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The use of recoil polarization to determine angular momentum assignments for the second and third
resonances in m —p scattering is found to be qualitatively unaffected by the presence of absorption in the
resonant states. The energy dependence of the polarized cross section in the vicinity of a resonance is shown
to give some information about both the background and the resonant state. The polarized cross section is
expected to increase across a resonance if L=J+~ and decrease if L=J—2.

1. INTRODUCTION

'ORAVCSIK has suggested' that the polarization
- ~ of the recoil proton in sr —p scattering might be

used to determine angular momentum assignments for
the second and third resonances observed in that scat-
tering. We would like to develop two points with regard
to the use of recoil polarization. The first point is con-
cerned with the effect of inelastic processes upon the
results of Moravcsik. For the sake of simplicity, the
method discussed in reference 1 assumes that sr —p
scattering is purely elastic, despite the fact that in the
region of the second and third resonances the cross
section for production of an additional pion is con-
siderable. ' Furthermore it has been shown'4 that the
second and third resonances might be due to certain
initial and final state interactions in the production
channel, which would indicate that the partial waves for
the resonant states were largely absorbed.

The second point is concerned with the energy de-
pendence of the recoil polarization in the neighborhood
of a resonance. Investigation of this energy dependence
is suggested by the fact that the amplitude for a reso-
nant state is strongly energy dependent in the resonance
region while amplitudes for nonresonant states are
essentially energy independent in this region —especially
if the resonance is quite narrow. Hence, while effects
that depend on the large size of the resonant amplitude
might be masked by a large number of "background"
amplitudes, effects that depend on the large energy
variation of the resonant amplitude should show
through.

2. SUMMARY OF USEFUL FORMULAS

We choose the coordinate system in which the s axis
is parallel to the initial pion momentum in the c.m.
system and the y axis is parallel to the normal to the

scattering plane. The sr —p scattering is determined by
two amplitudes

f(fl) =-2 (i+a)ntI't(*)" t .;(I),
k z1&

dI't(x)
ttst s, (~),

Gst st(l) =e'"' '~&'& sinflst si(l).

In the presence of absorption, the unitarity condition
implies that

[Imast st(l) —s]'+[«est s (~)]'=p'/4&4, (1)

where p is a measure of the extent to which the partial
wave has been absorbed. The two extreme cases are
given by

p= 1 (elastic scattering),
p =0 (maximum absorption).

The total cross section for sr +p can be obtained by use
of the optical theorem,

4x 4xo"'=—Imf(0) =—P (j+', )rt, Imas, s;(f),-
k Q'- zg'~

where k is the wave number in the c.m. system, x is the
cosine of the c.m. scattering angle 8, Pt(x) is the 1th
I-egendre polynomial, I is the total isotopic spin, j is the
total angular momentum, and q~ is a weighting factor
which has the values 3 for I,= ~ and 3 for t= ~. The
quantities as, s, (l) are the various partial wave ampli-
tudes for a given t, j, and t. In the case of elastic scat-
tering it is customary to impose the unitarity condition
by the use of phase shifts'.

*%'ork performed under the auspices of the U. S. Atomic
Energy Commission.

t Based on a thesis to be submitted to Carnegie Institute of
Technology in partial fulhllment of the requirements for the Ph.D.
degree.

' M. J. Moravcsik, Phys. Rev. 118, 1615 (1960).' J. C. Brisson, J. F. Detouf, P. Falk-Vairant, L. Van Rossum,
and G. Valladas, Nuovo cimento 19, 210 (1961).' R. F. Peierls, Phys. Rev. 118, 325 (1960).

4 P. Carruthers, Ann. Phys. 14, 229 (1961).

while the polarized cross section' is given by

IsP =2 sin8 Im[f*(8)g(8)]

=2 sin8 + P Q rttrtt A t, , t s'(ot)
tt' l&/' j( j'

XIm[as„(l)est ss (l')],
' L. Wolfenstein, Ann. Rev. Nuclear Sci. 6, 43 (1956l.
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TABLE I. Polarization between second and third resonances for various amounts of absorption in the resonant states.

