and G2v(t).

The resulting expressions for A«', A2', A3', and A4' are

(8.13) A,8= "g"
+

2 s—M' s 3P)—Mi*(t) =eh'(t) (t—4)~h(tP' *(t)/12~

+X' G2v(t)— LG2v(t) —G2v( —a)j, (8.23)
t u

where h(t) is a real function and the factors h'(t),
(t—4)'*, e, and 122r are included for convenience in
subsequent calculations.

Expressing the Im A;"s in this notation, we obtain

rm A 0(t) = —th(t)g, v(t), (8.14)

Im A20(t) =+h(t)g8v(t) (8.15)

Cygne

(s—M') (s—M')
(8.24)

G8v (t) G2v ( a)— —
7

Im A.o(t) =+h(t)g, v(t) .(8.16)
'~ W. R. Frazer and J. R. Fulco, Phys. Rev. 117, 1609 (1960).

1 1
A 8' ———,' g „(IJP,'+fin„)—

s 3P s—M'j—(8.25)
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and
1 1

A4 = sgr(tier +4&r) +
s—M' 8—M'

where
3A (1+a

842e(P (1))

In order to compare the above results with experi-
mental data, we must know the (+) and (—) ampli-
tudes in the threshold region. These amplitudes have
been given by CGLN, but because of a 1/M expansion
used within their dispersion integrals, they were forced
to introduce undetermined correction terms Ã&+' and
E& & into each of these amplitudes. Since the effect of
our new A.-dependent terms will be fairly sensitive to
the values of E+ and E, we will recalculate the (+, —)
amplitudes avoiding any expansions in 1/M. The fixed
—t dispersion relation without subtractions as given in
Kq. (6.3) will be used. It should be noted that a strongly
interacting 3m state as has been proposed by Chew"
would necessitate the use of a subtracted form of Eq.
(6.3), but only for the (+) amplitude, as this 3)r state
would have I=O. However, the (+) amplitude does
not contribute to charged-pion photoproduction, which
will prove to be most sensitive to the value of A.

A polynomial expansion in cose for Imz A;&+ & in
Kq. (6.3) will now converge for cose within an ellipse
with foci at +1 and —1 and semimajor axis given by
the value of cos8 at the nearest singularity in t. Thus
for a maximum value of t allowed for convergence,
there is also a minimum corresponding to the negative
limit of the ellipse. The relation between these limits is

t,„+t;„=2—4e)k. (8.27)

If we now express t, as given by the boundary of
a~2&@&+

—), we obtain

t;„=—4o) (s)k (s)—7

8(3s—M'+1)
(8.28)

I s—(M+1)'jLs—(M—1)'7

Since ImA;&+ & will be used in the integral in Eq.
(6.3), the region of convergence is determined by the
maximum value of t;„and is found to be 9)t& —19.3.
For comparison, we state the result rigorously proved
by Oehme and Taylor that the polynomial expansion
converges, at least for t, in the range 0& t&t~~ —12.'7

The smallest value of t corresponding to physical cose
will be larger than —10 in the energy region we are
considering; therefore the expansion for Im A;&+

should converge rapidly, making it plausible to neg-

G. F. Chew, Phys. Rev. Letters 4, 142 (1960)."R.Oehme and J. G. Taylor, Phys. Rev. 113,371 (1959).

lect the high-angular-momentum contributions to
Im A ~(+ ) (s', t) .A general feature of pion-nucleon
scattering below 400 Mev is that the only large phase
shift is in the J=—,', I=—'„state. Thus a reasonable
first approximation is obtained by including in
ImA;(+ )(s't) only the parts containing this large
pion-nucleon phase.

We must now calculate the absorptive parts of the
A s for photoproduction t s) (M+1)'j including only
the 33 part. Since, in the previous treatment by CGLN,
the M~+ amplitude was found to be much more im-

portant than the Ej+,, the imaginary part of Ej+ is
neglected in the following.

