
P H YSI CAL REVIEW VOLUME 124, NUM B ER 6 DECEMBER i5, 196) 1
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The scattering amplitude for the electroproduction of pions from nucleons is derived using the Mandelstam
representation. It is shown that the amplitude consists mainly of two parts which in the framework of the
Cini-Fubini approximation are simply additive. One part describes the effects of a m —~ resonance, while the
other part describes the -', —2 resonant nucleon term. The theory is fully relativistic in the sense that no
expansion in inverse powers of the nucleon mass is made. This means that even though the theory is appli-
cable only in the low-energy region where the —,

' ——,
' resonance dominates, the momentum transfer variable

upon which the various form factors depend, may be very large. The meson-current Born term contains
explicitly the form factor of the pion and can be isolated at high momentum transfers to the electrons, where
the resonant nucleon term becomes small.

Within the framework of the Cini-Fubini approxi-
mation, the pion-core and pion-cloud interactions
contribute additively to the S matrix. The pion-core
interaction manifests itself in the S matrix by its
singularities in the energy variable, whereas the pion-
cloud interaction shows singularities in the variable
corresponding to the momentum transfer to the
nucleons.

The contribution to the S matrix from the pion-cloud
interaction depends upon a function of the momentum
transfer to the electrons, to be determined by experi-
ments, and upon parameters that are directly obtainable
from the experimental data on the form factors of the
nucleons. The Born term due to the meson-current
depends explicitly upon the electromagnetic form
factor of the pion. It is important to note that, to the
extent that the analytic properties of the scattering
amplitude with respect to the momentum transfer to
the nucleons are taken into account by the 2- and 3-pion
exchanges, the meson-current Born term will depend
upon a function of one variable only, and not of two as in
Frazer. This function is identical to the form factor of
the pion. Therefore, by using the Mandelstam repre-
sentation, one circumvents the complicated extrapola-
tion procedure that is needed to obtain the form factor
of the pion, when a one-dimensional dispersion relation
is used.

The contribution from the pion-core interaction is
related, through the final-state theorem, to the scat-
tering in the final x-nucleon state. We will consider total
barycentric energies of the x-nucleon system that are
in a region where only the ~

—
~ resonance dominates.

Experimentally, this condition can always be met by
choosing an appropriate incident electron energy. On
the other hand, the experiments of Hofstadter et al. ,

'
on the form factors of the nucleons are carried out at a
high value of the square of the momentum transfer from
the electrons X'. The most recent experiments achieve
a momentum transfer squared of the order of 40@'. The

INTRODUCTION

HE method of dispersion relations has been applied
by Fubini, Nambu, and Wataghin' to the electro-

production of pions in order to show how this process
could reveal information on the form factors of the
nucleons. More recently, it has been shown by Frazer'
that it is also possible to obtain information about the
pion form factor by carrying out a Chew-Low extra-
polation on the electroproduction amplitude to a point
in the unphysical region of the momentum transfer to
the nucleon, corresponding to the single meson pole. In
this paper we will show by the use of the Mandelstam
representation that the electroproduction process is also
particularly well suited to test further the nature of the
pion-pion interaction, and that it allows for a direct
determination of the form factor of the pion.

Starting from the Mandelstam representaI;ion means
that we are taking into account not only the interaction
between the outgoing pion and the nucleon core, but
also the interaction between the outgoing pion and the
pion cloud of the nucleon. We will assume that this
latter interaction is mainly due to intermediate states
of the nucleon-antinucleon channel containing 2 and 3
pions. It has been shown by Frazer and Fulco' that the
existence of a x—vr interaction in the J=I=1 state,
which has recently received some experimental support, 4

could explain rather well the main features of the iso-
vector electromagnetic structure of the nucleons. It was
also shown by Bowcock, Cottingham, and Lurie' that
such an interaction could throw some light on our
understanding of the small m-nucleon phase shifts. This
interaction may also be necessary in order to explain
the discrepancy between theoretical and experimental
predictions in the photoproduction of pions.

' S. Fubini, Y. Nambu, and V. Wataghin, Phys. Rev. 111,329
(1958) (quoted as FNW). A relativistic generalization of this
work has been given by R. Blankenbecler, S. Gartenhaus, R. Huff,
and Y. Nambu, Nuovo cimento 17, 775 (1960).

2 W. R. Frazer, Phys. Rev. 115, 1763 (1959).
3 W. R. Frazer and J. R. Fulco, Phys. Rev. 117, 1609 (1960).
4A. R. Erwin, R. March, W. D. Walker, and E. West, Phy

Rev. Letters 6, 628 (1961); also D. Stonehill et al. , Phys. Re
Letters 6, 624 {1961).

5 J.Bowcock, W. N. Cottingham, and D. Lurid, Nuovo ciment
16, 918 (1960).

s.
v. 6 M. Cini and S. Fubini, Ann. Phys. 3, 352 (1960).

