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Effects of Configuration Interaction on Intensities and Phase Shifts*
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(Received July 14, 1961)

The interference of a discrete autoionized state with a continuum gives rise to characteristically asym-
metric peaks in excitation spectra. The earlier qualitative interpretation of this phenomenon is extended and
revised. A theoretical formula is fitted to the shape of the 2s2p 'P resonance of He observed in the inelastic
scattering of electrons. The fitting determines the parameters of the 2s2p 'P resonance as follows: 8=60.1 ev,
1'~0.04 ev, f 2 to 4)&10 '. The theory is extended to the interaction oi one discrete level with two or more
continua and of a set of discrete levels with one continuum. The theory can also give the position and in-
tensity shifts produced in a Rydberg series of discrete levels by interaction with a level of another configura-
tion. The connection with the nuclear theory of resonance scattering is indicated.

1. INTRODUCTION

LECTRONIC states of atoms and molecules are
& usually classified as belonging to various configura-

tions, according to the independent-particle approxima-
tion. The actual stationary states may. be represented
as superpositions of states of different configurations
which are "mixed" by the "con6guration interaction, "
i.e., by terms of the Hamiltonian that are disregarded in
the independent-particle approximation. The effects of
configuration interaction are particularly conspicuous at
energy levels above the lowest ionization threshold,
where states of different configurations coincide in
energy exactly since at least some of them belong to a
continuous spectrum. The mixing of a con6guration
belonging to a discrete spectrum with continuous spec-
trum con6gurations gives rise to the phenomenon of
aetoioeim, tioe. The exact coincidence of the energies of
different con6gurations makes the ordinary perturba-
tion theory inadequate, so that special procedures are
required for the treatment of autoionization and of
related phenomena.

A basic treatment of stationary states with con6gura-
tion mixing under conditions of autoionization was de-
veloped long ago by Rice.' It was also pointed out' that
autoionized levels manifest themselves in continuous
absorption spectra as very asymmetric peaks because, in
the mixing of con6gurations to form a stationary state
of energy E, the coeKcients vary sharply when E passes
through an autoionized level. This remark accounted
qualitatively for the character of rare-gas spectra in the
range between the two ionization thresholds corre-
sponding to the doublet (I'i and I';) ground states of
rare-gas ions. '

Interest returns to this phenomenon as more extensive
exploration of high levels of excitation is undertaken by
means of far-ultraviolet light, 4 of electron bombard-

ment, ' and also of energy transfer in molecular colli-
sions. ' It may then be worthwhile to return to the theory
of reference 2, which can be extended and improved in
several respects. In particular, we propose to analyze an
asymmetric peak of the He spectrum observed by
Silverman and I.assettre7 to the point of obtaining
parameters of the 2s2p autoionized level. The interpre-
tation of the Beutler rare gas spectra' will be modi6ed to
some extent. The objective is to present procedures that
can be applied to the quantitative analysis of experi-
mental data and to point out the significance of the
parameters obtained from such analysis.

Section 2 presents a reformulation of the theory of
reference 2, avoiding the bypass through quantization
in a Qnite box which had also been utilized in reference 1.
This reformulation brings out the connection with the
theory of scattering in the proximity of a resonance.
Indeed, the main results of this paper are implied by the
scattering theory' which deals, in essence, with processes
inverse to those considered here. Breit-Wigner cross-
section formulas will be rederived through the approach
of this paper in Appendix C. Section 3 analyzes the
experimental data on the 2s2p level of He. Section 4
extends the theory to continuous spectra of different
configurations interacting with a single discrete auto-
ionized level. This extension is relevant, for example, to
the rare gases' where a free electron in d~„d;, or s~ states
may couple with the lowest, P, state of the ion to form
three different Pj' continua. Section 5 extends the
theory to the interaction of a number of discrete levels
with one continuous spectrum.

The effects of direct interaction of different continua
(as distinguished from coupling through a discrete
level) will not be considered in this paper.

The effects of conhguration interaction upon the
position and the intensity of the lines of a Rydberg

*Note added in proof. The most relevant material of this refer-
ence is to be published by E. N. Lassettre and S. M. Silverman.
I thank Professor Lassettre for permitting me to publish his data
and for having shown me his paper ahead of publication.' O. K. Rice, J. Chem. Phys. 1, 375 (1933).

~ U. Fano, Nuovo cimento 12, 156 (1935).' H. Beutler, Z. Physik 93, 177 (1935).
4 W. R. S. Garton and K. Codling, Proc. Phys. Soc. (London) 75,

87 (1960).

1

~ E. N. Lassettre, Suppl. Radiation Research 1, 530 (1959),also,
E. N. Lassettre et al. , Repts. 1—12, R.F. Project 464, Ohio State
University Research Foundation, Columbus, Ohio, 1953 to 1958
(unpublished).' R. Platzman, J. phys. radium 21, 853 (1960l.

~ S. Silverman and E. N. Lassettre, reference 5, Rept. No. 9,
p. 12 ff.

See, e.g. , J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear
Physics (John Wiley Bz Sons, Inc. , New York, 1952), pp. 379 8., in
particular p. 401.
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series in a discrete spectrum are equivalent to the effects
on a continuum. This application will be outlined in
Appendix B.

2. ONE DISCRETE STATE AND ONE CONTINUUM

formal solution of (3b),

1
+s(E)5(E—E') Vx a,

jv
(4)

Consider an atomic system with a number of zero-
approximation states, and among these states one (y)
belonging to a discrete con6guration and a continuum
of states P~ . Each of these states is nondegenerate, all
degeneracy having been removed by specification of an
adequate set of quantum numbers (angular momentum,
magnetic, etc.). We wish to diagonalize the portion of
the energy matrix that belongs to the subset of states
p, fz . The elements of this portion of the energy matrix
constitute a square submatrix and will be indicated by

(v IHI ~)=E.
(ibg I

H
I q) = V ", (1b)

%g ——ay+ dE' bi,:Pg;, .

(P& IHIP&)=E'"e(E"—F'). (1c)

The Dirac 8 factor in Eq. (1c) implies that the submatrix
belonging to the more limited subset of states ib~. had
previously been diagonalized in the zero approximation.
(It is usually understood that a pair of states of the
same Rydberg series or continuum yields a vanishing
off-diagonal element of the energy matrix. ) It is under-
stood that the discrete energy level E„ lies within the
continuous range of values of E'.