The resulting expressions for the A s are

ergr/ 1 1

&s—M' s—M')

(2~ 1
ds'C(s') L(d (s') (s'&+M)

&1)3m (sr+, ) ~

+t+13 Im Mi+'(s) I, ~, ~, (8.29)
ks' —s s' —si

eg t' 1 1 (2)1
ds'

t 1(s M' —8 M—' E1)—~ (~+i) *

XC(s') Im Mi+'*(s')
~

& ~, (8.30)
&s' —s s' —8

As'= —sg. ( ..' —t -.)I
is —M' 8 M2)—

(2
ds'C(s') — i+a) (s')

k1)3s (~+i) ~ 2 s'&+M)

1 1—(s'&+M) Im Mi+&(s') W ~, (8.31)
s' —s s' —8)

1 1
A4.=-sg, (», -u.-,)l

Es—M' s M')—
2 1 " 3(t 1—

ds' C(s') —
i )+o)(s')

1 3m (sI+))& -2(s &+M)

( 1 1
+2 (s'*'+M) Im M)p' (s')

~
~ ~) (8.32)

( s' —s s' —s)
where

C()= (I: '*+Mj'—1) '*.

q(s)k(s)

These integrals can be carried out numerically if the
CGLN expression for M~+& is used with an effective
range formula to represent the 33 amplitude for pion-
nucleon scattering. It should be noted that expressions
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g+

Y+P
7i-'+P

1
0
1

1
0—1

Y+P ~
++nI

0
v2
v2

TABLE I. Matrix elements of g&+ ') for the four
possible charge configurations.

0—v2'

+42

however, that this correction was not large, indicating
that the solution given by Eq. (9.1) is reasonably good.

To form the scattering amplitude for any of the
charge states of interest, we must know the matrix
element of gp+, gp, and gp' for each of these states.
These matrix elements as evaluated by CGLN are
given in Table I. The scattering amplitudes for y+P ~
m'+ p, denoted P(s'), and y+ p —& 7r++e, denoted
F(s.+), are formed as

(8.29) to (8.32) are identical to those of CGLN except
that no 1/M expansion has been made and only Mt~
has been kept in the imaginary parts of the amplitudes.

e(~') = r+y s'

~( +)/v2= ~-+ r'

(9.3a)

(9.3b)

M,+'*(s) I „I. fss—

q(s)k(s) 2f q'(s)
(9.1)

A relativistic effective-range formula suggested by
Chew and Wong, "

Im fss ——

q'+I" (s—s,)'(s—M')'

is used to represent the 33 amplitude, where F and s„
are parameters which have been adjusted to 6t the
Chiu and Lomon" b33 at 150 and 220 Mev and to the
low-energy behavior of 8» as given by Barnes et al."
The resulting parameters are I'= 3.5 && 10 ' and s„=76.6.
In performing the integrations, we expanded the
denominators in powers of cos8, keeping only the erst
two terms because the expansion converges quite
rapidly since coso is always multiplied by the nucleon
velocity.

The Re Mt~(s) produced by the integrals in Eqs.
(8.29) to (8.32) must be considered an iterative solution
for Mt~(s). As there seems to be no guarantee that such
a procedure will converge, we projected this contri-
bution from the F's by means of Eq. (3.12) and replaced
it by the value given by Eq. (9.1). It was noted,

X. EVALUATION OF THE PHOTOPRODUCTION
AMPLITUDES

Evaluation of the integrals in Eq. (9.53) to Eq. (9.56)
is accomplished by using the CGLN solution for M&+'..

In Table II the calculated values of P(a') for A=O
are given, again with only the erst two terms in x= cosg
retained. (The values M=6.7 and f'=0 08 h.ave been
employed throughout. ) Only the pole terms for the (0)
amplitude have been included. We dehne co*=s&—M.
The photon laboratory energy can be obtained from

Kz, = (s M')/2M—= (o*+(v*'/2M. (94)

In the case of charged-pion production, an expansion
of the meson-current pole term is not possible. We
separate these terms as follows:

S(~+)= e'+ 5:~/(1—ex), (9.5)

where v is the velocity of the Anal meson.
It is now possible to expand S'(7r+), and the resulting

expressions for A.=O are given in Table III. Values of
54, v, ImM~++, and ImM~+ are given in

Table IV, and P~~ and F2~ are zero.
The imaginary part of any of the 5's may be obtained

with the aid of Eqs. (3.8) to (3.11).The pole terms for
5' are given in Table V.