7 R. Hofstadter, F. Bumiller, and M. Croissiaux, Phys. Rev.
o Letters, 5, 263 (1960); S. Bergia, A. Stanghellini, S. Fubini, and

C. Villi, Phys. Rev. Letters 6, 367 (1961).
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kinematics of the electroproduction process show that
the combination of low total barycentric energy
together with high momentum transfer from the elec-
tron favors higher values of the momentum transfer to
the nucleons. It is therefore clear that the static theory
of FXW, in which only the erst term in an expansion
of the amplitude in inverse powers of the nucleon mass
is kept, cannot be expected to be very reliable when

~
X

~

is of the order of a nucleon mass. For this reason,
we will give a complete relativistic treatment of the
nucleon term. The separation of the terms into those
generated by magnetic dipole, electric quadrupole, and
longitudinal quadrupole radiation will be made in the
hope that only some of these terms may be important.
In the static limit, the magnetic dipole term dominates,
but in the nonstatic case we have of course no way to
judge beforehand the relative size of these terms.

In Secs. III and IV it will be shown that the magnetic
dipole approximation improves as one attains higher
values of V-. In Sec. I, after some kinematical pre-
liminaries, we derive a representation for relativistic
and gauge-invariant amplitudes. In Sec. II we consider
the contribution to the isoscalar amplitude from the
pion-pion interaction. We conclude with a discussion of
our results.

I. KINEMATICS AND THE MANDELSTAM
REPRESENTATION

The scattering amplitude T is related to the S matrix
by the definition

+f ~f 2~ (pl+«1 p2 q2 «2) f~p
2+1+2&1&2

where e~, E~ are the energies of the incident electron
and nucleon (of 4 momenta I'l and rl, and of masses «&2

and M) and e2, E2, s&2 are the final energies of the
electron, nucleon, and meson (of momenta r2, p2, q).

As shown by Dalitz and Yennie, ' the electropro-
duction T-matrix element, to erst order in the electro-
magnetic coupling constant, is given by

(p»q2 «I q
I pl«l)= Peg/(22«)2"j(p2 q I ~. I pl)&.,

with
e,= eg(«2) v,N(«l)/(«l —«2),

(p2, q, ~
J„~pl) is the matrix element for the photopro-

duction of a pion by a virtual photon of (spacelike)
4 momentum:

k2 —
(«1 «2) 2 —y2

(—X2) is the square of the "photon" mass. It is this
matrix element which we propose to analyze in detail.

In spite of the fact that ~„has both longitudinal and
timelike components, the Lorentz condition,

The T matrix may be written in terms of a linear com-
bination of six Lorentz and gauge invariant quantities
3fi:

6

T=Q A,M, . (3)

the M s will be given below. The amplitudes A; are
functions of three scalar quantities,

sl ———(p,+k)' s2 ———(p2 —k)' t= —(pl —p2)'

Pl, k have been chosen as incoming momenta, P2, q as
outgoing moments. We will take the "photon" mass to
be constant. Then there are only two independent
scalars and we have the relation

s,+s,+[= 2M'+&l2 —g2

The above amplitudes may be further decomposed into
an isoscalar and into an isovector part, these desig-
nations referring to the character of the photon current.
For each amplitude we may write

A .(s) A .(o)r

These amplitudes are in turn related to amplitudes of
given total isotopic spin

A,'+&=-'2fl +-',A, '*,

Only the isotopic spin ~ state contributes to A, &').

If one considers the process y+2« —& E+E, then it
can be shown from considerations of G invariance that
intermediate states with an even number of pions con-
tribute to A;&8' only, whereas those with an odd number
of pions contribute to A, ~~' only.

The decomposition of the total amplitude as in (3),
into a linear combination of relativistic and gauge
invariant quantities is not unique. However, the re-
quirement that the associated amplitudes A; should
obey a representation with only those cuts and poles
that have been conjectured by Mandelstarn, places a
severe limitation on this choice. In order to find the
appropriate set of invariants we will follow a method
due to Ball.'

We first write the T matrix in terms of 8 relativistic

is still satis6ed. The current J„also obeys the con-
tinuity equation

k~J„=O.

k"e„=0, (I)
9 J. S. Ball, University of California Radiation Laboratory

8 R. H. Dalitz and D. R. Yennie, Phys. Rev. 105, 1598 (1959}. Report UCRL-9172, 1960 (unpublished}.



2002

but not gauge-invariant q
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T=g B,I;,
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the g, as follows:The A; are related to t e

2iBl—M(B6+B&)Z

&,q(t ;-»(B+B)
86—2B8

(1O)
( t ~6~p) I6=&676~

~6pt6(2Pl6+166) ~
I =y6(2Pl6+ 6J~

,~p(2P, 6—k6),

—yap (2/6 ) '

I ~,(2P,6—ke),

I =y6(2g6 ~ )

—s —M')B6(sl, t)+ ($6—M')B6(sl, t)

+ (t—p,')B6(sl,t) =0.

are taken to satisfy the Mandelstam
tdbe above invanan s a

electric charge orn
l t ccharg to eneous eec ricddllhnot gauge invariant when taken in ivi

ment terms are.
th t h i l dbe invariance means that w en eg ha™

in qq6~ T must vanis . is

g,= —(B6+%)~

~ =L—6&(t—t')7( '
A =—»6

nd A6 are related to t p's bySince A» A» ."
h will a].so obey the Mandnumeri 'cal coefficients, they

tarn representation '.

