
REACTIONS OF o, PARTICLES WITH Sn''4

as the experimental results. However, the curve com-
puted from evaporation theory, just as in the case of
the (cr,ss) and (II,P) excitation functions, attains its
maximum value and then decreases rapidly; in con-
trast, the experimental curve appears to be just ap-
proaching its maximum at 42 Mev. Thus, again it
appears that some non-compound nuclear process is in
effect in the (n, rest) reaction.

It could well be that the data, although not explicable
in terms of the simple evaporation calculation de-
scribed herein, may fit within the framework of the
compound nucleus model. On the other hand, calcula-
tion of excitation functions based on some direct-
interaction mechanism would be extremely useful in
the analysis of the data; unfortunately, no such calcula-
tion is available at the present time.

V. CONCLUSIONS

The optical model calculation of the total reaction
cross section appears to agree within 16% with the
sum of experimental cross sections in the region of
36 Mev. In terms of the approximate form used for the

continuum theory cross section, a value of re=1 7.
fermis is indicated.

The statistical theory of nuclear reactions predicts
values for the (rr, p) and (n, ss) cross sections which are
in agreement with the experimental data in the energy
range of 18—24 Mev. An a=1.6 Mev ' appears to give
the most satisfactory fit. However, the high-energy
tails of the (cI,P) and (II,N) excitation functions cannot
be reproduced by the theory. Evaporation calculations
of the (n, IIss) excitation function, using II=1.6, yield
excitation functions of the required magnitude; how-
ever, the experimental data do not appear to be the
result of compound nuclear processes.
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A modification and generalization of the PuG-Martin model
for many-fermion systems is employed to calculate nuclear
compressibility and symmetry energy in order to provide a
practical test of the model and at the same time obtain useful
information about these interesting quantities. An alternative,
heuristic, derivation of the PuG-Martin equations is presented in
order to exhibit the role of the exclusion principle. The condition
stated for normal nuclear matter is that the mean binding energy
be minimal (with respect to variation of the Fermi momentum)
rather than the Puff-Martin condition that the mean binding
energy equal the "single particle" energy at the Fermi surface.
These two quantities differ from each other by the rearrangement

energy, which is found to be 10 Mev. Employing Puff's potential
(hard-shell potential plus a separable Yamaguchi potential,
acting only in relative S states), satisfactory agreement is obtained
with observed binding energy and density. The value of nuclear
compressibility, 214 Mev, falls within the wide range of semi-
empirical values. The symmetry energy coefficient, 43 Mev, is
larger, by 40—80%, than those usually quoted in semiempirical
mass formulas. However, our value of the symmetry coeScient
is the same as that calculated by Brueckner and Gammel in the
absence of odd-state forces; they found the coefBcient to be
reduced to 26 Mev when a more realistic potential, including
odd-state contributions, is employed.

I. INTRODUCTION

A RELATIVELV simple procedure for calculating
properties of nuclear matter has been devised by

Puff and Martin, ' based upon the formalism of Martin
* Supported in part by the U. S. Atomic Energy Commission.
$ NATO Postdoctoral Fellow. Present address, Departent of

Physics, University of Maryland, College Park, Maryland.
tt From August 1961 to August 1962, Senior National Science

Foundation Fellow, Weizmann Institute of Science, Rehovoth,
Israel.' R. D. Pu6 and P. C. Martin, Bull. Am. Phys. Soc. 5, 30 (1960);
R. D. Pu6, Ann. Phys. 13, 317 (1961).

and Schwinger. ' Their approximation may be arrived
at in the following manner: First the two-body problem
is solved as a function of energy ("off the energy shell" )
in the absence of other particles; the center-of-mass
and relative motions separate in this case. Then the
Fermi sea is filled loosely according to a prescription
which satisfies the exclusion principle in an average
way. The loose packing is essential, since two-body
scattering is allowed to all final states.

2 P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959).
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The method treats "properly" two-body correlations,
but approximates three- and four-body correlations.
This is true also of other methods, such as that of
Brueckner, ' in which, to the same order, the Fermi sea
is tightly packed but two-particle scattering is not
allowed to states inside the sea. The difference between
the methods arises from the treatment of higher
correlations. An advantage of the Puff-Martin method
lies in the simplicity with which the two-body reaction
matrix can be obtained. The diagonal elements for
S-wave scattering depend only on two parameters
(relative momentum and energy) compared with four
parameters (the magnitudes of the two momenta, the
energy, and the density) in the Brueckner formulation.
For special forms of potentials, analytic expressions for
the reaction matrix can be derived.

It is difricult to make a careful estimate of the correc-
tion terms in the Puff-Martin method, although their
investigation of the presumably most important omitted
terms indicated an error of less than 10'%%uo in the
energy per particle and mean separation distance. By
using a simple, separable two-body potential which
fits the low-energy nucleon-nucleon scattering data and
the 310-Mev 5-wave phase shift, they obtained the
remarkably good value of 14.7 Mev binding energy per
nucleon and a fair value (0.92 f compared with the
Stanford value of 1.07 f) for the internucleonic distance.
The potential contains no tensor or spin-orbit compo-
nent, so it is not clear whether the interaction is
adequate.