The differential cross section for unpolarized photons
and nucleons is

d~/d&= (q/&) IM I'= (q/&) ( I
&t I'+

I
&s I'

+s I
~el'+-:I ~4I'+Re ~t*~4+Re ~s*~s

+cosel Re 5:s*P4—2 Re 5't*Ps$
—cos'eL'

I
&sl'+'

I
5'4I'+R«t*&4

+Re Ps*Ps(—cos'tl Re Ps*84}. (9.6)

TABLE II. Values of the scattering amplitudes, F, for photoproduction of 7i with h. =0.

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.40
1.50

&IX1o'
—2.780—2.682+ 6.865x—2.556+10.159x—2.398+13.046x—2.204+15.828x—1.969+18.632x—1.690+21.531x—0.986+27.796x—0.078+34.784x

&2X10'

0
3.424—0.064x
5.199—0.128x
6.844—0.193x
8.504—0.257x

10.243 —0.32 ix
12.099—0.384x
16.263—0.503x
21.077—0.609x

&3X10'

0—7.104+0.123x—10.563+0.250x—13.631+0.380x—16.619+0.513x—19.659+0.648x—22.831+0.787x—29.765+1.073x
—37.602+1.368x

&4X10'

0—0.360+0.016x—0.704+0.045x—1.033+0.081x—1.350+0.124x—1.654+0.170x—1.949+0.223x—2.510+0.334x—3.040+0.458x

~s G. F. Chew and D. Y. Wong, Lawrence Radiation Laboratory (private communication)."H. Y. Chiu and E. L. Lomon, Ann. phys. 6, 50 (1959).
S. W. Barnes, B. Rose, G. Giacomelli, J. Ring, K. Miyake, and K. Kinsey, Phys. Rev. 117, 238 (1960).
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TABLE III. Scattering amplitudes, 5', excluding the meson-current term for photoproduction of 71 with A=O.

1.00
1.05
1.10
1.1.5
1.20
1.25
1.30
1.40
1.50

0r'X10'/~2

19.679
19.403—2.824x
19.116—4.219x
18.818—5.47ix
18.507—6.702x
18.180—7.964x
17.836—9.288x
17.090—12.203x
16.260—15.512x

Fs'X10'/v2

0—2.773+0.036x—4.082+0.072$—5.217+0.108$—6.300+0.142x—7.383+0.175x—8.496+0.207x—10.886+0.264x—13.539+0.310$

&3'X10'/l2

0
2.899—0.083x
4.353—0.168x
5.670—0.254x
6.979—0.343x
8.334—0.433x
9.767—0.525x

12.959—0.713$
16.628 —0.907x

P4' X10'/v2

0
0.049—0.002$
0.099—0.006x
0.151—0.011$
0.205—0.017x
0.262 —0.024x
0.319—0.032x
0.439—0.052x
0.566—0.076x

TABLE IV. Values of F~, the meson velocity,
Im 3II++, and Im M'1+ .

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.40
1.50

p B

X10'/
v2

0
5.947
8.098
9.565

10.667
11.532
12.232
13.284
14.023

p B

X10'/

0—1.81g—3.382—4.735—5.910—6.936—7.834—9.318—10.475

Meson
velocity,

t/'

0
0.2854
0.3911
0.4649
0.5217
0.5676
0.6058
0.6661
0.7118

Im M1+.+
X10'

0
0.012
0.053
0.130
0.252
0.433
0.691
1.537
3.090

Im M'1+
X103

0—0.006—0.027—0.065—0.126—0.217—0.346—0.769—1.5451

The differential cross section for y+p~ p+w' in

the threshold region may be expressed as

do/dQ= (q/k)(2+8 cos8+C cos'0+D cos'0]. (9.7)

In Figs. 6—9 the values of A, 8, C, and D calculated
from the 5's in Table II are given together with
experimental data."The fact that D has been set equal
to zero in the analysis of the experimental data, while

the results of a theoretical calculation by Robinson
based on the results of CGLN with /+= E =0."