1 1=R"
M' —sp

1 1

(M+tt)

dsl dt al6 ($ l~t )
B6(sl,t)+ (sl—M')B6(sl, t)

—M')B (,t)+(t—t ')B6(,t)= .
($ $ )(t —t)(M+p) 4ttt

I1' ' (')ds 'd $a6, &"6(sl', $6 )

(»' —») ($6'—$6)(~+p)' (~+~)' sl
ctors which multiply the amplitudes

c1 tio Tjli
e denominators o

s2 and t which app ear in electropro uc i
a pear in the gaug eno other denominators can appe

invariant amplitu es. e

d$6 dt a63 ' ($9 )t )00

(for i=1, 3, 4, 6). (11)6

T=Q A;M;,

and define

8)
ral re resentations for A2 and A5,

dMandelstam repres
o (1).O obcorn ine end ominators according to

ZI1 2 $+5FItv+IJtgvp1=2

M.=- L(t-")(I.+')+(,-"I
=»»F"P.(v 2h ., —

—(t— + ') 7= &" ~ .,M6= 2$I6 Ig—— —

M6= —2LI6+Iv+ (»—
6sl —$6)I67—MM l

MMl, (9)—2+5Fyves p~v ly

M = 'i t—t ')-(I,—I,)—(t—&6yV)I,7M6=-', 6

=iy5F„„k„q„,

I I —k'I67 =y6—F„„—„y„,M6 I6 7 6

1 1 ™
t—P w (~+„)2

1 1
'( ')i

Es sl S —$6)

00 " ds 'dt'al6&'& (sl', t')

0O ds ds2 c]g $1 &sg
I (j)

(sl' —sl) ($6'—$6)(~+a) ' (~+y) '

g.(~)

'—s M' $6J—(t

where

and
F,= e„k,—e,k„Jttv Is, V

&= (Pl+P6)/2

" ds6'dt'a66' ($6',t')1

(M+p) 6y ($6 $6) (t t)

(for i=2, 5). (12)

divers from thed that the invariant M2 d'Itis tobenote t a
' '

d
corresponding one given by

8 cause of the virtuual character of the photon, the cuts
theusualMan es aml t representation.are the same as in eu
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The residues of the poles are as follows:

g&s&(A &6,&0)= xgF &v, s&(g2)

+&8& (A 2&+,&&&) —gF &V, S& (y2)

E&'&(A &+'&)=E& '(A4+')=-'gF2' &(X')

g&~& (Ae&+,0&) =~&gF~&&' e& (g2)

(+ for Ae& &, —for Ae&+'&)

It."(A '+'&) =Q

R&'&(A5&—') = (2g/X')(eF (X') —Fg&~& P.')j,
J"~,2(y 8) are the usual Hofstadter form factors related
to the proton and neutron form factors as follows":

"( ') — "( ')j
F2&~& =&«„'F2"(X')—te„F2"(X'),

F,&s& eLF&"(V)+F&"P')j
F~"=t y'F2" (~')+t F2"( ')

F (X') is the form factor of the pion.
The Born terms have been made manifestly gauge

invariant by adding to them the term

and dependent, through the final state theorem, upon
the ~-nucleon phase shifts. The reason is that for the
isoscalar amplitude, the m-nucleon system is in an I=-,'
state, whereas we will be considering energy regions
dominated by the ~

—
~3 resonance only.

The imaginary part &t(t, t') of A, &'& in the approxi-
mation of keeping only 2-pion intermediate states, may
be calculated using unitarity. Alternatively, if one
assumes that there exists a sharp J=I=1 pion-pion
resonance, then a completely equivalent method of
procedure is to calculate the "bi-pion" graph in which
the reaction y+~~ E+S proceeds in lowest order
via an intermediate particle of spin 1 and isotopic spin 1.
The calculation for photoproduction is well known. ""
For electroproduction one obtains

uM4 gyb 1
X Ai&o&~+ +

tg —t M tg —t

which is identically zero on account of the I.orentz
condition (1). As a consequence of crossing symmetry
(interchange of incoming and outgoing nucleon lines)
the amplitudes

(+o) A (+o) A (—) A (+o) A (—) A (—)

which are even under the interchange s~+-+ s~ go with
the positive sign in (11) and (12) whereas the am-
plitudes

A~(—) A2(—) A3(+,o) A4(—) As(+ 0) A6(+ o)

which are odd under s~ ~ s~ go with the negative sign.

II. ISOSCALAR AMPLITUDE: THE CHANNEL

y+ m~N+ N

The lowest intermediate state that can contribute to
the isoscalar amplitude in the process y+m —+1V+g
is the 2-pion state. In this case s~ and s2 cannot simul-
taneously reach their lower limits in (11) and (12),
and therefore one can apply the Cini-Fubini method'
to reduce the Mandelstam representation to a one-
dimensional form. One obtains

1 "
(t&,tt')

A;&'& = (A,&'&)»„„+— dt'+K, e, (14)
7P 4y2

E is a constant that lumps together the e6ects of all
the distant singularities. It vanishes for those ampli-
tudes that are odd under crossing. We have omitted a
term related to the electroproduction channel proper

"&e '=1.78e/2M, p, = 1 91e/2M g—'/4. ~=14, e'/4e = 1/137.

t—p'+X' 2Fk
X —t~i ~2 ~5

)

In the above g(t) and A(X') are functions associated
with the y~ ~ m 7r vertex. A(X') is to be determined from
experiment. It reduces of course to a constant for
photoproduction. We now wish to explain the meaning
of the constant A&('). By going over to the center-of-
mass frame of the VX system it is possible to see that,
in relation to the center-of-mass amplitudes, A& has an
extra energy factor as compared to the other amplitudes.
It is to be expected therefore, that A~ will have a
dominant high-energy behavior. We have allowed for
this by carrying out a subtraction in the dispersion
relation for the amplitude A~. This accounts for the
constant A&&'& in (15). The constants &t, b and tg are
related to the parameters appearing in an empirical
formula for the isovector form factors of the nucleons7:

F&&v&=e (1—&t)+
1 t/t~-

gy8
F2&&'& = (1 f&)+

2M 1 t/t~—
where gy= 3.69.