Each energy value E within the range of E,' is an
eigenvalue of the matrix (1).The corresponding eigen-
vector, which we wish to determine, has the form

with the understanding that, upon substitution in (3a),
one shall take the principal part of the integral over
(E—E') ' and that z(E) is to be determined later.
Scattering problems usually involve conditions implying
that z=is- In. our treatment z(E) will be real."Notice
that if the states f& are represented by a wave function
with asymptotic behavior cc sinI k(E )r+b7, their super-
position with the coefficients (4) yields the following
result. The integral over the hrst term on the right side
of (4) multiplied by sinI k(E')r+57 yields, for large r,—vr cosLk(E)r+87vxa, the corresponding integral over
the second term yields s(E) sintLk(E)r+57vzu. The sum
of the two terms can then be cast in the form

dE' b~nPa ~ sinLk(E)r+5+67,

in which
6= —arctanI 7r/z(E) 7 (6)

where
E,+F(E)+z(E)IV I

=E,

Iv I

F(E)=P dE'

(7)

represents the phase shift due to configuration inter-
action of fa with the state p.

The value of s is itself determined by substituting the
expression (4) of b~ into (3a). The coefficient a factors
out so that (3a) reduced to

E„a+ dE' V~ *b~ Ea, ——(3a)

VE a+E'ba Eba. . ——(3b)

The solution of this system can be carried out exactly,
so that diagonalization of the matrix (1) is achieved.

System (3) has peculiarities arising from its continu-
ous spectrum. To solve it, we shall express b~ in terms
of a, utilizing (3b), and enter the result in (3a). This
procedure involves a division of (3b) by E L&' which-
may be zero. This obstacle was circumvented in refer-
ences i and 2 by quantization in a finite box, which
replaces the continuous spectrum with a discrete one,
and eventual transition to the limit of an infinite box.
Here we follow Dirac's procedure' of introducing the

9 P. A. M. Dirac, Z. Pbysik 44, 585 (1927).

It is understood that a and b~ are functions of X&., but
this dependence will be indicated explicitly only where
necessary. These coefficients are determined as solutions
of the system of equations pertaining to the matrix (1),

and I' indicates "principal part of."We have, then,

F (E)
z(E) =

I
V~I'

Notice that
I
VEI', an index of the strength of the

configuration interaction, has the dimensions of an
energy since ibz is normalized "per unit energy" ac-
cording to (1c). The phase shift varies swiftly by ir
as E traverses an interval

I
V~I' about the "reso-

nance" at E=E„+F.The quantity F represents thus a
shift of the resonance position with respect to E„. (This
shift did not appear in reference 2 because of the un-
realistic assumption V& ——constant, which yields F=0.)

The coefficient a, which factors out of (3a), is de-
termined by normalization. The ortho-normalization
condition for the continuous spectrum must be ex-
pressed in terms of the coefficients u and b~ for a pair of
values of E, indicated by E and E, which need not

' See, e.g. , the ana1ogous treatment by N. V. Van Karnpen, Kgl.
Danske Videnskab. Selskab, Mat. -fys. Medd. 26, No. 15 (1951).
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coincide:

(4'gl+E) =a*(E)a(E)

where

5= —arctan
E E—„F—(E)

+ dE' bE *(E)bE (E)=b(E E)— (9. ')

Substitution of (4) yields

a*(E) 1+ dL"' VE * -+s(E)5(E—E')
E—E'

X +s(E)5(E—E') VE a(E) =5(E E). (10—)

Attention must be paid here to the integration over E'
at the point of double singularity E=E. Appendix A
shows that the factor 1/(E E')(E E—') is pr—operly
resolved into partial fractions plus a singular term
according to

1 1 1 1

(e z){z R')=—z zz——e E——z')

+~2b(E—E)&LE'——,'(E+F)]. (11)

according to (6) and (9).
The purpose of this section was not so much to study

the eigenvector 0 z as a function of E as to study the
resulting variation of the probability of excitation of the
stationary state 0 g. Whatever the excitation mecha-
nism is, this probability may be represented as the
squared matrix element of a suitable transition operator
7 between an initial state i and the state 0 g. In view of
(2) and (14) this matrix element is expressed in terms
of the phase parameter 6 by

(OEI TIi)

(q ITli) sina
x V~*

, VE*Q'E
I Tli) .F dE' sink —QEI Tli) cosA

~Vg* E—E'

Substituting (11) into (10) and considering that

b(E—E')8(E—E') =8(E—E)ALE' —-,'(E+E)]
(4 I Tli) sin& —QEI Tli) cosA,

~V~*
(16)

and that b (E E')f(E")= b (E— E')f(E), on—e finds

I
a(E) I'I UEI'Lm-'+s'(E)]b(E —E)+a*(E)

where
VE'QE'

4= p+P dE' (17)

1+ [F(E) F(E)+s(E) I
U—EI'

E E

s(E)
I
UEI'] —a(F) =b(E F). (12)—

The expression in braces vanishes, owing to (7), so that
(12) is fulfilled by

I
v. I'

(13)
E —F(E)]~+~~I vE I4—

a= sink/s VE,

I U~ sink
bE = —cosA 8(E—E'),

+VI: E—E'

(14a)

(14b)

This result shows that the configuration interaction
"dilutes" the discrete state y throughout a band of
actual stationary states whose profile is represented by
a resonance curve with half-width m

I
VE

I
'. If the system

under consideration were prepared in the state y at a
certain instant, it would autoionize with 'the mean life

e/2~I v. I2.

With reference to (6) and (4) we can finally write

indicates the state &p modified by ar4 admixture of states
of the continuum. LThis modification did not appear in
reference 2 where VE and the states |PE had been re-
garded as independent of E' so that the integral in (17)
would vanish. ]

The sharp variation of 6 as E passes through the
resonance at E=E„+F causes a sharp variation of
(O'E

I
T

I i) More s.pecifically, sinD is an even function of
E—E~—F, whereas cosA is an odd function of this
variable. Therefore, as anticipated in Sec. 1, the con-
tributions to (VEI Tli) represented in (16) by (4 I Tli)
and (|HEI Tli) iriterfere with oPPosite Phase on the two
sides of the resonance. In particular the transition
probability M,nishes on one side of the resonance, at
6=60—that is, E=EO—,where

E,—E„—F(E,) ~V»*(PE,
I Tl i)

tanho ———— (18)
(4 ITIi)

Notice that experimental investigation of a transition
probability in the vicinity of an autoionized level will

determine directly the resonance energy E„+F,rather
than the position E„of the unperturbed level, and will

similarly provide information on the matrix element

(ICTli) of transition to the "modified" state 4I, rather
than on (It I

T
I i) itself.