In obtaining these cross sections a correction has
been made for the mass difference between m+ and x
by using as a unit the mass of the pion in question.
LThe conversion factors used are tj, o= 135 Mev,
p += 140 Mev, (1/p o)'= 18.66 mb, and (1/Iu +)s

=19.96 mb. ] This means that, in effect, the value of
the nucleon mass used in the calculation for the m

amplitude was too small, being 6.7 instead of 6.9.
Since all energies are expressed relative to the nucleon
mass, no serious error will be introduced by this
procedure.

It is now possible to estimate how large a A. would be
allowed on the basis of present experimental infor-
mation. First we will take G~ and G2 to be linear
functions of t for 0&t& —5, and will use

G,v (0)/G, v(0) 0 08 G,v (0)/G, v(0) =rr, (9.8)

as given by FF. We may express G& (t) and Gs (t) as

G,v(t)=G v(0)L1+ t]=-'eL1+nt], (9.9)

the calculated value of D is comparable to 8, makes a
quantitative comparison between our values of 8 and
C and those from experiment unreliable.

In Fig. 10, ~M~s at 90 deg for y+p —+e+gr+ as
calculated from Tables III and IV is given, together
with experimental data. "Also included in Fig. 10 are

The quantities most sensitive to A. are the threshold
values of (k/q) (do/dQ) for s+ and do. (w )/do (w+). This
can be seen by noticing that the correction to 2& is
several times the correction to the other amplitudes

TAnLz V. The pole terms for the (0) amplitude.

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.40
1.50

&10

—1.290—1.330+0.439x—1.371+0.623x—1.410+0.766x—1.448+0.887x—1.485+0.995$—1.521+1.093x—1.590+1.269x—1.655+1.425x

f20

0.030—0.010x
0.043—0.020$
0.055—0.030x
0.066—0.040x
0.076—0.051x
0.086—0.062x
0.106—0.084$
0.124—0.107x

cp 0

—0.403+0.018x—0.570+0.036x—0.699+0.055x—0.808+0,073x—0.903+0.092$—0.990+0.112$—1.143+0.151x—1.277+0.191x

—0 162+0 007x—0.316+0.020$—0.462+0.036x—0.602+0.055x—0.735+0.075$—0.863+0.097x—1.106+0.146x—1.332+0.199x

"V. I. Goldansky, B. B. Govorkov, and R. G. Vassikov, Soviet Phys. —JETP 7, 37 (1960).
ss A. Barbaro, E. L. Goldwasser, and D. Carlson-Lee, BulL Am. Phys. Soc. 4, 273 (1959); M. Beneventano, G. Bernardini,

D. Carlson-Lee, G. Stoppini, and L. Tau, Nuovo cimento 4, 323 (1956).
'3 C. S. Robinson, "Tables of cross sections for 71-+ production from hydrogen, according to the theory of Chew, Goldberger,

Low, and Nambu, " University of Illinois Report, May 22, 1959 (unpublished).
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FIG. 6. The coefBcient A for w photoproduction. Solid line:
prediction with A=O; dashed lines: predictions with A=1.8e and
A= —1.8e. The experimental points are those of Goldansky et ut.21
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FIG. 9. The coeflicient D for ~' photoproduction as
predicted for A=O.
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Fzo. 7. The coefBcient 8 for m' photoproduction. Solid line:
prediction with A=O; dashed lines: predictions with 4=1.8e
and A= —1.8e. The experimental points are those of Goldansky
et al."
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FIG. 10. The matrix element squared at 0=90 deg for ~+
photoproduction. Solid line: prediction for A. =O; dashed lines:
predictions for A. =1.8e and h. = —1.8e; dot-dash line: prediction
of CGLN as calculated by Rosinson. ~3 The experimental points
are those of Barbaro et al. and Beneventano et al.22

-1.2— At threshold, the correction to be added to P~' is

-1.0
ESP=6.8X10 'A/5, (9.11)