Reference 7 gives u= b= 1.2 when t~ ——22p, '. With the
present value of t~ at about4 30p, ', g and b will be
somewhat modi6ed.

"M. Gourdin, D. Lurid, and A. Martin, Nuovo cimento 18,
933 (&960)."B.de Tollis, E. Ferrari, and H. Munczek, Nuovo cimento 18,
198 (1961).
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III. ISOVECTOR AMPLITUDE: THE NUCLEON TERM

The isovector amplitude, contrary to the isoscalar
one, is not reducible to a one-dimensional form. We
may, however, follow the analogy with the treatment of
the isoscalar amplitude and replace the contribution
from the intermediate 3x state by the contribution from
an isobar with quantum numbers J= 1,l=0 and neglect
rescattering corrections. Such a particle was introduced
by Nambu" and it was shown by Chew" that with the
above choice for the quantum numbers, all pairs of
pions in a 3~ state would have J=I=1.We are then
led to the following equation

+& (s,f) = (A, &+&)a,„„+(g, i+&)„;;,„

ds' Im A, &~& (s', f)

(S,-M2) '

F vs
'I)2

(S2-M )

(b)

F VS
1]2

9
(c)

A() 2)

li(t-tR)"

(d)

. A'() 2)

, II (~-~Rl)-~

(e)

(s s2)-))-1

~&i)P (i] 9 g ~(i J,p(i)

(f) (g)

pro. 1. Graphical representation of Eris. (15), (16), and (18).
The heavy lines in (1f) and (1g} represent particles of spin —,'.

S Sj S —$2
(17) where

where

(~i )tri pion=-oq

and where (2 +&)„;n;,„ is the same expression as (15)
with A, a, b, and t& replaced by A', u', b', and t&'. The
constants a', b', tg' are related to the parameters
appearing in the isoscalar form factors of the nucleons
in the same way as a, b, t& are related to those appearing
in the expression for the isovector form factors. The
reason that the tri-pion contribution is similar to the
bi-pion contribution is of course that both particles
have spin 1.

Due to the explicit separation of the tri-pion singu-
larities in (17), Imd +&(s,f) has only distant singu-
larities in t and may therefore be expanded in powers
of that variable, or equivalently, in states of given
orbital and total angular momentum (multipole ex-
pansion). In such a representation the final state
theorem' tells us that Imd +) has the phase of
m-nucleon scattering. This means that as long as the
m-nucleon state is at sufficiently low energies, we may
neglect all but the large ~

—
~ resonant phase shift in

Im A;&+). Therefore we will proceed in two steps. First
we express Im A;(+' in terms of the imaginary parts of
center-of-mass amplitudes F;. Second, we expand the
F,'s in Legendre polynomials where the expansion coef-
6cients are simply the magnetic dipole, electric quad-
rupole, and longitudinal quadrupole amplitudes. In this
expression we shall retain only the J=~3 state. The
calculation is long but introduces no new physical
concepts and is therefore relegated to Appendix I. The
result is

Im~;"'(W'])=L~~ '()')+iP~&'&( )jM(W') )
+Lysi'&() ')+]P~i*'&() s))Z(Ws X~)

+L~i&"&() ')+]P,&'&os)]L(W~,) s), (18)
'3 Y. Nambu, Phys. Rev. 106, 1366 (1957).
'4 G. Chew, Phys. Rev. Letters 4, 142 (1960).

M R L ML(W+M)'+X'j"
~)

Im M,+ Im E,+ Im Li+ qkWL(W+M)' —] j'

Ey+& Ly+ are, respectively, the magnetic dipole, the
electric quadrupole and the longitudinal quadrupole
amplitudes. The coeKcients n&'& and Pi'& are given in

Appendix II.
Equations (15), (17), and (18) contain the essential

results of the paper and it may be useful at this point
to discuss briefly their physical content. Dispersion
relations together with unitarity may be viewed as a
set of of instructions which tells you that some graphs
with their associated singularities are of greater im-

portance than others. What we have actually done is

merely to calculate the contributions to the total
amplitude from these more important graphs. First
there are the Born terms with the nucleon propagators
in the variables si and ss (Figs. 1a, 1b). These contain

the Hofstadter form factors; then there are the peri-
pheral graphs which include: (a) the meson current

Born term with a propagator in t and the form factor
of the pion (Fig. 1c), (b) the bi-pion and tri-pion terms

(Figs. 1d, e) with spin 1 propagators in t at the square

of their respective masses, and with "form factors"
A(X') and A'()&.'). Finally, there are the direct and

crossed resonant nucleon terms (Figs. 1f, g). On the
resonance the quantities n'"'& and P&'& in (18) are pure
numbers and may be regarded as a relativistic generali-

zation of the Clebsch-Gordon coefficients which couple

a photon and a nucleon to a particle of spin ~3. The
functions M, E, and L refer to the fact that the transi-

tion to the ~3 state may be initiated by a magnetic,
electric, or longitudinal excitation. These functions will

also contain certain "form factors" which characterize
the transition.