The ratio of the transition probability I
(O'E

I
T

I i) I' to
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of E over a sufficient range, integration of (21) yields the
excess transition probability due to the discrete state q,
in the form

«CII(+~I Tli) I'—I(ital Tli) I'3

the probability
I (Pzl Tli) I

of transition to the unper-
turbed continuum can be represented by a single family
of curves. These curves are functions of the reduced
energy variable

c= —cotd=
E E Ii (E) —E E—F-—

~l vEls -'I

in which I'= 2s
I
V~ I

indicates the spectral width of the
autoionized state p, and of the parameter

(c ITI')
q=

«s*(lt I
I
T ii)

(~ITli)+~ dE'(q l&I4~)(4E ITIC)l(E E')—
~(q l&I4~)(Pal Tli)

, (20)

which coincides with cotho at E=E0 and is independent.
of phase normalizations. These curves are represented
by

I (+~
I
T li) I' (q+e)' q' I+2qe—

—1+
I (l|gl Tli) I' 1+e' 1+e'

(21)

This function is plotted in Fig. 1 for a number of values
of q, which is regarded as constant in the range of
interest. Notice that

-8 -6 -4 -2 0 2 4 6 8
f

Fro. I. Natural line shapes for different values of q. (Reverse the
scale of abscissas for negative q.}

(C I Ts
i
i) (+s I T.Ii)

(~IT'li) (4 IT'li)
(24)

It follows that (%a I T,
l
i) vanishes at the same energy

value, determined by (18), for all values of q. This
circumstance was overlooked in reference 2, where it
was suggested incorrectly that a transition probability
proportional to Q, l(+glT, li)l' need not vanish for
any value of A, since the various terms of the sum might
have diferent points of zero. Failure of the interference
to yield a complete cancellation of the transition proba-
bility must rather be sought in the effect of degeneracies
which have been excluded in this section but are treated
in Sec. 4. Of course, a complete cancellation may escape
observation owing to insufhcient resolving power; this
factor could hardly have been paramount in the Beutler
experiment' considered in reference 2, even though it
has a dominant inhuence on the data discussed in the
next section.

This integral should in fact equal
I (pl Tli) I', because

the diagonalization of the energy matrix carried out in
this section is a unitary transformation and therefore
cannot aGect the total transition probability. Any de-
parture of the right-hand side of (23) from

I (p I
T li) I

s

should be attributed to inadequate constancy of q, Ii,
and I'. CNotice that the term of (21) odd in E, whose
contribution to (23) was dropped, actually converges
weakly to zero as

I
e

I

~ ~.]
Often the probability of excitation of the state 0'z is

proportional not to the squared matrix element of a
single transition operator T, but to the sum of squared
matrix elements of a vectorial or tensorial set of opera-
tors T„such as the set of components P; x;, P; y, ,

P, s;, of the dipole moment of an atom. In this event,
the ratios among the matrix elements of the various T,
are fixed by geometrical considerations, known as the
Wigner-Eckart theorem, i.e., we have

l q'=
I (c I

T
I ) I'!I (O'I Tl ) I'&

is the ratio of the transition probabilities to the "modi-
fied" discrete state 4 and to a band width I' of unper-
turbed continuum states lt s. Notice also that the curves
of Fig. 1 are of the type shown in Fig. VIII.8.2 of Blatt
and Weisskopf. '

If the ratio q and the line's shift and width functions,
I' (E) and I'=a

I
Vas I, can be regarded as independent

3. ANALYSIS OF THE 2s2P 'P LEVEL OF HELIUM

Silverman and I.assettre7 have observed the cross
section for forward inelastic scattering of 500-ev elec-
trons by He. The results obtained by them in the region
of 60-ev energy losses are shown in Fig. 2. There seems
to be little doubt that the main peak in the experimental
curve is associated with the 2s2p 'I' autoionized level of
double excitation. The discussion of the data in reference
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Helium Spectrum - Zero Angle

Accele rot ing Voltage 504
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FxG. 2. Experimental results by Silverman and Lassettre on the
inelastic scattering of electrons by He.

7' —haik(zz+zz)/P (23)

Here s~ and s2 are Cartesian coordinates of the two
electrons of the He atom in the direction of the beam,
and k 0.2 A ' equals A ' times the momentum transfer
by the incident electron in the collision. A much more
complicated operator should be considered to take
electron exchange into account, but this effect is prob-
ably of the order of 10% and will be disregarded.
Excitation of triplet states, also due to exchange, should

"Reference 5, report No. 1, shows on p. 43 an energy spectrum
of the unscattered electron beam, which is roughly Gaussian with
a width of 0.4 ev.

7 emphasized the asymmetry of the results on either side
of the main peak. and remarked that they are not merely
the "superposition of two-alternative transitions, one to
a discrete state and the other to a continuum. " This
effect appears to be just of the type to be expected on
the basis of Sec. 2 and of the earlier equivalent treat-
ment of reference 2.

Since the data in Fig. 2 were not taken for the purpose
of detailed theoretical analysis, and since there is only
approximate information on the resolving power and
other experimental variables, only a semiquantitative
application of theory seems warranted at this time.
This application has the primary purpose of demon-
strating how to fit an experimental curve starting from
Eq. (21) and of obtaining from the fit an order of
magnitude estimate of parameters to be compared with
theory of the He atom.

Comparison of the data of Fig. 2 with theory may
appear unpromising at the outset because the width of
the peak is essentially the same as the resolving power
of the spectral analysis, namely 0.4 ev."However, the
very asymmetry of the peak shows that the natural
shape of the resonance is not altogether obscured.