Assignment of second
and third resonances

P(2) 1.0, P(3)
——1.0

x=0.3 x= —0.3

Polarization P (x)
p, (2) =1.0, p(3) =0.5

x=0.3 x= —0.3
p(2) =0.5 p(g) =1.0

x=0.3 x= —0.3

~I3
DI3
&13
D13

D15
DI5
~15
~I5

+0.97—0.97
+0.97—0.97

+0.97
+0.97—0.97—0.97

+0.90—0.90
+0.90—0.90

+0.90
+0.90—0.90—0.90

+0.70—0.70
+0.70—0,70

+0.70
+0.70—0.70—0.70

where

~ t t '(&) = (j+z)(—1)'+"+'P)(*)dP) (*)/d~
—(j'+-')(—1)'+'+lpt (x)dpt(x)/dx,

and Io is the unpolarized cross section, which is given by

Particular states are referred to as S~~, P~3, etc., where
the hrst subscript is twice the isotopic spin and the
second subscript is twice the total angular momentum.

any of the four possible angular momentum assignments
(assuming j=-', for the second resonance and j=z for
the third). This assurance is subject somewhat to
limitations on the relative amounts of absorption in the
two resonant states.

We shall write the amplitudes for the second and
third resonances as a(&) and a(3), respectively. Then we
consider the situation corresponding to "maximum
overlap":

(z(s) p(s) (z—1)/2, (z(3} z((3) (z+ 1)/2.

3. ABSORPTION AND THE MORAVCSIK METHOD

Before looking at the effects of absorption we shall
comment brieRy on the Moravcsik method in general.
The essential feature of the method is that the inter-
ference between two large amplitudes that are 90' out
of phase will dominate over the interference of much
smaller amplitudes and tend to give a rather large
polarization. The absence of such a dominant interfer-
ence will in general lead to a smaller polarization, if any.
Thus, for example, between the first (Pss) and second
resonances, at 0= 90', we will have a large interference
between resonant amplitudes if the second is D~3, while
we will have no interference if the second resonance is

8~3. Actually, there are two difhculties involved in this
example. In the first place, phase shift analysis" shows
that 8»(P) is already 135' at 310 Mev while neither
8»(P) nor 8»(D) is large, so that it seems unlikely that
"maximum" interference is ever attained between the
first and second resonances. Secondly, in the event that
the second resonance is 8~3 we should expect to find a
"small" polarization; but in fact this "small" polariza-
tion (i.e. , polarization arising from the interference of
small amplitudes with one another and with the reso-
nant amplitudes) can be quite sizeable. The result of the
above is that most likely no clear-cut choice can be
made between P» or D» by measurement of the recoil
polarization between the first and second resonances.

The situation between the second and third reso-
nances appears to be more favorable since there is
greater "overlap" here and by looking at a suitable
angle we are assured of obtaining a large interference for

'O. Chamberlain, J. Foote, E. Rogers, and H. Steiner, Phys.
Rev. 122, 959 (1961).

~ V. G. Zinov, S. M. Korenchenko, N. I. Polumordvinova, and
G. N. Tentyukova, J. Exptl. Theoret. Phys. (U.S.S.R.) 38, 1407
(1960). LTranslation: Soviet Phys. —JETP 11, 1016 (1960)j.

From Eq. (1) we see that p(s)=p(3) 1 indicates that
both resonances are elastic while p(2) =p(3) =-,' indicates
the maximum possible absorption in each resonant
state. Using only resonant amplitudes, the polarization
has been calculated for the various possible angular
momentum states and for different degrees of absorption
in the two resonances. Since the two amplitudes are
taken to be 90' out of phase, the angular distribution
will be symmetric about 8= 90' and hence the polariza-
tion will be symmetric (or antisymmetric) about 8=90'.
Furthermore, the value of the resonance polarization is
quite insensitive to small background amplitudes pro-
vided it is close to unity; for this reason it is desirable to
make observations near an angle at which the resonance
polarization peaks. It was found that x= %0.3 is quite
close to the peak position in all situations. The polariza-
tion at these angles is given in Table I. The peak value
is smallest for the case in which the second resonance is
completely absorptive (z((s~ ———,') and the third resonance
is completely elastic ()z(s) ——1). This situation will tend
to be more sensitive to the presence of small amplitudes
than will the other situations. The results of Table I are
in qualitative agreement with the results obtained by
Moravcsik.

4. VARIATION OF THE POLARIZED
CROSS SECTION WITH ENERGY

In order to discuss the energy dependence of the
polarized cross section in the vicinity of a resonance, we
need to specify the energy dependence of the amplitudes
involved. The simplest procedure is to describe the
resonant amplitude by a Breit-Wigner formula and to
assume that all other amplitudes are independent of the
energy. If we specify the resonant state quantum
numbers by capital letters, then the energy-dependent



RE CO I L POLARIZATION F ROM m —p SCATTERING 1973

part of the polarized cross section is given by

where
IOP g = (2/k') sinHgr Im[0 (8)a2r 2q(I )),

Q(8) =g A ~~.r ~(x)at~a~~ 2t(l)

a, r g(L) = ——',I'o/(E —Eg+-,'I').