An important question arises concerning their
treatment of rearrangement energy. It follows from the
saturation condition alone that the separation energy
of the "last" particle must equal the mean binding
energy. It is not trivial to identify the separation energy,
however, since one is not dealing with a truly independ-
ent particle model. The removal of a particle removes
not only its kinetic and potential energy, but results in
a rearrangement of the remaining particles which, in
turn, affects their mutual interactions. Similar questions
were raised by Hugenholtz and Van Hove4 in the
Brueckner theory, and the rearrangement terms were
later identified by Brueckner. '

The Puff-Martin condition for the ground state is
that the independent-particle energy (kinetic plus po-
tential) of the "last" particle be equal to the mean
binding energy. We discuss below why we believe the
condition should be that the mean energy per particle
is minimal. In re-solving their equations to minimize
the energy, we found the rearrangement energy to be
almost i0 Mev for this model.

In order to obtain further tests of the method, as

' A survey of recent progress in the Geld is given in The 3farIy-
Body Problem, Les Houches session of 1958 edited by DeWitt
(John Wiley 8t Sons, Inc. , New York, 1959). A list of references
is given by K. A. Brneckner s.nd J. L Gammel, Phys. Rev. 109,
1023 (1958}.

4 N. M. Hugenholtz and L. Van Hove, Physica 24, 383 (1958).
~ K. A. Brueckner, P&ys. Rev. j.lo, 597 (j.958).

well as for intrinsic interest, calculations were carried
out to determine nuclear compressibility, symmetry
energy, and other symmetry phenomena.

Empirical estimates of the symmetry energy are
available from the coefIicient of the (X—Z)'/A term
in the semiempirical mass formula. The value is not
well determined even when a good fit to nuclear masses
near the stable valley is obtained. It would be desirable
to fix the coefficient more precisely in order to predict
nuclear masses far from stability. Such masses are
seldom measurable, but are of importance in astro-
physical problems and in the theory of nuclear fission.

Compressibility can be inferred only through model-
dependent arguments. The phenomenon would be more
interesting if nuclear matter were softer to compression.
As it is, collective compressional oscillations lie too
high for identification except in light nuclei, where
surface and shell effects play an important role. Semi-
empirical estimates of the compressibility coefFicient
do give a lower bound to the coe%cient and thus provide
a meaningful comparison with the present calculations.

In Sec. II an heuristic derivation of the Puff-Martin
equations is presented to give an alternative view of the
method. A brief but generalized outline of the Puff-
Martin derivation is also given. In Sec. III the results
of numerical calculations are presented for the case of
normal nuclear matter, X=Z, and also for the case of
X&Z. From these calculations nuclear compressibility
and symmetry energy are deduced, along with the
dependence of other quantities on E and Z. In Sec. IV
comparison of these calculations is made with experi-
ment and other theories.

II. PUFF-MARTIN EQUATIONS

A. Heuristic Derivation

We present here an intuitive approach to the Puff-
Martin equations which may help towards a better
understanding of the method. Particular emphasis is
laid on the role of the exclusion principle.

We seek a self-consistent approximation which
treats the detailed scattering between two particles
exactly while representing the dynamic effect of all the
other particles by some average potential. In the same
manner we will treat the exclusion principle exactly for
the two-body event (i.e., the wave function is anti-
symmetric in the two particles), but only in some
average manner with respect to all the other particles
(i.e., the two particles cannot, "on the average, "
scatter into already occupied states). We may consider
this approach as an improvement to the Hartree-Fock
approximation. In the latter method one considers
each particle to be moving freely except for the effects
of an external potential which represents the average
effect of the other S—1 particles. This potential is then

determined in a self-consistent manner. Here we shall

consider two particles to interact only with each other
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in the presence of an external potential which represents
the average effect of the other X—2 particles.

To see how this is achieved, consider the Hamiltonian
(@=2m= 1):

&=&o+V= —Q V''2+ Q Vg.

If we only had two particles, their wave function,
pk~, would be related to the plane-wave single-particle
functions pk (normalized in the total volume) by

VAi= &4k4], (2)

where the scattering matrix, T, obeys' (symbolically)

T= V+V T,—+0
(3)

M=Mk+(d&, (4)

where, to include the effects of the external potential
which is to represent the other Ã-2 particles, we write

~k ~ ++k.

and is a function of the energy parameter co. Here the
inhomogeneous term, V, is considered to be multiplied

by an antisymmetrical product of delta functions (see
below).

The energy, ~, is the sum of the energies of the two
particles,

particle variables. Here, while the two-body wave
function is antisymmetric (because of the antisym-
metrized product of delta functions in (3)), we must
still antisymmetrize the total E-particle wave function.
Equivalently, we must insure that the probability of
there being a particle in any level k be less than or
equal to unity. This is not trivially satisfied because
(3) allows scattering into the Fermi sea. Thus the
problem of the statistics becomes a problem of evaluat-
ing the density of states, pk.

