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desirable. Nevertheless, we may conjecture that this is
a general result, namely: linear dielectric screening
(choice 1) gives quantitatively correct results for the
valence response to the longest and strongest wave-

length component of the effective potential. An im-

provement of the theory of Sec. 3 would permit quanti-
tatively accurate tt priorv' estimate of the screened
exchange potential as well.
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A previous calculation of energy bands in lithium which employed the orthogonalized plane wave method,
has been extended with the determination of the energies of states along the $100j, $110$, and $111jaxes in
the Brillouin zone. The Fermi energy has been determined. The Fermi surface predicted by these calculations
is not in contact with the Brillouin zone, and is only slightly distorted from the sphere characteristic of free
electrons.

INTRODUCTION

'HE work reported here is an extension of a previ-
ous calculation of energy bands in lithium' based

on the method of orthogonalized plane waves (OPW). '
The earlier work considered only states at the four
principal symmetry points in the Brillouin zone of the
body-centered cubic lattice: P, H, I', and E (see Fig. 1).
This calculation revealed the existence of a large energy
gap (about 3.1 ev) between the two lowest states at the
face center S. Since the Fermi surface of the electron
distribution in a monovalent, body-centered cubic metal
(considering the electrons to be free) approaches the
boundary of the Brillouin zone most closely in the
vicinity of the face center Ã, the question of possible
contact between the Fermi surface and the zone became

important. Cohen and Heine' concluded that existing
experimental information suggested a large area of con-
tact between the surface and the zone boundary. The
experimental data which they considered are not, how-

ever, dehnitive in this regard since the crucial cyclotron
resonance, de Haas-van Alphen effect, and ultrasonic
attenuation measurements have not been reported. lt
seemed desirable to extend the energy band study to
include enough points in the interior of the zone to make
possible a determination of the Fermi energy and,
hence, to make a definite prediction concerning contact.

The extension was made in the following way. The
Fourier coeS.cients of the crystal potential (derived
from the semi-empirical potential of Seitz as quoted by
Kohn and Rostoker') were modiled to take account of
the fact that the normal component of the gradient of
the crystal potential must vanish at many points on the
surface of the atomic polyhedron. Energy levels were
determined at twenty-one points on the surface and in
the interior of the zone, including the four symmetry
points previously mentioned and seventeen other points
located along the t 100$, [110$, and L111j axes (6, Z,
and A, respectively, in Fig. 1).These energy values were

used to determine the seven lowest coe%cients in the
expansion of the energy in Kubic harmonics, and from
these, the Fermi energy was determined according to a
method proposed by de Launay in a different problem.

While this work was in progress, other calculations of

energy bands in lithium have been reported by Ham'

FIG. 1. The Brillouin zone for the body-centered cubic lattice.
Points and lines of symmetry are shown.
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TABI.E I. Fourier coeKcients ('in rydbergs) of the crystal potential
as a function of I'= (ak/2s )'.

erties required by crystal symmetry, and in addition, is
neither spherically symmetric nor constant in the part
of a cell external to an inscribed sphere. The Fourier
coefficients, which are determined from the expression
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V(E„)=Os ' e' "'V(r)d'r

where K„ is a reciprocal lattice vector and Qs is the
volume of an atomic cell, are presented in Table I.

The orthogonality coefficients p;I„which are defined

by

p, ;&,
——(ls

—l y;*(r)e'"'d'r

and Schlosser. ' These authors employed the Kohn-
Rostoker method' and the augmented plane wave
method, respectively. Ham's calculation is related to the
quantum defect method' in that spectroscopic data were
used to determine the values of the logarithmic deriva-
tives on the inscribed sphere required in the Kohn-
Rostoker procedure, so that use of an explicit potential
could be avoided. Both the augmented plane wave
method and the Kohn-Rostoker procedure require, how-
ever, that the crystal potential be constant in the region
between the inscribed sphere and the cell boundary, a
characteristic not necessarily possessed by actual crystal
potentials. " The orthogonalized plane wave method,
while restricted to the use of an explicit potential, does
not require any specific assumption of this sort, and it
is particularly interesting to see the comparison between
the various methods of band calculations in this case.