Under the experimental conditions indicated in Fig. 2,
and assuming validity of the Born approximation colli-
sion formula, as discussed in reference 5, the relevant
factor of the transition operator may be expressed as

be unfrequent by still another order of magnitude. The
operator T reduces to a dipole operator in the limit
k —+ 0, but this limit is not approached very closely for
k 0.2 A '. Therefore the data in Fig. 2 probably in-
clude a certain amount of quadrupole excitations of '5
and 'D states. However these excitations form a back-
ground unperturbed by the discrete level, owing to the
difference in angular momentum, and will also be
disregarded. (Additional peaks, corresponding to levels
of double excitation such as 2s' 'S and 2s2p 'P, would be
detectable if there were a substantial amount of
quadrupole or triplet excitation. )

The interpretation of the lower peak in Fig. 2 is
doubtful. (This peak might be associated with a 2s3p
and or with a 3s2p excitation. ) Since the two peaks and
their wings appear rather well separated, the lower peak
will be ignored here and we shall endeavor to reproduce
only the region between 58 and 62 ev.

In this region, the interpolated continuous back-
ground appears to slope down at the rate of 10%per ev.
Accordingly we set

1 (4 I
2'I ) I'

=
I f (fs f

T [i) fl'gz=z„yFQ1 0.1(E —Ez F)j—, (2—6)

with E expressed in ev and Il constant. When this ex-
pression is substituted in (21), the product of the second
term in the brackets of (26) and the second term in
the brackets of (21) would yield a negligible contribu-
tion. Accordingly we shall try to 6t the spectrum of
Fig. 2 starting from the assumed natural shape

f(E)= 1—0.1(E E„F)——

q' —1+4q (E E, F)/I'— —
(27)

1+4(E—E„F)'/I'—
This natural shape should be folded, for comparison

with Fig. 2, into the line shape which is observed by the
spectrometer when it receives monoenergetic electrons.
We assume the folded shape of the spectrum to be"

C(E)= exp
(E—E')' dE'

f(E') (28)
(0.2)' 0.2+m.

We have now two parameters at our disposal for the
6tting of g(E) to the shape of the main peak in Fig. 2,
namely, q and the natural linewidth F. In addition,
sliding of the scale of abscissas to best fit determines the
resonance position E„+F.The excess transition proba-
bility, over the interpolated continuous background, has
been determined by planimetry of the curve in Fig. 2
and comparison with (23). The result is

—,'vr (qs —1)F=0.15 ev. (29)

This value is not modi6ed by the folding in (28). The
fact that the peak is steeper on the high than on the
low-energy side shows that q is negative. The remaining
main step of fitting has been performed by trial and
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FIG. 3. Theoretical line shapes corrected for 6nite instrumental
resolving power LEq. (28)7 and fitted to the Silverman-Lassettre
data. Experimental points from Fig. 2 reduced in scale 1:7500
counts/10 sec.

error, assuming alternative values of I' in (25) and (29)
and calculating the integral in (28) numerically. "
Figure 3 shows the plots of g(E) obtained for V =0.02,
0.04, and 0.06 ev, together with experimental points
taken from Fig. 2 with their ordinates reduced in the
scale of 1:7500 counts/10 sec. The intermediate value

2=0.04 ev, (30)

E~+F(E„)=60.1 ev, (31)

with an uncertainty lower than 0.1 ev.
No single value of F appears to ht the. peak equally

well on both sides.
'

The peak/trough ratios for the
troughs on the two sides of the peak were taken as
indices for this purpose and could not be fitted simul-
taneously. Our analysis of the data thus appears sig-
ni6cantly too coarse, even though the instrumental line
width is 10 times larger than the natural width.

Equations (29) and (30) yield the value

gives the best over-all 6t. The appropriate value of the
resonance energy is

tinuum of He at 60 ev probably lies between 0.01 and
0.02 per ev. On this basis the oscillator strength of the
(modified) 2s2p 'P level should be between 0.002
and 0.004.

The accuracy of these estimates could presumably be
increased considerably if new experiments were per-
formed, either by electron scattering or by optical
absorption spectroscopy, for the specific purpose of
providing input data for theoretical analysis.

Let us compare, anyhow, the estimates obtained here
with evidence from other sources. The 2s2p state has
often been discussed, but not very conclusively and in
connection with transitions to states other than the
ground state. Bransden and Dalgarno" calculated the
binding energy of the 2s2p 'P state to be 61.2 ev above
the ground state. Considering the approximations in-
volved, the experimental value of 60.1 ev appears to be
well within the range of theoretical estimates. " The
dispersion shift Ii should be not much larger than the
linewidth and therefore negligible at this stage.

The linewidth estimate F 0.04 ev, corresponding to a
decay rate of 6&(10" sec ' for the autoionized state,
coincides very nearly with Ta You Wu's" value of
5)& 10"- sec ' for the triplet state. Bransden and
Dalgarno "on the other hand, obtained 1g 10"sec ' for
the singlet itself. The reason of this discrepancy is not
understood, but it may be noted that the experimental
estimate from Fig. 3 could not be in error by one order of
magnitude.

Our estimate of the oscillator strength of the
1ss —+ 2s2p transition is one order of magnitude smaller
than current estimates" of the total strength of double
excitations or ionizations starting from the ground state.
This result is not surprising since the strength of the

. single excitation 1st —+ 1s2P is also a small fraction of the
total strength of single excitations in He.

Finally, an attempt may be made at interpreting the
sign of the parameter q, which is certainly negative be-
cause the peak in Fig. 2 slopes sharply on the high-
energy side. Two terms contribute to q, as shown on the
right-hand side of (20). The second term,

-'xq'=5 3 (32)

for the ratio of matrix elements (22). This result pro-
vides an estimate of the transition probability to the
"modified" discrete state p in terms of the probability
of transition to the unperturbed continuum fs. The
relevant data for the continuum have to be obtained by
interpolation from observations in the unperturbed
range, far from the resonance on either side of it. Of

- particular interest are data on the optical oscillator
strengths which are obtained from inelastic electron
scattering data extrapolated to k=0. This extrapolation
adds considerable uncertainty and we can only gather,
from the extensive data in reference 7, that the density
of optical oscillator strength in the unperturbed con-

~ I am indebted to J. W. Cooper for this integration.

(33)

is certainly positive since (fs l Tli) grows larger than
(fs l

T
l i) at E'(E, i.e., where E E')0; it should also-

be of the order of 1. Therefore the first term must be
larger than

l q l
in magnitude and negative. This term is

"B.H. Bransden and A. Dalgarno, Proc. 1'hys. Soc. (London)
A66, 904 (1953).