Suppose we consider the Fermi sea to be 6lled except
for one particular level, say k (described by the single-
particle wave function pk). Now, this level is already
"partially filled corresponding to the Gnite probability
that other pairs have scattered into it. We have called

pk, the probability that level k' is occupied. Then
pk ~( 1, and pk =0 for k' &ky. The probability that level
k is occupied due to scattering from other levels is

given by
l(kll4 k'I')

~
Pk'P&r,

1k'1'

where the prime on the summation indicates that none
of l, k', 1' is equal to k.

In order to express Pl in terms of the single particle
plane wave functions, it is convenient to introduce the
0 matrix defined by

] kl ~4'k41

Comparison with (2) shows that

To evaluate self-consistently the external potential,
'0 k, we note that the energy shift of a pair of particles
is given by

VQ= T,

and that, consequently, 0 obeys,

(10)

Akl (kl~ V~] k])=(kl~ 7~kl). (6)

The total shift per particle, which we equate to '0 k,
is then

2& ~k&P~= Z~(kll ~lkl)», (7)

where p& is the probability that level l is occupied.
Before discussing p ~, it is well to note that the two-

particle scattering matrix, T, considered as a function
of cv, has a pole (i.e., a bound state) at E~, where E~-
is the deuteron binding energy, and a branch cut,
beginning at zero, along the real axis. Consequently
we can only write (5) provided the maximum energy in

the Fermi sea is less than ——,
'EI Physically this means

that single-particle levels are not stable at energies
greater than ——,

' E&, they can decay to a state of lower

energy by pairing off into deuterons which do not, in
this approximation, interact with each other. We can,
however, use (5) to describe the energy levels in the
Fermi sea of nuclear matter where the Fermi energy is
considerably less than ——,

' E&.
We must now turn to the problem of the statistics.

In the Hartree-Fock approximation, one handles this

by taking the total wave function antisymmetric in the

where the 1 symbolizes the antisymmetric product of
delta functions and corresponds to the fact that fk'
is an antisymmetric combination of plane waves in
the absence of the interaction, V. Using (1), we may
write Pk as

Zk = Q'
~

(kl
~

n
~

k'1')
)
'Pk P ('. (12)

Since there is an a priori probability that level k is
already occupied, the available phase space has been
reduced, on the average, to 1—Pk, and so pk must be
restricted to satisfy

pk )~ Pk (13)

The approximation will now be to satisfy (13) on
the average, rather than for each k. That is, we require
only that

P (1—») & g P'
~
&kl~n~ k'1)[ e»». . (14)

k~&kf k~& kf ~kr j~

~ B.A. L' d J. S h i, ph . R . 79, 469 (1950); This inequality can be satisled by extending the
M. Ge]]-]@ann and jg. L. Go]dberger, iNd. 91, 39g (1933). summation on the right-hand side over all k, and
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changing the equation to an equality. This yields, with
a change of dummy summation variables,

P (1—p„)= g P(kl[Q~Q(kl) —J(kl)Q[kl)J'gpgpg. (15)

The mean energy per particle is then given by

E Pg (k'+-,'Ug) pj,

A Qgpg
(23)

The second term in the square brackets is due to the
fact that the summation in (14) is primed, and we have
used the facts that 0 conserves total momentum and
satisfies the exclusion principle for the two body
problem (i.e., vanishes when operating on a state with
two particles in the same level).

Now, using (11) and its adjoint, and (10), one may
write

QtQ =Qt+Q —1+(Qt —1) (Q—1)

=Qt+Q —1+Qt V T.
((u —Hp)'

(16)

On the other hand, if (3) is differentiated with respect
to the parameter co, one gets

V
((u —IIo)'

T= — 1—V (17)

Combining (17) with (16) and the adjoint of (11), one
gets

Given a two-body potential, the T matrix can be
obtained from (3), once and for all, as a function of ar.

Thus the statistics of the problem have been shifted
from the T matrix to the density of states, p&. This
latter is determined by solving Eqs. (5) and (21)
simultaneously as a function of kf. The Fermi momen-
tum, kf, is in turn determined by minimizing the mean
energy per particle (23).

B. Green's Function Derivation

We present here a brief outline of a derivation of
the approximation due to Martin and Schwinger, ' and
Pu6 and Martin. ' We have extended it to include the
case of unequal numbers of neutrons and protons. One
advantage of this approach is that the approximation
is more explicitly stated, and hence subject to numerical
evaluation, a point to which we shall return. It also
serves to point out other aspects of the approximation
and to allow generalization to finite temperatures,
unbound systems (e.g., superconductivity) 7 and to
systems with Bose statistics.