BAND CALCULATION

Only the body-centered cubic form of lithium is con-
sidered here. The lattice constant was taken as 6.5183
in atomic units. It was mentioned in the introduction
that it was necessary to modify the Fourier coe%cient
of the Seitz potential from the values given in reference
i. The modification is accomplished by writing the Seitz
potential V, (r) as a sum of a point-charge potential, and
that of a core, V, (atomic units throughout):

V, (r) = V, (r) 2/r —(1)

[where V, (r,) is zero to a very good approximation]. In
the Fourier analysis, we replace the Fourier coefficients
of the point-charge potential (—2/r) (for k A 0) by those
pertaining to a body-centered cubic lattice of positive
point charges screened by a uniform distribution of
negative charge. The resulting potential has the prop-

8 H. Schlosser, Ph.D. thesis, Carnegie Institute of Technology,
Pittsburgh, Pennsylvania, 1960 (unpublished).

& F. S. Ham, in Solid-State Physics, edited by F. Seitz and D.
Turnbull (Academic Press Inc., New York, 1955), Vol. 1, p. 127.

"This assumption may not be a bad one since the normal
component of the gradient must vanish at many points on the cell.

in which P; is the wave function of the (core) state j,
are given in reference 1.

If k is the position vector of a point in the Brillouin
zone, the wave v'ectors of the plane waves in which tf &,

may be expanded are of the form k+K„.In this calcula-
tion, the forty-three orthogonalized plane waves formed
by letting K„ include all the reciprocal lattice vectors
with (u/2s)'Es~&6 were employed in the expansion of
each fs. For points on the (100] axis, this gave an
11)&11determinantal equation; for points on the L111]
axis, the determinant is 12&&12; for the L110] axis,
16)&16. The convergence of the expansion with this
number of plane waves may be checked at symmetry
points, where a larger number of plane waves may be
included without increasing the size of the determinantal
equation beyond a reasonable limit. The results of this
check are shown in Table II. It is seen that the error
caused by truncation does not exceed 0.005 rydberg. The
energies of all the states considered are presented in
Table III. The bands are shown graphically in Fig. 2.

In order to facilitate the determination of the Fermi
energy, the coeKcients in an expansion of the energy in
Kubic harmonics,

Z(k) =Es+Esk'+k'(E4&" +E4&'&E4,&)

+ k'(Es&'&+Zs&')E4 t+Es&s)Es &)+ (4)

TAsLE II. Comparison of energies (in rydbergs) obtained with
OPW expansion with di6ering numbers of terms.

State

FI¹'
P4
¹

Number
of waves

43
43
43

Energy

—0.6821—0.4083—0.1765

Number
of waves

135
72
80

Energy

—0.6853—0.4128—0.1788—0.1801

were determined by a least-square procedure, including
all the states in Table III with k'~(2s'/a'. In this
equation E4 & and Es & are the normalized (to 4s.) Kubic
harmonics, representation F», of fourth and sixth order,
respectively, and are given explicitly by von der Lage
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5ait/s

000
100
200
300
400
500
600
700
800
900

1000

—0.682—0.675—0.654—0.619—0.568—0.506—0.427—0.331—0.222—0.098—0.009

Sak/w

111
222
333
555

110
220
330
440
550

—0.661—0.598—0,493—0.352—0.177

—0.668—0,627—0.558—0.473—0.408

TABLE 111.Energies (in rydbergs) of states in the lowest band
along the L110), L111),and L110) axes. All values were obtained
from an OPW expansion with 43 waves.
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TABLE IV. Coefficients in the expansion of the energy LEq. (4)).

~o
jv2
jV4(1)

jV4(2)

jV (1)

g (2)

jV,()

—0.6821
0.748
0.105—0.020—0.545
0.537
0.175

"F. C. von der Lage and H. A. Bethe, Phys. Rev. 71, 612
(1947).

's If we consider states along the L100) and L111)axes, and with
k'~(2xa/a', a very good fit to the energy can be obtained with an
expression of the form of (4) with the sixth order terms omitted.
The coefhcients of the fourth-order terms are quite small, in
agreement with reference 5.

and Bethe."The coefficients which were determined are
given in Table IV.