Therefore, the only unknown quantities which appear
in the expression for the total amplitude are the various
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form factors which are all functions of X', and which
must be determined from experiment.

It may be thought that the form factors associated
with the nucleon term would be of a new kind, charac-
teristic of the resonant state. It will be the task of the
remaining part of this paper to show that in fact,
because the resonant state is metastable, that these
form factors are simply related to the Hofstadter ones.

IV. INTEGRAL EQUATIONS FOR THE 3-3 AMPLITUDES

By projection using (If), (17), and (18) we may
obtain integral equations for the three multipoles. This
will allow us to determine the functions M, E and I.
in (18).Let us first discuss the multipole projections of
Born terms. These may be conveniently separated into
those proportional to the linear combination of form
factors:

(V) ()&2) p (V) ()k2)/2M+ p (E ) () 2) to p (V) (l&2)

to F.() ').

The work of I'NW shows that in the static limit only
the term proportional to p&~)(X') is important. The
results may be written as follows:

Ek+n(p(v) pi()') p )
=Ii(y) fk(fk()') pk()') p )+Ip(y) fp(fk(v) pk(v) p )

+I (y)f (~'"» '",P-)
+(p 2r—lp(r)f4(f '",Pi' ' P-)

J i+&(fk()') Pi(v) P )
=Ii(r) (fi rfp+—fk+fp) Ip(r—)fp

—(3rlp(r) —2)f4,

(19)

y+1
Ii(y) =2—y», lp(y) =3y—

1—3y' y+1
ln

and

1-y y+1
I,(y) =y+ ln

2 g—1

'2kpE2+X'
for terms proportional to p&~& and F~&~&

k

2k pqp+X')
! for term proportional to F,

2qk

n(~()") pi()') p )
—Ii(y)fi(fk(F) p (V) p )+I (y)f (fk(V) p (V) p )

—Ip(r)fp( &"kPi'" P-)k

fk&")Mf(W—M) E(E,+—M) (Ep+M) 3'*

fi(p()&') Pi(v) P ) = , o, o!
4qk

fk&v) fM(W+M)
p(fk(v) Pi(v) P )=! 0 0

AL(E,+M)(E,yM)j~'
' i'

ff&v) f(EE+M)—'*)(W+M) Fk&")f(EE+M)k(W M) eF f(E—EjM)k)
' 4(E+M)»'SM (Ei+M) '4(Ei+M) l

ff &v)
q f(W M—) (Ei+M)'—Fi&"'f(Ei+M) k(W+M)q —eFEf(E)+M) kqk)

4(P,
()') Pk()') P

4k(E,+M):
'

SM(E,+M)&k
'

4(E,yM)~k i'

(
&e&e&f(W M)k(E—+M)' E«—e&f(W M)k(E+M)' et f—k(E +M)&)—

fp(fk()') pk(v) p ) =
Sq(Ei+M)'* 16Mq(Ek+M)'* 8q(Ei+M)'

(—p& )f(WyM)(Ei —M) Pk&v) f(W+M)(Ei+M)& eF f(E)+M)'*)
fp(fk(kk') pi()') p )=! !

(k 8! (E,+M) (E,+M)]l 16M(EE+M) 8(EE+M)

In these relations f' =0.08.
A numerical analysis of the Born terms has been

carried out on a Mercury computer and the results show
that of the nine Born terms, only Mi+ (fk& )), Mk~ (F )
and Ei+s(p ) are not negligible. Among these terms,
moreover, Mk+n(p ) and Ek+n(p ) decrease with V-

much more rapidly than Mk~s()(k(v)). Below W=8.9
and X'= 6, Mi+ (F ) and Ei+ (F ) are at most of the
order of 10% of Mi+ (fk&~)). Above these values of X'

and 8', they are negligibly small.
A further result of the analysis shows that the 3 Born

terms that survive may be very well approximated by

M „n(p.) efp. (X')P, () ')

5'—7.3

,E(+)FefF (X')Pp(X')

qk 8"—7.5

(20)

simple poles in 8', multiplied by a X-dependent factor.
We may write

Mi+'() &") ff ")()')Pk(l&')

8'—6.4
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where

P i (X') =L1—(0.275/4Q))t' j
Ps()P) =0.092(1+0.18K') ',

P (X') = —0.05 (1+0.38K') '.

We have taken M=6.8. The inclusion of the factor
(qk) ' in (20) gives the simple pole-like behavior. The
representations are accurate to the first decimal place
in the entire ranges 7.8&IV(9;8, 0~&5.'~&70. As can be
seen, Mi+s(F ) and Ei+s(F,) vanish when W)8.9 or
when X' ~& 6. These results imply in particular that the

magnetic dipole approximation of I'NW becomes even
better at high values of X'.

As a 6rst approximation we will neglect the multipole
projection of the tri-pion. The reasons are that we are
uncertain that such a particle actually exists, and that
we do not know its mass. The present treatment may
of course be easily extended to include the tri-pion, if
this turns out to be necessary.