Consider the Hamiltonian

so that K= H pA vI)

where H is the usual Hamiltonian (A=2m= 1),
(193

(24)

Since both (BT/Bco) and (1—Q) vary inversely as the H d ~&( & )( &,)~( & )+~
volume, the square of the latter can be neglected. Thus
(15) may be written as

BT)
Z (1—~~)= —Z k&

I
k& p&p&

k~(kf R1 l9Mf au =rug+aq

&&4'(r~&~)4'(r2&~) V(r~r2; rar4)4 (r~&~)4 (r~&~) (25)

The number of particles operator, A, is given by

BUg
pk)

BMg
(20) dry tP (ryly)P(ry$y), (26)

where use of (7) has been made. This equality may be the proton excess (Z—Ã) operator, I, is

satisfied term-by-term by setting

pk 1
O'Ug

BGO&

k~& kf,

I lrl lp(rill)t3$(rl/1) (27)

=0, k&k&. (21)

This completes the approximation. LOne may note that
if only the lowest-order approximation to (3) is used,
one gets the Hartree-Fock approximation. Thus

'UP =Pg Dkl~ V~kl) —(kl) V~1k)]p&, (22)

which is independent of cv. Consequently (21) reduces
to the usual non-interacting Fermi gas distribution. )

and p and v are Lagrange multipliers. The anticommut-
ing field operators, P, have four components, two in spin
space and two in isotopic space (the latter will some-
times be indicated by a Greek subscript). The matrix r3
has only diagonal matrix elements, r, = a1. In (25) we
have allowed for a nonlocal two-body potential.

The m-particle Green's operators are defined (for

' A. J. Cantor and P. C. Martin, Bull. Am. Phys. Soc. 3, 202
(1958).
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n= 1 and 2) by

gi, .(1,1')=—i(f (1)ii' t(1'))+e(Ziti')v

gs,. p, p (1,2; 1',2') = —(it (1)fp(2)gp. t(2')P t(1'))+
X e(444'4')

v (29)

where the subscript + means positive time ordering,
and the e's are antisymmetrical in their arguments and
equal to +1 when the time order is as written. We
write (1') for (ri'ii'), etc. Averaged Green's functions
are de6ned by

Q, (AEI«l g„l AEI«)
G.= [AEII g„IAEI]= (30)

P& (AEI«l AEI«)

where
I AEI«) is a state of a given A, E, and I (eigen-

values of the operators A, H, and I), and any other
quantum numbers «.

The G„obey a set of linked equations, the 6rst few
of which may be written as

obeys, in momentum space,

(«kl 2'rr;-p-p (M) I
«k')

=[(«kl Ul «k'»- ~pp -(«II vl «-k')~-'~p. ]
ff

+ («k I
v

I
«k")Ax,.p(k",M)

(2zr) '
x(«k"

I
Trr,.p .p (M) I

«k'), (36)

where «refers to the spin state of the two scattering
particles; P is +1 for the spin triplet state and —1

for the singlet state; the momenta are written in terms
of the center-of-mass momentum, K=ki+ks, and the
relative momentum, k= si (ki—kz); and 4 is the factor
resulting from the product GiPGiP in (33). For a finite
temperature, signified by P = 1/k T,

Ax .,(k",M) =
1+exp[ P(k—i"'

zz
—i r —)]

8
+Vis+@+pr G, , p'(1, 1')=8 p5(1,1'), (31)

Bt'1

Gi(1,1')=Gis (1,1')+Gis (1,2) U(23; 45)Gz(45; 3+1'), (32)

and (combining several equations),

Gz (12,1'2') = [Gi(1,1')Gi (2,2') —Gi (1,2') Gi (2v 1')7
+Gis (1,3)GiP (2,4) V(34; 56)GZ(56, 1'2')

+Gi'(1,3)G&'(2,5)U(34,3'4') V(56,5'6')

X fG4(3'4'5'6', 6+4+1'2')

[Gz(3 4 v4+1 )Gz(5 6 i 6+2 )
—Gz(3'4', 4+2')Gz(5'6' 6+1')]}, (33)

where (1+) means we are to evaluate at a time infini-

tesimally greater than t&. Neglecting all but the 6rst
term in (33) leads to the Hartree-Fock approximation.
Corresponding to our desire to treat two-particle
correlations exactly, but to treat higher order correla-
tions in some average manner, we terminate the series

by neglecting the four-particle correlation term in

(33), i.e., we set

1+exp[—P(kz" s—
zz
—i r„)]

x . (»)
~1 2 ~2 2

iG. (rt, r'i') = w
dk CM

&
jk. (r—r ')—nv(t —t ')

(2zr)s 2zr
A (k,M)

x , (»)
1 +&~P(cu Iv, vr~)——

Thus A is a product of a statistical factor (in brackets)
and a two-particle noninteracting propagator 1/(M —Hp).
The factor iz+z r„may be shown to be the Fermi energy
of particles of type n, and is, consequently, negative for
a bound system such as nuclear matter for su%ciently
small X—Z. Hence in the zero-temperature limit
(P-+ po), A. reduces simply to 1/(M —Hp) and we see
that (3) is a direct consequence of the approximation
(34) for a bound system.