-0.8—

03
-0.6—

-0.4
= 1.8e AQO

which produces a fractional change of 1+(0.074A/e)
in

~
M i' for n.+ production. Since 5' enters with opposite

signs into m production, R= do (m )/do (m+) at threshold
will be even more sensitive to A.. Including the correction
given by Eq. (9.11) in R, we obtain

«0.2

I I I I I I I

745 150 160 170 180 190 200 210 220 230 240
Photon taboratory kinetic energy (M«)

Fzc. 8. The coefBcient C for m' photoproduction. Solid line:
prediction with A=O; dashed lines: predictions with h. =1.8e and
A= —1.8e. The experimental points are those of Goldansky et al. '

E.= 1.28
1—(0.031A/e)

1.28t 1—(0.14A/e)). (9.12)
1+(0.037A/e)

The quantities A, 8, and C for x' production and

i M
~' at 0=90 deg for ~+ production have been calcu-

lated for A.= a1.8e (see Figs. 6—10).

causing a large correction to F~. Also, since F~ is larger
for charged-pion production, 1F~~ will be sensitive to
smaH changes in 5~0.

XI. CONCLUSIONS

The results we have obtained in this work may be
summarized by saying that after a more careful analysis
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of photoproduction based on the Mandelstam repre-
sentation, the work of CGLN survives almost un-
changed from a practical point of view. The only
modification is an additive term to correct the (0)
amplitude in terms of the parameter A. Hovrever, it
should be remembered that a change in the treatment
of CGLN may also be required in the (+) amplitude
if there is a resonant three-pion intermediate state in
the t spectrum.

The evaluation of the dispersion integrals in their
relativistic form for the (+) and (—) amplitudes did
not produce any significant change from CGLN. The
values E+=—0.062 and S =4.5X10 ' were obtained,
indicating that the often used procedure of setting
/+= X =0 does not cause an important error.

To investigate what limit the various experimental
data place on the size of A, consider first the coeScients
2, 8, and C giving the angular distribution for m

production. The value of A, which is the most accu-
rately determined by experiment, proves to be quite
insensitive to the values of A. The calculated values
of A for ~A

~

(1.8e are all in good agreement with the
experimental data. While the coefficients 8 and C are
more sensitive to A, the difficulty encountered in
comparing the theoretical values of these coeKcients
with those from experiment make these data a poor
test for A. A further uncertainty in the theoretical
values of A, 8, and C arises from the possibility of a
strongly interacting three-pion intermediate state,
which would require a subtraction in the (+) amplitude.

The threshold x+ data provide a better test of the
magnitude of A. As can be seen from Fig. 10, with
f'=0.08 the experimental data constrain A to lie
between 1.8e and —1.8e. Changing f' by &0.01, which
is perhaps the maximum allowed by other consider-
ations, can be compensated in the threshold x+ cross
section by giving A a value %1.75e. (This compensating
eGect will not remain at higher energies, as the energy
dependence of the h. term is diGerent from that of the
other terms. )

The value of A=do(m )/do. (m.+) at threshold given
by formula (9.12) provides a measure of h. which is
insensitive to small variations in f . However, the
corrections and extrapolation necessary to obtain E
cast some doubt as to its exact value. The range—1.8e(A(1.8e corresponds to 1.0(R(1.6, which is
roughly the current uncertainty in the (—/+) ratio.

An estimate of A. based on the m' lifetime has been
made by Wong. ' His results are ~A~ &e; however, the
possibility of a resonant three-pion state produces
some uncertainty in this estimate.

As the theoretical understanding of pion-nucleon
scattering improves, an approach to photoproduction
through multipole amplitudes as outlined in Sec. VIII
should be carried through. Such a procedure could
extend the description of photoproduction to the region
in which phases other than the 3—3 become important.
It could also improve the crude CGLN formula for the

magnetic-dipole amplitude which has been accepted
here as the basis for many of our calculations.
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APPENDIX

The first step in showing that the 8's are free from
kinematical singularities is the construction of a set of
analytic scalar amplitudes (analytic here means ana-
lytic except for the appropriate Mandelstam singu-
larities). After multiplying the general T matrix by
the positive energy nucleon projection operators, we
then write

( iy P2+M—)T e( iy P,—+M)