We may now write the integral equations for the
multipole amplitudes. If we evaluate the kernel of the
integral at resonance, i.e., if in the kernel we set 8"=5',
we obtain

M i~(p& &) fp&v&(X')Pi(), ') 1
Re

qk 8"—6.4

Im Mi+(p'v'; W') dW'
+crossed term,

q'k'
(21a)

Mi+(F ) efF (X')Ps(X') 1 Im Mi+(F; W') dW'
Re +crossed term,

qk 8'—7.3 z W—8' q'k'
(21b)

+crossed term.
q'k'

E,(F.) efF.()')P, () s) 1 Im E„(F„W')dW+-
qk 8'—7.5 ~ P"—g

(21c)

Mip(p&v&) (W—6.8)h(W)
=Cg

qk (W—6.4)q'

Mi+(F ) (W—6.8)k(W)
=C2

qk (W—7.3)q'

Ei~(F ) (W—6.8)h(W)
=C,

h(W) 4 f' 1 Im h(W') dW'
Re +—

3$"—6.8 ~ W—n

(W—7.5)q'
where

We give in Appendix III the crossed term of (21a). other two equations. The results are:
In order to solve Eqs. (21), we will first neglect the

crossed terms which are expected to be smaB compared
to the uncrossed terms because of their much larger
denominators; the consistency of this approximation
will be checked later. We are then left with equations
which resemble very much the integral equation of the
static x-nucleon model" without crossing, which may
be written

(22)

and whose solution is given by

k(W) = e"» sinless/q.

To obtain the solution of (21a), e.g. , we may proceed
as follows:

Let
Mi+(p&v&) (W—6.8)k(W)

=Cg
qk (W—6.4)q'

where C~ is a real constant to be determined. Then

Mi~(p, &v&) —0.4Ci Re k(6.4)
lim (W—6.4) Re

S'-+6.4
qk q'(6.4)

=fp'" () ')Pi()t'),

which gives C~. Ke may proceed in a similar way for the

'5 G. Chew, M. L. Goldberger, F. Low, and Y. Nambu, Phys.
Rev. 106, 1337 (1957) and ib~d 106, 1345 (19.57), quoted as
CGLN.

Ci ———fp &v& ()ts)P, (),')q'(6.4)/0. 4 Re k(6.4)
Cs= 2efF~(X')P2(X')q'(7. 3)/Re k(7.3)

Cs=efF, (X')P (X')q'(7 5)/0. 7 Re k(7.5).

There is of course the possibility of adding to (22)
arbitrary solutions of the homogeneous integral equa-
tions. " It seems reasonable to require, however, that
the (unique) solutions to the problem be the same as
the one obtained by iteration when the m-nucleon
coupling constant is small. Such a requirement has led
to satisfactory effective range formulas for x-nucleon
scattering and to a correct behavior of the photopro-
duction amplitudes. In the x—m problem, the method
would not seem to be as trustworthy. But this may be
due to the fact that in this problem, the inhomogeneous
term is merely an arbitrary subtraction constant which
may not have a particular physical meaning. The
residue of the x-nucleon pole on the other hand is the
physical m.-nucleon couphng constant responsible for
the existence of the composite resonant state. Analyticity

'6 I thank Dr. M. Qourdin for reminding me of this possibility.
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arguments with respect to this coupling constant are
therefore likely to be valid.

An estimate of the error involved by neglecting the
crossed term can be made by reinserting (22) into (21)
and assuming a sharp resonance at 8'= 8.9; it turns out
that the crossed term is of the order of 7% of the
uncrossed term at 8"=9.5. Nearer to resonance, the
error is even less.

The total amplitude is now obtained by inserting (22)
into (17) and (18).

DISCUSSION

Ke have obtained in this paper a theory of electro-
and photo-pion production which avoids an expansion
in powers of the inverse nucleon mass. The total am-
plitude as given in (17), (18), and (22) may be obtained
by a simple numerical integration.

The results have shown that especially for photo-
production, there is in addition to the magnetic dipole
contribution, a small but non-negligible contribution
from the electric quadupole term. Aside from this, the
essential differences with the static theory arise from
the kinematical factors rr "~ and P&'& in Kq. (18), from
the factors P;(lt') in the multipole amplitudes, and from
the fact that the magnetic dipole amplitude has a pole
in 5"that is somewhat displaced from the nucleon mass.

The inclusion of a ~—x interaction introduces directly
the pion form factor in the meson current Born term.
This circumstance is of particular signi6cance because,
as can be seen from the general form of the semiem-
pirical formula for p&v~(lt') fEq. (16)j and from the
available experimental data on the nucleon form factors,

the resonant nucleon term becomes very small at
values of A,

' of the order of 60p, '. This in effect isolates
the pion form factor and could allow for a rather direct
determination of it.

It is not yet clear what roles the bi-pion and tri-pion
will play in correlating theory with experiment. The
ratio of positive- to negative-pion production cross
sections is particularly sensitive to the bi-pion term. A
change of 1% in the bi-pion term induces a change in
this ratio approximately equivalent to a 10% change
in the nucleon term. On the other hand, if the bi-pion
mass is of the order of (30)'tr, it may not contribute to
any appreciable extent in the resonance region of the
electroproduction channel. In this respect, the correc-
tion to the static theory of FN%, which includes using
the complete relativistic isoscalar Born terms, may be
more signi6cant.