The statistics, of course, reappear in the density of
states. The one-particle Green's function for particle
of type o. may be written in the spectral form'

G4(3'4'5'6'; 6+4+1'2') =Gs (3'4', 4+1')Gz (5'6', 6+2')
—Gz(3'4', 4+2')Gs(5'6', 6+1'). (34)

the upper sign corresponding to t)t' and the lower

sign to t(t'. With this form, Eq. (32) becomes an
equation for the spectral densities A (k,M), which,
with (36) and (35), may be written in the form'

The fact that this choice of G4 is not completely anti-
symmetric means that the statistics, as well as the
dynamics, are being treated in some average manner.
The resulting asymmetrical appearance of unperturbed
and perturbed Green's functions in the equation for
G2 rejected in the appearance of the exclusion principle
not in the T matrix but in the loose packing of the
Fermi sea. We see this by noting that the T matrix,
de6ned by

A. (k,M) =i
-M+Ze k U~(kv M+Ze)

, (»)
M —ze —k Uv(kv M ze)

VG2= TG1G1,
8 See reference 2, particularly Eqs. (5.86) to (S.90) and the

(35) ensuing discussions.
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where

'U (ki, (ui) = dk2 dQ) 2 2 (kkl 2'x;-v -~(»+~s)
l
~k)

(2')s 2s. ~, f

particle of the system is dered by

(50)

o~.(k) =k'+'U. (k,ce (k)), (43)

A, (k,)ce,)
X

1+p@+2 s v—ry)—

+Lterms tending to zero as P —+ ~]. (40)

As noted in Sec. II-A, because the T matrix is the
ordinary two-particle scattering matrix, in the limit
of zero temperature, it is continuous across the real ~
axis provided both particles are in the Fermi sea. In
this limit then,

'U (k, cu+se)='U (k, ~ ie),—oi(p+ur ( ,'Eg. —(4—1)

Equation (39) may then be rewritten, under these
conditions, as

A (k,(u) =2s.8(n —k' —'U (k,ce))

=2~p (k)3(co—a) (k)), (42)
where

where
BE~ ci E)
BVI g, l Bp Al r, r,

(51)

As suggested by the heuristic derivation of II-A, (52)
may be viewed as the self-consistent solution for the
single-particle wave functions pk, which, for an infinite

medium, depend only on the density.
If we had a truly independent-particle model (I.P.M.)

or a "normal system, '" then it would follow that

Eg= p (I.P.M.) (53)

since E/A is a function only of p. A system which is
held together by its own forces, such as nuclear matter,
will achieve a 6nite density in the absence of any
external pressure. This density may then be determined

by I'=0, i.e.,

(52)

and

ci'U. (k,ce)
p (k)= 1—

=~a(k)—

in which case one would also have as the condition
when I'=0

p= E/A. (I.P.M.). (54)

v.(k„~)=P pp(ks)
P kp&~krp (2ir)

XQ ((k~ &rr,.p,.p(~+~p(ks))
~
gk). (45)

The density, the proton excess, and the energy are then
given as

I 2—=-Z
A p ~

,p-(k),
k&k,.(27r)'

r p. (k),
&k,.(2')s

(46)

(47)

and
E 2 dk—=-Z, L&'+s'U-(k, ~-(k))jp. (&) (48)
A p k&k,.(27r)s

ce~(kg~) =li+ pr~. (49)

The separation, or binding, energy of the "last"

These equations are the same as those in Sec. II-A,
a,nd, as indicated there, one solves (36) as a function of
cu. One then simultaneously solves (43), (44) and (45)
as a function of the proton and neutron Fermi levels,
ki . These latter are determined by equating (47) to
one's choice of I/A, and minimizing (48) with respect
to the density (46).

The Lagrange parameters, although not needed for
the above, may be determined by the conditions

In fact (54), rather than (52), is the condition used by
Pu6 and Martin in solving for the case of normal
nuclear matter with I=O.' Unfortunately, despite the
appearance of (42), we do not have a completely
independent-particle model, as can be checked by
comparing EIi and p at the energy minimum (52).
The difference between these two quantities, referred
to as the "rearrangement energy, " is nearly 10 Mev
in this model. On the other hand, even if nuclear
matter is actually an example of the elusive normal
system, ' " the approximation (34) destroys the validity
of (53). The application of QJ(k) will not actually
change the energy by co (k). The independent-particle
character of (42) cannot be valid for the exact solution
which will exhibit the more general form (39). We
believe there is no basis for using (54) as the normal
density condition.

As to the question of the error introduced in (33) by
the approximation (34), an estimate of this may be
obtained by evaluating the contribution to G2 of the
last term in (33) using a fully antisymmetrized combina-
tion of Gs's for G4 (18 terms). The terms which might
be expected to give the largest contribution are those
which would ordinarily cancel the terms allowing
scattering into the Fermi sea; that is, the important

' This result, (54), is evident for an independent-particle model
[see V. F. Weisskopf, Nuclear Phys. 3, 423 i1957lg, but has
also been proven in the more general case of the "normal system"
[see references 4 and 2, and also A. Klein, Phys. Rev. 121, 950
(&96&)j' c.f. L. N. Cooper, Phys. Rev. 122, 1021 (j.961).
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terms should be those which involve exchange of the
scattered particles with Fermi sea particles. There are
four such terms, and indeed PuG found that they gave
the dominant contribution in his error estimate.
Unfortunately he only considered 6 of the 18 terms,
including only two of the four "important" terms.
His choice was dictated by the fact that, since the
potential is large only at small distances, the neglected
term in (33) gives its major contribution for 3' close
to 4' and 5' close to 6'. He therefore selected the six
terms with 3' and 4' correlated (and therefore with 5'
and 6' correlated). As the full 18 term G4 has an overall
factor of 1/3 which Puff's 6 term G4 does not, his
estimate may be expected to be fairly good. This
estimate indicates an error in the mean energy per
particle of less than about 2 Mev, and, if we write the
density as

(55)

then the error in rs due to (34) should be less than
about 10%. Any additional error would be due to the
choice of two-particle potentials.