'4 C. W. Scherr (private communication).
rs T. Y. Wu, Phys. Rev. 66, 291 (1944).
"W. F. Miller, thesis, Purdue University, 1956 (unpublished),

p. 36.
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represented by
(2s2p [

r [ 1s')

m (2s2p [
V

[ ash'p) (1sEp [
T

[
1s')

(34) (Xg- I& Ifg ) =0 (36d)

g g-I&IN g ) = (Xg" I&lxg') =El(E"—E'), (36c)

In attempting an interpretation of the sign of this ratio,
it is convenient to make some normalization convention
for purpose of analysis even though the ratio is inde-
pendent of such conventions. We assume all single
electron-wave functions to be positive near the nucleus.
The matrix element of the Coulomb interaction V is the
sum of a direct and of an exchange term. Because of
angular momentum selection rules the two terms arise,
respectively, from the scalar and the dipole term of the
multipole expansion of V. Presumably, the scalar term
is small because of quasi-orthogonality of the is and 2s
wave functions and negative because the ground state
1s should be more screened than 2s. The dipole term is
then presumably dominant and it is positive, like all
quasi-hydrogenic dipole moments are with our con-
vention. The transition matrix elements would also be
positive, except for the projection factor (2s[1s) in the
numerator of (34), which should be negative, though
small, as noted above. This last factor, or, more
specifically, the ratio of (2s[1s) to the projection (1s[1s)
in the denominator, would thus determine the sign
of (34).

4. ONE DISCRETE STATE AND TWO OR
MORE CONTINUA

The treatment of Sec. 2 can be readily applied to the
configuration interaction of a discrete state y with
states of different continua Pg. , Xg, .These continua
may be distinguished by suitable quantum numbers,
e.g., by the coupling scheme that obtains when an
electron is removed to infinite distance from the residual
ion. We shall refer to two continua only, for the sake of
simplicity, unless some purpose is served by explicit
reference to the case of n continua.

The eigenvectors to be determined have the form

The last of these formulas implies that the matrix has
already been diagonalized with respect to the smaller
set of states Pg, Xg.. This assumption is made in order
to focus on the interaction with the discrete state.

The system of equations analogous to (3) is, then,

E„a+ dE'LVg *bg+Wg*cg j=Ea, (37a)

Vg a+E'b g =Ebg. , (37b)

Wg a+E'cg =Ecg. (37c)

Two orthogonal linear combinations of (37b) and (37c),
with coeKcients (Vg *,W g *) and (Wg, —Vg ), re-
spectively, are

L [ Vg ['+
[
Wg ['ga+E'LV g *bg +Wg *cg g

=E$Vg *bg+Wg *cg j, (38)

E'EW g bg Vg cg j=E—EWg b& Vg cg $. —(39)

sink
(40a)

Equation (38) contains the same combination of bg and
cg as (37a), and forms with (37a) a system equivalent
to (3), whereas (39) is decoupled from a. In solving
the system of Eqs. (37a) and (38), for the dependent
variables a and (Vg ~bg +Wg~*cg j, Eqs. (7) and ff. of
Sec. 2 apply provided [Vg [' is replaced by [ Vg ['
+[Wg ['. The solution [Wgbg Vg'cg) is —simply
8(E'—E) to within a normalization factor. From these
solutions, two orthogonal solutions of the system (37)
with the dependent variables u, bE, and cE are obtained.
These solutions are

4i,g ——ay+ dE [bg PgI+cg Xg ], (35)

biE =
([V.['+ [W, ['):

where h indicates a set of e—1 parameters required to
specify 0', since each value of Ji is an e-fold degenerate
eigenvalue. The coeKcients u, bE, cE, are functions of
E and h. The determination of their eigenvectors is
almost trivial, because &z

—1 orthogonal continua are
readily found, with bI. , cE, such as to cancel the
interaction with y and, therefore, with a=0. The single
remaining linearly independent eigenvector is then de-
termined by the method of Sec. 2.

The elements of the energy submatrix to be diago-
nalized will be indicated, in analogy with (1), by

where

1 sink
&( — ——cosZ b (E—E'), (40b)

(I Vgl'+
I
Wg[')'*

sink —cosZ b (E E'), (40c)—
x E—A'

~(l Vgl'+
I
Wgl')

5= —arctan
E—E„G(E)—

(v I&l v) =E. (36a)

(4g I&l v)=Vg, (xg [&le)=Wg. , (36b)
, IVg I'+IWg I'

G(E) =P dE' (42)
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and
a~=0, (43a)

(43b)

corresponding to the discrete states y alone has been
diagonalized in a previous operation.

The eigenvectors we seek have now the form

+a=Q~ a p~+ dE bz f1:,

(43c)

If there are n&2 continua, the extension of solution
1 is straight-forward, additional terms being added to
I
V~

I
'+

I
Ws

I

' wherever this expression appears in (40),
(41), and (42), and additional dependent variables
d&z', being given by formulas analogous to (40b) and
(40c).Solution 2 is extended into a set of n 1orthogo—nal
solutions of the e-variable homogeneous equation
Vz *bz +~a *&a +

The probability of transitions from an initial state i
to all the stationary states of energy E is

E a.+ dE' V„s bs Ea„, —— (47a)

Q„Vz „a„+E'bE =EbE.

Equation (47b) is solved forma, lly, as (3b), by

(47b)

1
+s(E)b(E E') Q—„V~ „a . (48)p'

and there must be one of them for each value of L&' in the
energy range we are considering. The coefficients a„and
bz are solutions of the system of equations

The first term of this sum varies as a function of energy
in the proximity of the resonance at E„+Gaccording to
the pattern discussed in Sec. 2. The remaining term or
terms are wholly unaffected by the resonance. There-
fore, in the presence of two or more continua, one should
expect to observe an excitation spectrum of the type
shown in Fig. 1 superposed on a smooth background.
The spectral intensity should not be observed to drop to
zero, even with ideal resolution, unless the states

, cannot be excited.
This result accounts at least in part for the fact, noted

in Sec. 1, that the intensity of the rare-gas optical ab-
sorption spectra' never appear to vanish altogether in
the range between the two series limits. The interaction
of different discrete levels could not be responsible for
this result, as will be seen in the next section. The ex-
perimental data also show some blurring, presumably
due to limited resolving power and no attempt will be
made here to account for them in detail. The treatment
of the present section is equivalent to the theory of
multichannel resonance scattering, as outlined in Ap-
pendix C.