The arbitrariness in the problem lies especially with
the question of subtractions in the dispersion relations
A preliminary calculation by Ferrari'~ for photopro-
duction based on the work of CGLN indicates that
only one subtraction in the amplitude A1 may be neces-
sary. Whether this subtraction constant is of such a
size as to mask the effect of the bi-pion is still an open
question.
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APPENDIX I

where
a= e—(eo/kp)k.

The coeKcients 5; are related to the A; as follows:

2M (t—p,'+) ')
P1—— +1 ~1 (Ar —A4)+(W —M)A4+ A6,

(W—M) P(Er+M) (Er+M) j& 2 (W—M) 5"—M

2ML(Er+M) (E2+M) 1& (t—tr'+), ')
J"2= F2= —A1- (Ag —A4)+ (W+M)A4+ A6,

qk(W+M) 2 (W+M) W+M
2M(Er+M) & pA2 X'

F3=
qk (Em+ M) '*(W+M)

+ (A3 —A4)—
W+M W+M

In the center-of-mass frame of the x —N state, the matrix may be written as

sqsk)&a iskqa isqqa iskka isqka
%=is aPr+ +2+ +3+ +4+ &a+ +6) (Ia)

(Ib)
2M (Eg+M) & —pA 2

P4—= r4 —— +(A3—A4)+ Ag,
q'(Er+M) &(W—M) W—M W—M

2M(Er+M) & (t—p,'+X')
Fr,= -P5= —A r—nA 2

—(W—M) A 4+ As —(W+M)A6,
k'(E2+M) & 2

2M (Eg+M) ' —kp (t—p'+X') ko(W+M) (t—y, '+X') W+M
p6 —— P6 —— A r+nA 2— (A r —A4)+ A4- ~S—&0 ~6,

qk(Er+M)'* Er+M 2(Er+M) Er+M 2 E,+M
'r E. Ferrari (private communication).
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vrhere

2 (W' —M') +X-' 3 (t—t4'+X')
6= +koW 2Wko= W' —M' —X' 2WEi= W'+M'+X' 2WE2= W'+M' —p,

'

2W(Ei+M) 28'&o

(t—t4'+X') M(W —M) Mlb, '
F4+ (F4+F4),

2Wkp Wkp(W' —M') 2H Z2

2WA 2
—— (F3—F4)+

Inverting these equations, one obtains

W—M f(W+M)' —X') (W+M) (W' —M'+V) (t—t4'+X')3II(W+M)
W'A g= P1- P2

2WA3 2WA4+ ——(W+M)F3+(W M)F4, —
W' —M' (W+M)' (W+M) (t—t4'+X') (t—t4'+lj. ') (W—M)

2WA4 —— Fi+ F2+ F3+ F4+ (F4+F4),
2Wkp 2W(Ei+3II) 4Wkp 4W&o 2$'kp

W+M n (W' M'—)25'2 g= (W—M)Fi+ko F2+ (F, F4)+(—W M)F4 —(W+M—)F4,
Wko(t —t4') Ei+M P
8"—3P ko (t—t4'+X') (t—p,'+X')

2WA4= —(Fi+F4+F4)+ F2 —F4 F—4 .
2$'&o Ei+M 2 (W M) 2 (W—+M)

(Ic)

The multipole expansion of the F; s may be obtained brieQy as follows: we expand 5 into a complete set of
states of the orbital angular momentum l. Among these states, some will refer to states of total angular momentum
l+~~ or l ~ Theref.ore, we introduce the projection operators

l+1+4r I,

2l+1 2l+1
where l,=i 4IXV, is the angular momentum of the meson. A further classification of states pertains to the photon
variables. Some states will transform as transverse pseudovectors )magnetic radiation, parity —(—1)'$, others
are transverse vectors Lelectric radiation, parity (—1)'g, still others as longitudinal vectors Dongitudinal radiation,
parity (—1)'j. Because of (1), there is no scalar radiation. Finally, normalizing the various projection operators
and noting that the total matrix must be a pseudoscalar, one obtains

f=P[(M(+a Ig+E(+i, e.q a kX14+lL)+i, 4r. q a k)Pg~
l-o

+Mt a 11,+Et &,~4r q a kXII+lL& &,+4r 41 a kj(2&+&)P&(j k),

P&(j k) are the Legendre polynomials. (Id)

Carrying out the operations implied in (Id) and comparing with (Ia) yields

ri ——+t (lMg++E(+)P4+i'(x)+((l+1)Mt +Eg )P( i'(x)~.
l=o

82=+/(l+1)M(++lM( $Pg'(x),
l 1

~4=EL(@+—Mt+)Pi+i" (*)+(E~-+M~-)Pi-i"(x)j,
l j

r4 P(M(+ Et~ M——( —E) )P—4"(x),—
/ =I

(Ie)

F4= —Pi —xP4+QP(l+1)L(+P(+4'(x) —lL) P( i'(x) j,
l-O

F4—— xf4++ (lLi (l+1)Li~)P4'(—x). —
l=p

The F& 54 expansions are the same as for photoproduction and have been given by CGjLN.



THEORY OF ELECTRO — AN D P HOTOP RODU CTION OF m MESONS 2009

The above formulas may be inverted by using the orthogonality properties of the Legendre polynomials. We
will only need those amplitudes referring to states with total angular momentum /+$.