III. NUMERICAL RESULTS

A. Puff-Martin Potential

%e adopt for our calculations the potential used

by Puff and Martin. This consists of the sum of a
Yamaguchi potential, " which is operative only in
relative S states, and the S-wave part of a hard-shell
potential. The potential was chosen of this form
primarily because it allows an analytic solution for the
T matrix. The parameters were adjusted to give the
experimental singlet and triplet scattering lengths and
effective ranges, the deuteron binding energy, and the
singlet phase shift at 310 Mev."This potential does not
contain spin-orbit or tensor components. The latter
appear to contribute significantly (perhaps a few Mev)
to binding energies, so the absolute energies which
emerge from this calculation may not be too signi6cant.
However, because the net binding energy is only about
—,'or 3 of the individual kinetic and potential terms, for
our purposes (namely relative energies as a function of
density and neutron-proton difFerence) we believed
the potential to be adequate.

The Fourier transform of the potential is given by

1 sinkr, sink'r,
(y~V~g)= »m 27,.

(2m)' k k'

—2X( (56)
(I '+p»') (&"+p»')

"Y.Yamaguchi, Phys. Rev. 95, 1629 (1954).
'2 This was done prior to the fits at 310 Mev by M. H. Mac-

Gregor, M. J. Moravscik and H. P. Stapp Lcf. P. S. Signell,
Phys. Rev. Letters 5, 475 (1960)g; this is probably as good as
anything else. However, it may be expected to have some eGect
on the higher energy dispersive properties of the medium, and
hence on the results calculated here, which are fairly sensitive to
the behavior at the Fermi surface.

P,=2.004f ' Pg=2.453 f '

P '/s. 9. =0.224, P&'/n. 9 (=0 172.
(57)

From (45) we see that we only need the T matrix
summed over spins. It is easily seen from (36) and (56)
that
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=-', (sk
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B. Nuclear Compressibility

The Puff-Martin equations (43), (44), and (45) were
solved numerically on an IBM-709 computer and the
results used to calculate the mean energy per particle
(48) as a function of internucleonic separation rs. The
calculation was erst performed for the special case
I/A=O. Under these circumstances, kr, p (k), and
co (k) are all independent of n. The results are plotted
in Fig. 1. The error due to computational methods is
probably less than 0.1 Mev. A least-squares fourth
order polynomial has been fit to the nine points cal-
culated and is drawn as a smooth curve in the figure.
Expressed as an expression about the minimum, rpp,

the polynomial is given

Z/2 = —17.58+105.01(rs—roo)' —291 61(rs—res)'

+387.03(rs —rso)' Mev, (60)

with rp and rpp measured in fermis. The energy minimum
occurs at

rpp= (1.01s&0.01) f

E/A = (—17.5s&0.1) Mev.

(61)

(62)

each term of which is separable in the relative momenta,
k and O'. Here $ labels the spin state (singlet or triplet).
The potential depends only on the momenta magni-
tudes, since S-state interactions lead to isotropic
scattering.

The experimental data are fit by choosing

r, =0.45 f,
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nuclear binding energy on neutron-proton difference.
This was accomplished in the following manner. The
Fermi momenta were written as

-l2- kf kg+——r Akr. (68)

mI4X
-I5—

LLI -IS—

The parameters kr and hkr/kr were then taken as the
independent variables instead of p and I/A. Thus kf
was determined by minimizing E/A gas in Eq. (52)],
and the arbitrarily chosen Akf/kr then determined I/A.
The symmetry energy, C,~, is then determined as the
coefficient of the quadratic symmetry term,

-le—
C,r (1V—Z)'/A, (69)

Fio. 1.. Mean energy per particle in Mev as a function of
interparticle spacing ra=(4irp/3) &. The crosses are calculated
points and the solid curve is a fourth-order polynomial least-
squares Gt for the case S=Z. The )& points are calculated for
nkf/kf =0.08. The broken curve is merely a translation of the
solid curve.

in the expression for the energy. The results, displayed
in Fig. 1, correspond to

LMf/kg=0. 08,

(1V—Z)/A =0.249,

(kr);„=1.51 f ',
tThe results of PuQ and Martin, obtained using (54),
are 0.92 f and —14.9 Mev. j (ro)min= 1.05 fi

The nuclear compressibility at I=0, determined from and ieM. for the s n1metr coe~cient
the polynomial is then

O' E
E=Po = 214 3»Iev.

~~o' ~ v, r I =o

C,~=43+2 Mev.

The results suggest setting

(70)

The solutions for p(k) and to(k) at the minimum (by
interpolation between nearest calculations) are given with
in Fig. 2." Least-squares polynomial fits for these
functions are

rp(SV,Z) =rps[1+n, (E Z)'/A' j, —

happ= (1.01s&0.01) f, (72a)

n„——0.6a0.2. (72b)p(k) =0.87746+0.01422(k/ky) —0.0264(k/kf)s, (64)

and

where

The indicated error limits are our estimates of the

~(k) 116406 47 285(k/k )+183 283(k/k )s accuracy of the numerical calculations. There appeared
to be only a weak dependence of compressibility on

and
kf=1.575 f—',

ry(ky) = —27.7 Mev.