r, and F are the "particle and "total" widths, respec-
tively, E is the total energy in the c.m. system, and E&
is the resonance energy. The resonance is elastic when
Fp =F and is most absorptive when Po= ~F. It is easy to
see that k'IOP J, peaks at E=E~+-,'I' tan[-', P(8)) and at
E=E~—~~r cot[~~p(8)) where tang(8) = ImQ(8)/ReQ(8).
If we restrict the energy range so that Ez——,'F &E&E&
+-',r then only one peak will be observed except when

Q(8) is purely imaginary. In, this case k'IOPE peaks at
E=E~—2F passes through zero at resonance, and then
peaks with the opposite sign at E=E~+-',I'; it is
antisymmetric about the resonance. Another special
case occurs when Q(8) is real. Then k'IOPs peaks at and
is symmetric about the resonance. We can obtain some
information about the relative importance of various
background amplitudes if we should observe that the
polarized cross-section peaks at the resonance for some
angle 0. As an example, suppose we observe a peaking
at the resonance when looking at 0=90'. Then we have
the condition:

ImQ (m/2) =0.

If we suppose that we are at the second ~ —P resonance
and that it is D~3, then the above condiiion can be
expressed as

2 Imau (P)+ Ima3 (P)—2 Ima~3 (P)—Ima33(P)
—3 Ima~q(F) —

2 Ima3q(I') = 0,

where we have kept terms up through j=—', . This condi-
tion could be made more restrictive by using some
information from phase shift analysis at a lower energy.

With some algebraic manipulation it can also be seen
that if 8~ is an angle for which Pr, (x) vanishes, then
P(Hz) is simply the phase of the nonresonant part of the
non-spin-flip amplitude (at 8=8g). This phase could be
obtained by looking at 0=0& and observing the energy
at which k'IOE peaks. Similarly if 0& is an angle for
which dPz, (x)/dx=0 then P(8~') is the phase of the
nonresonant part of the spin-Qip amplitude.

It should be noted that the amount of absorption in
the resonant state, as indicated by the ratio I'o/I', does
not inAuence the shape of the polarized cross section as
long as we use a Breit-Wigner formula for the resonant
amplitude.

As a second application of the energy dependence of
the polarized cross section, we consider the situation in
which a single resonance (or two resonances with little
overlap) occurs in the presence of numerous background
states which may contribute considerably to the polari-
zation. The distinguishing feature of the resonant

A ~J, »(1)= (i+i) ( 1)'+'+—'*L(L+1)/2
—(I+g) (—1) '+~'+~l(l+1)/2.

We now consider the four possible cases:

If L=T+-'„ l= j+
if L=I+
if J=J—-'„

if I.=J——,',

1=j—2

then A &, I,q(1))0 for L)l;
then A~, , l, q(1))0 for all l; (2)

then A~, , r, q(1)(0 for all l;
then A ~, , r, q(1) (0 for I.)l.

By continuity there is some angle 8&)0 for which the
inequalities (2) are still valid. The value of 80 taken
depends on how large a value of l is thought to be
important.

We now make two assumptions: (a) All the energy de-

pendence is in the amplitude a2 r 2 J(L); (b) Rea2 r 2 J (L)
is a decreasing function of the energy across the reso-
nance. We do not assume that a2r 2q(L) is described

by a Breit-Wigner formula. If we let E& be some energy
below the resonance and E2 be some energy above the
resonance, then

A(IOP) =IOP(E2) —IoP(E&)

=2 sine& A„:»(x)q, rtr

X{Rea„„(l)6[(1/k')Ima2r gJ(L))
—Ima2, ~;(l)6[(1/k') Rea2r 2z(L))).

Now (1/k') Ima2r 2q(L) is proportional to the total
cross section in the resonant state and, by as-. umption
(a.) above, changes in the total cross section as we pass
through the resonance are due to changes if the contri-
bution from the resonant state. Hence

A[(1/k') Ima2r 2g(I)7~ Ao"'.

If we pick E~ and E2 such that o"'(E,)=o"'(E2) and use

' S. Hayakawa, M. Kawaguchi, and S. Minami, Progr. Theoret.
Phys. 11, 332 (1954).

amplitude is its rapid variation in the resonance region
compared to the slowly varying background. It is just
this feature which can be utilized to give some indication
of the parity of the resonance (we assume knowledge of
the total angular momentum).

First, we note some properties of the quantities
A &;,»(x) (l, j refer to nonresonant states and, as before,
L, I refer to the resonant state). It is possible to show

that
A;+;;,g+; J(x)= —A;;, , g; g(x),

and
A;+.. ., g; g(x)= —A;;;,J+, g(x).