5. A NUMBER OF DISCRETE STATES AND
ONE CONTINUUM

(45a)

(4'~
I
&

I v -) = v~ -, (45b)

(45c)

Equation (45a) implies that the smaller submatrix

(Ps-IH ~Pg ) =E'8(E"—E').

Consider now the situation where a set of discrete
states q ~, , q, experiences configuration inter-
a,ction with a set of states PE belonging to one continu-
ous spectrum. The energy submatrix which we want to
diagonalize is

is now a matrix which represents the second-order
interaction among the discrete states arising from their
coupling with intermediate continuum configurations.
The diagonal elements of this matrix represent the 6rst
approximation line shifts caused by this interaction.

Equation (49) represents a system of homogeneous
equations and therefore leads to an actual eigenvalue
problem. This problem can be subdivided into two
stages, the first of which concerns only the discrete
states, whereas the second, which deals with the main
discrete-continuum interaction, has a rather simple
solution.

In the first stage we diagonalize the matrix E„b „+F, that is, we consider the effect of the interaction
matrix F „upon the discrete states. This eGect perturbs
the states y„and their energies E'„and replaces them
with new states

(51)

and with energies E„which are obtained by solving the
system

&~~.v+2~ F~~&mv=~~. K (52)

The replacement of the energies E„with the E„corre-
sponds to the replacement of E~ with E„+Fin Sec. 2.
It may be anticipated that the matrix F„will often
constitute a small perturbation, so that (52) is solved
adequately by perturbation theory. Since the matrix
F„depends on E,, even though slowly, the solutions of
(52) will also be functions of E.

Substitution of (48) in (47a) yields the generalization
of (7), namely,

E„a„+P F a +s(E)V E Q„Vz„a„=Ea„. (49)

Here
V„g V~m

F (E)=P dE'
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avv= P v A vvvav (53)

Assuming that the coeKcients A„„and energies E,
have been obtained, we replace the coeKcients a„ in (45)
by new coefficients i„setting

analogous to (12) is, then,

Vz a (E) I'Err'+s'(E) jb(E—E)+P a *(E)
X~1+(E-E)-P.„(E)-E„„(E)+.(E)V„.V..

s(E—)V„zVz„))a„(E)=b(E E).—(62)

1
I Q„Vz„a„(E)I'= — =—sin'A.

m'+ s'(E) s'
Q„A„„E.a„+s(E)V zQ, Vz&,a,

=E Q„A„„a,. (54)
(63)

The matrix F„can now be eliminated from (49) by
means of (52), and (49) becomes The Z. vanishes owing to 49, so that the normaliza-

tion is given by

Multiplication by (A )„„,summation over e and appli-
cation of the orthonormality P„(A ')„„A„„=b„„yields
6nally

The final, normalized solution of our problem may
then be given in the form

where
E„a„+s(E)V,E Q„Vz„a„=Ea„ (55) a,= cosh tank, /m Vz„ (64a)

V~, tank„
bz =cosh P —b(E—E'), (64b)

~ E—E' wt/'~„

(56)Vz„——Q„Vz„A „.

which combines (48), (58), (60), and (63).Equation (64)
reduces to (14) when there is a single state p„.

The transition matrix element for excitation of the
energy eigenstate %z is given in analogy with (16) by

tank,
(+zITli)=co» 2 (y ITli)

(57) v mI/s(E)Z. El V .I'/(E —E )3=1,

The second step of our problem consists of solving the
system (55). This system has a matrix of the form
M„„=(s'*V„z)(s'*Vz„) and thus belongs to the class
whose solutions are expressed in terms of a polarizability
function. Multiplication of (55) by Vz„/(E —E„) and
summation over v shows that (55) is subject to the
consistency requirement

which plays the role of a secular equation and deter-
mines the eigenvalue s(E). Under this condition, (55) is
solved by

V„~
a.=s(E)

E—E

t ann„V„z (Pz I Tli)+ ~ dE' —8'zl Tli)
xV„g

tank,
=cosh P (C„ITli)—QzlTIi)

v g

in terms of the expression

which plays the role of a normalization constant. We
shall represent s in terms of a phase shift 6, as in (6) and

(15), and rewrite (57) in the form

= —tank=+ = —Q„ tank„. (60)
E—E

where

= (fz I
T

I i) cos&(P. q. tan5„—1),

Pz Vz.
C,=p+P dE'

El

(65)

(66)

(C.ITli)
gv=

v (4 ITli)
(67)

in analogy with (17) and (18). Notice that cosh, tank„
has the same role here as sink has in Sec. 2, in that
cosh tank„remains finite at the resonance point 6,= -', x
(i.e. , E=E„)because cosh vanishes there. Notice also
that+„q„ tank„=P, q,~l Vz. l'/(E —E„)swingsall the
way from —~ to ~ in each interval between successive
resonances and thus causes a rapid variation of (%z I

T
I i)

In particular (+zl Tli) ravishes once in each of these
successive intervals.

The behavior of the resonances corresponding to a
Rydberg series of autoionized states is also of interest.
The numerical parameter q, should remain nearly con-
stant throughout the upper part of the series even

Here h„represents the phase shift that would be con-
tributed by the state p„, if alone.

The remaining determination of the normalization
constant (59) is analogous to the determination of a in
Sec. 2, Eqs. (9) ff. We write

(@gl+ )=P a '(E)a„(E)

+ dE' by *(E)bye(L') =b(E E) (61)—
substitute bz. from (48) and utilize (11).The equation
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though the numerator and the denominator of its ex-
pression (67) become rapidly smaller as the series limit is
approached. This is because (C„~7 ~i) and V, it, decrease,
in the main, in proportion to the same factor, namely,
the normalization constant of the wave function p„(r)
near the surface of the atom. On the other hand the
resonance width 2v.