(66.a)

(66.b) 0
I.O—

x= It/kg
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(For the same density, a noninteracting four-component
Fermi gas has a Fermi momentum of 1.50 f '.)

The effective mass at the Fermi surface is given by

.9— p(x) —-20

-40

no* 2k Bk a=aq 0.58
(67)

.6—

-60 ~
X
Cl

~~
-80

3

C. Symmetry Energy

Equations (43) through (45) were also solved for the
case I/AWO in order to investigate the dependence of

.5— -100

—-I20

—-l40"Hugenholtz and Van Hove' have indicated why the calculation
of the mean energy per particle should be more accurate than that
of the single-particle energies. See also P. Mittelstaedt, Nuclear
Phys. 17, 499 (1960), for a general discussion of the rearrangement
energy.

Fro. 2. Density of states p(x) Lcf. Eq. (44)j, and the single-
particle energies ca(x)=ks+u(k) Lcf. Eq. (43)j as functions of
x= k/k'.
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(X—Z)'-
Binding energy = C,+C,r A

A'

(tV—Z)'-
A'+ Csupr+Csurf, sy

A'

+Coulomb energy+0 (A &)

+pairing and shell corrections. (73)

Values given by Green" and Cameron" for the con-
stants C» C», C, ,f, and Cs„rf ay are listed in Table I.
It is clear from this table that there is considerable
latitude in the determination of the constants, even
though both authors claim good fits to observed binding
energies over a considerable range of nuclear masses.
The non-uniqueness in the results arises from a variety
of effects, among which are: (1) uncertainties in the
empirical data; (2) treatment of specific "shell"
effects; (3) treatment of the Coulomb (ordinary and
exchange) energy; and (4) the handling of terms of
order A' (curvature effects). In regard to (4), Cameron"
proposed a formula with explicit A' terms. Green'
fit Cameron's formula (by least squares) to a formula
without A' terms; the result (column labeled "Cameron-
Green" in Table I) shows the sensitivity of the coeffi-
cients of A and A: terms to the inclusion or noninclusion
of A' terms.

Furthermore, the formulas are fit to data near the
rather narrow valley of stable nuclides. It is not clear,
for example, whether the quadratic dependence
(X—Z)'/A' is adequate as far from the region of normal
nuclear matter (E=Z) as the stable valley in fact lies.

The uncertainties in the coeScients of the mass
formula are not only of importance for comparison with
theory, but are also of importance in problems of
stellar structure and evolution, and nuclear fission
where one is dealing with short-lived species whose
masses are not now measurable. With these uncertain-
ties in mind, we now compare the calculated energies
with experiment:

IV. COMPARISON WITH EXPERIMENTS AND
OTHER THEORIES

A. Energies

From the Bethe-Weizsacker semiempirical mass
formula, the Stanford electron-nuclear scattering experi-
ments, and semiempirical models of the nucleus,
experimental information on nuclear energies and
densities can be extracted. The usual Weizsacker mass
formula contains terms which describe volume, sym-
metry, surface, and Coulomb effects. A rather general
form of the formula is given by

TABLE I. Comparison of results. All numbers except r0 are in Mev;
see Eqs. (63) and (73) for definitions. rs is in fermis.

Semiempirical
Cameron-

Greenb Green' Camerond

Theoretical
Brueckner- Present

Gammel' work

C
C,y
Csun f
Csurf, sy

Ea
rp

—15.83
23.52
17.97
0

175

—16.34
30.34
20.96—36.35

218
1.07g

—17.04
31.45
25.84—44.24

302

—15.2 —17.5
26—43' 43

172
1.02

214
1.01

Nuclear compressibility K LEq. (58) g was determined semiempirically
from the model of Berg and Wilets (reference 16). In addition to the
parameters listed directly above, the Stanford data (reference 17), ro =1.07 f
and surface thickness (90'P0 —10%) =2.4 f, were employed.

b See reference 14.
e This column represents a least-squares fit by Green {reference 14) to

Cameron's (reference 15) mass formula so that A& terms do not appear
explicitly.

d See reference 15.
& See reference 19, Table II, column C.
& The value of 26 Mev was obtained' with the "best' Gammel-Thaler

potential. The value of 43 Mev was obtained with another potential which
also yields acceptable values of the density and binding energy but, like
the one used in the present work, contains no odd-state terms (reference 19,
Table II, column 8).

g See reference 17.

1. Volume clergy. In Table I are given the results of
the present calculation for comparison with the mass
formulas. The mean binding energy, (E/A);„=C,
is in surprisingly good agreement with the semiemprical
value. Because the potential employed contains no
tensor, spin-orbit or odd-state forces, the absolute
energies could well be in error by several Mev from this
source. There appears to be no violation of the 10%
estimate by Puff of the accuracy of the model.