3E)+.= dx 5:,P'((x) S,—P,~, (x)—
2(l+1)

PpPi'(x) (1—x')—

l(l+1)
1 P,P('(x) (1—x') 5'4P(+, '(x) (1—x')—

jv)+- dx SiPi(x) —5:pP(~i(x)+
2 (1+1) (t+1) 3+2

L)+= dx[(Si+xr p+Sp)P((x)+ (x54+eo)P(+i(x)],
2(1+1)

Now we express Im A; in terms of the P, 's using (Ib) and (Ic). Then, using (Ie) and keeping only the J= 2 state,
we obtain an expression for Im A; in terms of Im M~+, Im E~+, Im L~+. The result is

(A,) = (A ~) so~~+ (A .)pi i o,,„+— dW'

where

'"'(')+P "'(')] (
' ')

W' —sg W' —sg

+$n ~" (lI.')+tP '(X')]E(W' 9)+[Dr,"'(X')ytPr, ~'&(V)]1.(W' X')) (Ig)

M Z I. M [(W+M)'+X']'*

Im Mi+ Im Ei+ Im I.ip qkW[(W+M)' —ti']~

The coeflicients n &'& and P&'& are given in Appendix II. In (Ig) these coefficients may be evaluated at resonance,
and then they are only functions of X'.

APPENDIX II

We list here the coeKcients u&" which appear in Eq. (18). The pie may be read off directly as follows; they
are simply the coeKcient of (X'—p') in the corresponding n&'&.

(3 (V—p,') (W+M)+3/, [(W+M)' —X']—(W' —M'+li') [(W+M) —p ]W '),
[(W+M)'+X']

(2)— [X'a~&'& —3 (W—M)],
[2(W' —M')+X']

()— () 3

[(W+M)'+X']

3(l~'—p') (W+M) [(W+M)' —ti']
t

t
+3gp(W+M)+

2 8"

f [(W+M)' —ti'][2(W' —M')+X']
~

3qp[2 (W' —M')+X']+
(t—p') [(W+M)'+V] t S'

3(0—p') (W—3M)—3(W—M) [(W+M)&+y&],
2

n.~(6) =
[(W+M)'+X']

—3 (X'—p') (W—M)[(W+M)o —„P]
t—3qp(W+M)+

«(I)—
W(koo+X') W [(W+M)'+X']

—3 (&'—tP+2goko)Mko 2koM [(W+M)' —p']
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—3kpg '—y'+ 2qpkp) kp[(W+M)' —p')
7

2W(k, '+V) W[(W+M)'+X')
—kp[2(W —M )+X ] 3(X —)t4P+2qpkp)(W —M) 2(W+M)[(W+M) p]—

2''(t —p') (kpP+) ') [(W+M)'+X']

3k (W2 M2) (Z2 +2+2q k ) k (W2 M2)[(W+M)2 p2]

WX'[(W+M)' jX']
2M''qp[(W+M)'+X')

W(k(P+)(')

2''(kpp+X')

q()[(W+M)' —X']-
[(W+M)'+X')

(~'—~')
+ 2WX'(W+M)+k()W[(W+M)' —X')+kpM[(W+M)'+X']

2W(ko'+)(') ~

2P' 6(W—M)
0,@

(&)— o,o(p)+
[2(W'—M')+X') [2(W —M')+X']

oO(P) =oO(4)+3

3P 2 ~2) -2Wg2+k (3WP+4WM+M2+g2)—3qp(W+M) 3X'qp

[(W+M)'+X') W(kpP+X')

[2(W' —M') +X']
~@(~)—

«(4) =
[(W+M)'+X'] (kpp+X')

6qp(W —M)6Wqo 6W(W —M)

[(W+M)'+V) [2(W&—M&)+X&]2W(t —p,') (ko'+V)

+2W (4M' 4W'+ MA' —4W'M+4M—'W 3W&'))—
3 gP —))4P)

[kp (7W' —7WM' —3M'+ 3W'M+

SWAN'

—3M)P)
2 (k 2+F2)[(W+M)2+) R][2(W2 M2) +yP)

0, (6)—
3(W+M)qp3 (W' MP)qp— 3 (X'—p,')

W(k P+g2) [(W+M)2+$2] 4W(k 2+$2)[(W+M)2+$2]

&( [4W(W+ M)'+2WX' —kp(3W'+4WM/M'+X') ).
As an example:

3kp[2 (W' —M')+X'](W —M)
p~(p)—

2 WV (t—)(4') (kpP+X')

APPENDIX III

The crossed term of Eq. (21a) for the 3—3 amplitude is:

dx
12 ]

(1—x') Op t)'0)x(t —)(4'+X') OpPp(x) (t—)(4'+V)
(O)x+Pp(x)Op)A(' — (PAp'+X A p )+~W' —Sg 2 W'+M ( 2 (W' —M) 2 (W'+M )

(1—x')O, ~ O,x O,P, (x))+
~
(A 4'+A 4')+ (O(x(W' —M) —

OpPp (x) (W'+M))A 4' —
~

— ~X'A p'

2 i &W' —M W'yMi

where Pp(x) =—',(3x'—1), 0;= (P;/F;) [Eq. (Ib)) and A =A,+—(A P)4»»,„, and are given in (17), (18).