~
V,z~' should decrease rapidly, in

proportion to the spacing between resonances. Thus the
intensity alternations of the excitation spectrum should
remain uniformly sharp throughout the series, in pro-
portion to the line spacings, as they do in ordinary
optical spectra, except for the broadening inQuence of
collisions or other external perturbations.

comes now

(E E') (E EI)

du exp(27riu[2 (E+E)—E'])

hatt l

dv exp[2viv(E —E)]

du exp{2v.iu[-', (E+E)—E'])

APPENDIX A

The fraction 1/(E E') (E—E')—in the integral (10)
has simple poles at E'=E and E'=E when EWE, it
being understood that the principal part is to be taken
in integrations over these poles, but has a double pole
when E=E. The usual analysis of this fraction into
partial fractions implies that EWE and leaves out the
double-pole singularity.

This singularity may be taken into account by analy-
sis of the Fourier representation of 1/(E—E') (E—E')":

(E—E') '= v.i—dk (k/
~

k
~ ) exp[2v-ik(E E')],—(A1)

(E—E') '(E—E') '

dk' (kk'/ikk'i)

Xexp(2v i[k (I—E')+k'(E—E')]}. (A2)

We replace the variables k and k' by

u= k+k', v=-,'(k —k'), (A3)

and notice that

kk' I'—4v'
= —1+2 St(u' —4v') (A4)

(where St. is the unit step function). Equation (A2) be-
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APPENDIX 3
Application to the Perturbation of a

Rydberg Series

The energy levels of a Rydberg series of an atom are
represented by

E„= IH/(u 0)'— —. (B1)

where IH is the ionization potential of the H atom
(IH ——1 ry) and a. is the quantum defect, a numerical
constant or at most a very slowly varying function of
E„.This formula implies that the levels are determined
by two quite separate factors: (a) the Coulomb field
that acts on an optical electron well outside the rest of
the atom (the "core") at distances, say, &20 Bohr radii
from the nucleus; (b) the mechanical factors within the
core whose inhuence is entirely represented by the
quantum defect 0-. It is known" that 0- is related to the
relative phase of oscillation in the region outside the
core of the actual wave function with energy E and of a
Coulomb function with same energy. Comparison of the
radial logarithmic derivative of these two wave func-
tions, at any radius outside the core, yields their phase
di6erence 8 which is equal to m.o-. If the Coulomb Geld
were altered outside the core, the level formula (B1)
would be changed, but the influence of the core would
still be represented in the new formula by the quantum
defect cr, or by an equivalent parameter. Suppose, for
example, that the potential ceased to rise according to
the —e'/r law at r =20 Bohr radii, and remained fixed at—e'/20 for r&20. All discrete stationary states with

Z7l Q=m'b[E' ,' (E+E—)]—fi(E E)+ — du
E E„—/uf

X (exp[2viu(E —E')]—exp[2viu(E —E')]). (A5)

Comparison with (A1) yields finally (11).

17 See, e.g. , M. J. Lighthill, Faurier Anclyms and Generalized ' See, e.g. , M. J. Seaton, Monthly Notices Roy. Astron. Soc.
Functions (Cambridge University Press, New York, 1958), p. 43. 118, 504 (1958).
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(e—0.)') 20 would then be replaced by a continuum, but
the core would inhuence the scattering of a free electron
in this continuum just by a phase-shift contribution
h =xo-.

Configuratio interaction may be regarded as a core
eR'ect, even though it takes place in the outer region of
the core. Accordingly the perturbation it exerts on the
levels of a Rydberg series should be represented by an
appropriate change of 0. in (81) to the same degree of
approximation as is involved in the justification of (81)
itself. Moreover, since 0- is determined, for each energy
range of the optical electron, independently of the field
outside the core, i.e., independently of whether the
electron is bound or free, the results of Sec. 2 are
directly applicable to the perturbation of a discrete
spectrum. The effect on a continuum caused by inter-
action with a single discrete state p, with energy E„,is
represented according to (5) by adding to the phase
shift F a further shift 6 given by (6) and (15). Since b/m

corresponds to o of (81), the interaction with y will be
represented by performing in (81) the substitution

1 E.—I'„—P(E„)
0 —+ 0+—= 0.——arccot . (82)

and (3) by
+-=~~+2- bA-,

E„a++ V *b =E,a,
V„a+E„b„=E,b .

(84)

(85a)

(85b)

The solution of (85b), which replaces (4), is

Notice that, when IE —E„—pl»~l V& I', (82) re-
duces to the perturbation formula of Langer, "as was to
be expected.

The bypass through the treatment of a continuum is
not necessary. One may treat a Rydberg series of un-
perturbed states P„directly, along the lines of Sec. 2,
replacing (1) by

(~IIII ~)=E„Q„IHI~) = v„,
(~ IIII~-)=E.b ., (83)

(2) by

and that the E„are uniformly spaced. This assumption
permits one to carry out the summation in closed form,
but is probably needlessly restrictive. The essential
point is that

I
V„l' depends on e primarily through a

normalization factor, proportional to the average r„of
the two level spacings, above and below E . We can
thus set

(88)

where
I
Vz„I' is a slowly varying function of E . This

function is determined entirely by the configuration
interaction within the core, whereas r is determined by
details of the field at large distance from the core. Under
these circumstances, the P I

V I'/(E„—E„) may be
resolved into one contribution that depends only on the
slow variation of

I
V~ I' and one that depends on the

local value
I Vs„l 2. The former one can be evaluated by

replacing the sum by an integration, the integral being
just the quantity P (E,) given by (8), so that we have

rn=p(E„)+
I
VE„I'p . (a9)

jV jV„

The residual sum on the right of (89) receives a
significant contribution only from terms with 8 E„
since the contributions from other terms cancel out.
Furthermore, if the E„are given by (81) and we deal
with (e—o)))1, the spacings

r =2In(e —0.)/((e —0)'—1j' 2IH/(I —0)'
= 2 ( E„)&/In', —(810)

vary slowly from level to level. The P r /(E„E„)has-
therefore approximately the same value as though r
had the constant value r pertaining to an unperturbed
level E in the vicinity of E., namely w cotl m (E,—E )/
r $.'' With this assumption the eigenvalue equation
(87), analogous to (7), becomes

) E. E~-.+P(E.)+-I V-.
I
-tl-

r„
for E„E, (811)

b„=[V./(E„E.)]—(86)

and one does not have to worry here about jV„coinciding
with E„. Substitution of (86) into (85a) yields the
eigenvalue equation of reference 2

or

E —E —P(E )

r
(811')

E +Q
jV jV

(87)

—p)
6 (E„)=arccotl I. (811")

k ~IVE, I2 )

The attention centers now on the sum in (87). This
sum varies from ~ to —~ as E„traverses each interval
between two successive unperturbed levels E„and
E„+~. One root of (87), i.e., one perturbed level, lies
therefore in each such interval. In reference 2 it, was
assumed for simplicity that

I V„l is independent of m

"R.Langer, Phys. Rev. 35, 649 (1930).