Z. Symmetry energy. Our value of the coefficient of
symmetry energy is larger than any of the semiempirical.
values found in Table I. The deviation from the
(X—Z)'/A law is too weak (15%in Pb"') to account for
the discrepancy. In view of the uncertainties quoted
above, it is by no means clear that this is a failure of
the model.

3. Compressibility In order to .obtain comparison
with experiment, it is necessary to appeal to semi-
empirical models. The model of Berg and Wilets"
correlates obsess ed nuclear mean binding energy,
density, surface energy and surface thickness with
nuclear compressibility K Lcf. (63)]. The values
predicted by that model from the various mass formula
parameters are given in Table I. The semiempirical
values of E thus range over nearly a factor of two, with
our value (214 Mev) included. The primary point of
interest of these numbers is that E is large, and thus
nuclear matter is relatively incompressible. Compres-
sional modes of nuclear excitation are expected to lie
considerably higher than particle modes except perhaps
in the lightest nuclei, where, unfortunately, surface
phenomena complicate the analysis.

' A. K. S. Green, Revs. Modern Phys. 30, 569 (1958); Phys.
Rev. 95, 1006 (1954); also private communication&'' A. G. W. Cameron, Can. J. Phys. 35, 1021 (1957).

"L.Wilets, Revs. Modern Phys. 30, 542 (1958); R. A. Berg
and L. Wilets, Phys. Rev. 101, 201 (1956); L. Wilets, ibid. 101,
1805 (1956).
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B. Densities

pr p/r p E,/KA, (75)

where E, is the Coulomb energy of the nucleus. For
gold, this yields an increase of 0.03& f. The two effects
give a total increase of 0.055, for a final value of

rp 1.06s f (Au——,calc). (76)

The agreement between theory and experiment is far
better than either warrants. However, the very reason-
able values obtained both for C and ro lend support to
the calculated values of compressibility and symmetry
(see "Discussion" below).

C. Comparison with Bruckner and Gammel

The most detailed calculations using the most
"realistic" potential have been carried out by Brueckner
and Gammel" employing the Gammel-Thaler" poten-
tial. Their results are given in Table I. Our calculations
are in reasonable agreement with theirs.

Brueckner and Gammel find that the symmetry
coeKcient is very sensitive to the potential used.
Employing the "best" Gammel-Thaler potential, they
obtained C,~=26 Mev. However, using another poten-
tial which contained no odd state interactions but
which also yielded "acceptable" values of the mean
binding energy, density and compressibility, they
obtained C,~=43 Mev. They attributed the reduction
of the coefficient from 43 to 26 Mev to the inclusion of

'7 A review and further references is given by D. G. Ravenhall,
Revs. Modern Phys. 30, 430 (1958).' E. Feenberg, Phys. Rev. 59, 149 (1941); L. Wilets, D. L.
Hill, and K. W. Ford, ibid. 91, 1488 (1953)."K. A. Brneckner and J. L. Gammel, Phys. Rev. 109, 1023
(1958).

'0 J.L. Gammel and R. M. Thaler, Phys. Rev. 107, 291 and 1337
(1957).

Analyses of the Stanford electron-nuclear scattering
experiments'r I assuming a p =pp(1+e '"—~'i ) ' distribu-
tion] yield a central charge density for intermediate
and heavy nuclei corresponding to

rp= (1.07+0.02) f (exptl). (74)

The present calculations give ro= j..0j.3 f for normal
nuclear matter. At least two corrections must be made
for real nuclei: (1) As indicated in Eq. (71), the nuclear
radius expands with increasing (E Z)s/2—' for fixed A.
Thus for gold (which has been particularly well studied),
this eBect would increase the calculated value by 0.024 f.
(2) The Coulomb field exerts a (negative) pressure on
the nucleus tending to produce expansion. This causes
an increase in radius given by'

odd-state forces, where both the repulsive singlet and
attractive triplet components act to lower the symmetry
energy. Since no odd-state forces have been included in
our work, we anticipate that their inclusion would also
lower our value for the symmetry coefficient.

V. DISCUSSION

The main object of this work has been to test the
validity of the very simple Puff-Martin model (regarded
as a "variational" method) and to obtain useful
information about nuclear compressibility and sym-
metry energy. The good agreement obtained between
the calculations and experiment for mean binding
energy and radius must be in large part fortuitous,
since the interaction used contains no tensor, spin-orbit,
or odd-state components (indeed, only 5-state interac-
tions are considered). The tensor force, in particular,
was found by Brueckner and Gammel" to contribute
6 Mev to the binding energy per particle; its neglect also
led to a lowering of the equilibrium density.

Regarded from another point of view, it would be a
reasonable procedure to adjust the potential parameters
to fit not only two-particle data, but to yield the
correct binding energy and radius in this model, and
then calculate with it such properties as compressibility
and symmetry energy. This would constitute a semi-
phenomonological approach to the determination of
the parameters. We are spared this added procedure.
However, fortuitous or not, the agreement attained for
the binding energy and radius lends credibility to the
other results. This is somewhat tempered by the
apparent sensitivity of the symmetry coefIicient on the
odd-state interactions found by Brueckner and Gammel.
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