= ( iy Pg+M)f—g B;1V,)( iy Pi+M). —(A1)

Since this equation holds for all photon polarization
and nucleon spins, we may multiply each side of this
equation by the S s which are functions of nucleon
and photon spin indices. If traces over the spin indices
are now taken, each of these products will yield a scalar
equation, and since the quantity on the left is still an
analytic function of the components, the Hall-Wight-
man theorem can be used to show that these eight
quantities are analytic function of the scalars. We vrill
denote these scalars as follows:

T;=Tr/1V;"( iq P2+M)T" —( iq P,+M)j. (A—2)

By taking the same traces on the right-hand side of
Eq. (A1) the T s can be related to the B s. These
Tl's are related to the Bl's by a linear transformation
as follows:

(A3)

The elements of R are polynomials in s, t, and 8. Thus
the only singularities in the 8's will be poles at the
positions of the zeros of the determinant of E.. However,
since the determinant of R vill be a very high order
polynomial in s, 8, and t, it is somewhat simpler to
consider a series of transformation between sets of
amplitudes and then show at each step that the zeros
in the determinants produce no singularities. The total
transformation will then be just a product of these
individual transformations.

Let us first consider the transformation from the T's
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to a set of amplitudes X; where these are defined as
follows:

X,= —,
' (M' —s)8,+', (t—-4M')82+-,' (8—s) (83+84),

X2 MB——,+ ~~ (t 4M—2)86+ ~~ (s s) (—Br+88),
X,= (M' —s)8,+2(s—s)82—28,+(t 1)84—+2MB~,

X4 B~+—-.'(. -s)8—6+2(» 1)8—7 Bs,—
X,=-', (s—s)82+ (t—1)83,

X6=85+g(8 s)86—+2 (t 1)8—
X7 T])

X8= T5.

(A4)

Six of the T, s are then given by a linear combination
of two of the X s and the coe%cients of this matrix
are again polynomials in s and t. These six form three
pairs of equations and each of these pairs contains
only two X's and two T's and thus can be solved
independently. Since the coeKcients of each pair of
coupled equations are identical, the first six X,'s are of
the following two forms:

M (t 1)T,—(s——M') (s—M') T,

M(t —1)Tg —tT6

where 4D=M'(t —1)'—t(s —M')(s —M')
course just the determinant of each pair of these
equations. If D is evaluated in the physical photo-
production channel, it can be written —16k'q2s(sin'9),
and its two zeros for s as a function of t are in the
forward and backward directions. We now use the fact
that E for forward (backward) scattering can be
expressed in terms of Pj and P2, and therefore y E
can be expressed in terms of scalars, by use of the

and

T7——M T4.

(A6)

These sets of equations cause the numerators in Eq.
(AS) to vanish and since they are analytic they must
vanish as a power of s just cancelling the zero in D for
the forward (backward) direction, proving that the
X's have the same analyticity as the T's.

The next step is to express the 8's in terms of the
X's, by inverting Eq. (A4). In this case the determinant
of the transformation matrix is just D'. It can now be
seen that this result is a natural one and implies that
the 8's are free from kinematical singularities. The
three zeros in the determinant for each the forward
and backward direction simply reQect the fact that
there are three equations relating the various X's in
each of these directions. The fact that in either of these
directions I', Q, and E are not independent relates
T2, T3, T4, and T6, T&, T8 yielding relations between
X&, X3, X5 and X2, X4, X6. The fact that E can be
expressed in terms of P'~ and P'2 relates X7 and Xs.
Since each of these equations would cause a first-order
zero to appear in the determinant, we see that the
third-order zero is produced by the set of three equa-
tions. This means that the set of equations relating
the 8's to the X's is consistent and that the numerator
in each equation giving 8; in terms of the X;s will
vanish with the proper power in the forward (backward)
direction to keep the 8's regular.

We have now shown that no singularities have been
introduced into the 8 amplitudes by the particular
choice of spin functions used to define them.

Dirac equation. The results of this are that for the
forward and backward directions the T's satisfy the
following 3 equations:

t' 1—) t 1—
T6 M —— iT, T =M T,,

t i t