This equation is readily solved graphically or nu-
merically. It states that, if 6 be regarded as a function
of E„as in (82) and (15), an eigenvalue lies at a fraction
—6/~ of the interval between each unperturbed level
E and the next unperturbed level.

The probability of excitation of the levels of a Rydberg
series perturbed by configuration interaction is given, in
substance, by the treatment of Sec. 2. The energies E'
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and E have to be replaced by E and E, in the various
formulas, and the squared ma, trix elements

~
(tl«

~

T!i) ('
and

~
(4~ 2'~i) ~', which represent probability distribu-

tions diGerential in the energy spectrum, have to be
multiplied by the value of the line spacing ~ appropriate
to E„or E„ to yield the probability of transition to a
discrete state.

APPENDIX C

Connection with the Theory of Multichannel
Resonance Scattering

Suppose that the continuum states Ps., Xs, con-
sidered in Sec, 4 are states in which particles di6'ering

in any respect, indicated respectively by b, c, have
su%cient energy to break away from the rest of the
system. (These alternative break-ups are often called
"channels. ") We assume, for simplicity, that the par-
ticles are spinless and call their orbital quantum num-

bers lb, /„. For large values of the distance r
between the separated particle and the rest of the
system, the wave functions fz (rb), xs (r,), have
the asymptotic form

pz ~kb '*(E') sin[kb(E')rb+&b glib]
X Yi bm b(8 b, p b) (C1b)

Xs, ~ k,—b(E') sin[k, (E')r,+8,—-', ml, ]
X V4m, (8„q.), (Cic)

where the factors k: correspond to normalization per
unit energy and where all factors not relevant to our

purpose have been omitted.
Consider now a scattering process, in which the

system is formed by combining an incident particle b

with the "rest" and then the system breaks up releasing
alternatively either the same particle b or another
particle c, . This process is represented by an eigen-
vector 4s(b-+ b, c . ), with the form (35). The wave
function representation of +~(b —+ b, c ) consists
asymptotically, for large values of rb, r, ., of the sum
of one incoming wave, proportional to exp( —ik br b), and
of two, or more, outgoing waves, proportional to

exp(ikbrb), exp(ik, r,), . To achieve this form, we

may represent the eigenvector as a superposition of the
eigenvectors +I,g of Sec. 4,

4's(bb b, c )=Qb Agkbg, (C2)

and choose the coefficients A & suitably.
Entering in (35) the coefficients (40) or (43) and the

wave functions (C1) yields —as explained above Eq. (5)—the asympotic representations

+ '"—[IV I'+lw I'] '
X {V~kb '*(E) si=n[kb(E)rb+Bb+Z —~~lb]
XV l bm b (8 b) !pb) +WEk c (E)
Xsin[k, (E)r,+8,+Z —-', ~l,]Yi,m, (8„p,)},

"[I v I'+
I
w I'] '

X{ws*kb '(E) sin[kb(E)rb+bb ——', vrlb]

Xvibmb(8b, rpb) V@*—k, (E~)

Xsin[k, (E)r,+8,——,'7rl, ]vi,m, (8„(p,)}.

(C3)

The term ay of (35) does not contribute to the
asympotic representation because it corresponds to a
bound state. %e are limiting ourselves, here and in the
following, to the explicit treatment of a two-channel
system, with free particles b and c, so that h=i, 2
in (C2).

The asymptotic expression of %x(b -b b, c), obtained

by substituting (C3) in (C2) includes a term pro-
portional to

[Aiwg exp( —iE)+A2vs*]e '"'", (C4)

which represents an incoming wave in channel c con-
trary to our specifications. Since all other terms comply
with the specifications for ks (b —+ b, c), this eigenvector
is identified by choosing A i and A & so that (C4)
vanishes, namely, by setting

—W~ exp( —iZ)
Ag ——— Ag —— (C5)

[I VEI'+
I
W, I']&' [I vol~+

I
w~l2]&

This choice yields

exp{i[kb(E)rb+&b —~mlb]} Yibmb(8b, gab)

+i.(b —& b, c) ~ exp{—i[kb(E)r b+8 b+Z —-', el b]}
2ik b&(E)

~

V@~' exp(jx)+
~
Wg~ exp( —iZ!)

]V~)2+ [Wx/2

sink V~*K'g

exP i (h b+Z)—
sin[k b(E)r, ——,'wlb]

k b&(E)

exp{i[k.(E)r,+8,—2i~l,]}F'i,m, (8„ip,)
k.'(E) IV I'+lw I'

1
~

VE [' exp (2ix)y [ W/
~

'
—e"'~ —1 exp{i[kb(E)r b

——,'~lb]} Vi bmb(8b, y b)

I
V~I!'+

I
WEI'

sink V~*A ~
exp{i[k,(E)r,+8,—-', n.l,]}F'i,m, (8„y,). (C6)

k,b(E) IV [+lw [
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The term sinLk~(E)rq ——,'~lq]Uib~~~(8~, pt) represents a spherical-wave component of a plane, unscattered wave.
'Ihe remaining terms of the last expression in (C6) represent outgoing scattered waves. Their coefficients are,
therefore, elements of the scattering matrix to within suitable normalization coefficients. The cross section for the
scattering or reaction of b particles (through their state of angular momentum lb) are then obtained by a well-known
procedure and are
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(C7)

(CS)

where Z has been taken from (37). The last form of (C7) represents the interference of resonance and po-
tential scattering amplitudes and reduces to the Breit-signer formula in the absence of potential scattering,
i.e., for b&=0. The reaction cross section (Cg) has the Breit-Wigner form. Equations $(C7) and (Cg)j are
equivalent, respectively, to (VIII.7. 20 and 19) of Blatt and Weisskopf, except that the resonance shift G(E) is
included explicitly in the present calculation.

The derivation of a multi-level scattering formula by the method of this Appendix would require the prior
development of a multicontinuum multi-level treatment which combines the features of Sec. 4 and 5.