These relations are related to the Minami ambiguity. '
Since

Pq(1) = 1 and dP~(1)/dx= l(l+1)/2,

we can write
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assumption (b) to indicate that EL(1/k') Reosr sz(L)7
&0, we arrive at the result

h(IoP)=y Q Ai, , r, q(x) Imasi s;(i),

where p is some positive quantity. By unitarity we also
know that Ima„, , (l) ~&0. Reference to the inequalities
(2) now indicates that if L=J+sr then A i, zq(x))0
except when /= j+sr andi) L (provided 0 is sufficiently
small). But, if L=J ,', then—A—i;,z, q(x)(0 except when
1=j—

2 and l&L. If partial waves with /)L are as-
sumed to be unimportant, then we have the result

A(IsP))0 if L=J+
~(I,P)(0 if I.=J—-', .

As an example, let us take the second and third w —p
resonances and, contrary to the assumption in Sec. 3,

assume that they are sufficiently separated so that the
amplitude of one can be regarded as constant over the
other's width. Then calculations indicate that 8=40'
should be small enough for the second resonance, while
0=30' is required for the third resonance.

cVote added in proof B.all and Frazer have suggested
recently )Phys. Rev. Letters 7, 204 (1961)7 that a
rapid rise in the rr-p absorption cross section will cause
a peak in the elastic scattering. The use of a Breit-
Wigner formula in Sec. 3 implies, of course, that there
is a peak in both the absorption and elastic cross sections,
and that the ratio of the two cross sections is constant
for constant Fp and F.
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Using an extension of the Chew-Low extrapolation procedure, the F+S~ Y'+E+m- differential cross
sections have been calculated. The calculation requires a knowledge of the energy dependence of the total
pion-hyperon elastic scattering cross sections, for which we have made use of the results of Dalitz and Tuan
based on the analysis of K—X data, The effect of Y1* in the present processes appears in the strong peaking
at low energy and a "knee" at a higher energy in the energy spectrum of the recoil nucleon. In view of the
rare strong decay of P &* ~Z+7r, it is suggested that the reaction A+X —+ A+N+m. would be best suited for
experimental study.

INTRODUCTION

'HE existence of a A —w resonance (denoted by I'i*)
in I= 1 state at 1385 Mev in E +p —+ A+w+vr is

now firmly established by recent experiments. ' Dalitz'
has interpreted Ft* as a bound state of the IC —p
system with angular momentum J=~ and a strong
decay via 5; if the E—A parity is odd. Block et al. ' have
analyzed the data on the production of Vt* in E +He'
reactions, assuming an initial 5 wave and neglecting
final-state interactions. Their analysis favors J=-,'but
this conclusion is severely limited by their assumptions.
Recent data of Berge et a/. 4 on I'1*points to a odd E—A

parity and J= ~, though 7=+2 is not excluded.
We have recently' pointed out that I'1*should also be

observable in the reactions

V+X —+ F'+iV+m, (1)
' M. M. Alston et al. , Phys. Rev. Letters 5, 520 (1960);O. Dahl,

et al. , ibid. 6, 142 (1961).
R. H, Dalitz, Phys. Rev. Letters 6, 239 (1961).' M. M. Block et al. , Nuovo cimento 20, 715, 724 (1961).

4 J. P. Berge et al. , Phys. Rev. Letters 6, 557 (1961).' $, N, Biswas and V. Gupta, Nuclear Phys. 24, 620 (1961).

where I' or I"stand for either the A or Z hyperon and rV

represents a nucleon. In reference 5, on the basis of
charge independence, gross tests (like inequalities and
equalities) were pointed out to test the existence of a
I'1* as a dominant I= 1 isotopic spin state of the pion-
hyperon system. In this paper we present the calculation
of the energy spectrum of the recoil nucleon in reactions
(1) as a specific test of the existence of I'i*. The method
of calculation is analogous to that used for one-pion
production in nucleon-nucleon collisions and is based on
a generalization of the "extrapolation method" of Chew
and Low. ' The details are given in Sec. II.

The m —I' scattering cross sections used in the calcula-
tion are those predicted by Dalitz and Tuan, ' from low

energy X—E scattering data. The advantage of using
the above approach is that it enables one to correlate the
cross sections, etc. , for reactions (1) with the parameters
for E—E scattering and absorption.

s F. Selleri, Phys, Rev. Letters 6, 64 (1961); V. N. Gribov,
Zhur. Eksp. i Teoret. Fiz. (to be published).' G. F. Chew and F. E. I.ow, Phys. Rev. 113, 1652 (1959).' R, H. Dalits and S, F, Tuan, Ann. Phys. 10, 507 (1960).