The utility of an expansion of this sort has been
questioned, since it does not provide the proper perio-
dicity properties for the energy, and presumably does
not converge for k larger than the radius of the inscribed
sphere (in the Brillouin zone). However, with the
coefficients given, the differences between the energies
of the states, as given in Table III for 0 less than the
radius of the inscribed sphere, and as computed from
the expansion (4) is not greater than a0.0022 rydberg,
including the lowest state at E. Consequently, we can
accept Eq. (4) as a useful empirical representation.

In examining the values of the coe%cients given in
Table IV, one notes immediately the large size of the
sixth order terms relative to those of fourth order. This
is, however, to be expected. The distortion of a free
electron band structure which lowers the energy of
states on the 110 axis, as is shown in Fig. 2, requires
significant sixth order terms, and occurs in Eq. (4)
through an interference between E4, ~ and E6 ~. A single
E4, & term cannot produce the required depression of
states on the $110]axis. Thus, it is not surprising that
previous calculations, such as that of Kohn and
Rostoker, ' which have considered only states along the

I 100] and L111] axes have indicated only small de-
partures from a spherical band structure. "The value of

;60-
~p—0-

"70 .4 4 .6 .7 8 ,9 I.o
ka/Rm'

FIG. 2. Energy bands along the $100), I 111),and L110) axes.
The horizontal line at —0.433 rydberg represents the Fermi
energy. Only a relatively small distortion of the Fermi surface is
to be expected.

E2 obtained here, 0.748 is in fair agreement with the
value obtained in a cellular method calculation, "0.727.
I do not know whether the difference is significant.

The agreement of these results with those of Schlosser
is quite good. Except in the vicinity of H, the differences
are in the third decimal place, and would not show in
Fig. 2. This gives confidence that both methods of
solving the band problem are reliable. The augmented
plane wave method appears, however, to converge
somewhat more readily in this case. It is more difficult
to compare these results with those of Ham, since he has
not published in detail the energy values he has found,
and has used a slightly different lattice constant. Com-
parison of Fig. 2 of this paper with figure 1 of Ham's
report' indicates, however, that the band structures
predicted in both calculations are at least in semi-
quantitative agreement. In particular, Ham obtained an
energy gap at Ã of 0.225 ry, whereas the present result
is 0.232 rydberg (using the most accurate value for Ã&').
Finally we note reasonably good agreement with the
results of Brown and Krumhansl, '4 who did not, how-
ever, consider points on the L110]axis.

"R. A. Silverman and W. Kohn, Phys. Rev. 80, 912 (1950);82,
283 (1951)."E.Brown and J. A. Krumhansl, Phys. Rev. 109, 30 (1958).

FERMI ENERGY

To determine whether the Fermi surface is in contact
with the Brillouin zone, it is necessary to compute the
Fermi energy, and compare it with the energy of E&'.
If g(E) is the density of states Lg(E) gives the number
of states between E and E+dE] the Fermi energy, Ep,
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is determined by the requirement that

g(F)dE= 1V/V,

in which XjV is the number of electrons per unit
volume of the crystal. The density of states can be
found through the relation

g(E')dE'= d'k= k'(E,8,$)dQ. (6)
Sm' 12m'

The volume integral in k space in (6) includes the
volume bounded by a surface of constant energy, E.The
final integral on the right of (6) includes all solid angle.
A practical method of handling (5) and (6) in a case in
which the occupied portion of the band does not include
a critical point (in the terminology of van Hove" ) is to
invert Eq. (4) to obtain a series for lP as a function. of
energy and angle, which can be integrated readily on
account of the orthogonality of the Kubic harmonics.
This has been done, and a Fermi energy of —0.433 ry
obtained. A rather generous estimate of the possible
error in this value should be ~0.010 ry. Evidently, the
predicted Fermi surface does not touch the zone face.

In his thesis, Schlosser agrees with the conclusion of
no contact between the Fermi surface and the zone face
(as Ham does also), but obtains a Fermi energy of
—0.421 ry. The disagreement between these two values
is apparently outside the limits set by the difference
between the energy levels at corresponding points of the
bands in the two calculations.

Recently, CornwelV' has reported the application of
an interpolation scheme to the determination of the
Fermi energy in lithium, basing his work on the energy
levels previously obtained by Glasser and Callaway' at
symmetry points of the Brillouin zone. His result,
—0.425 ry, also supports the conclusion of no contact.

When the Fermi energy is known, the Fermi surface

"L.Van Hove, Phys. Rev. 89, 1189 (1953)."J.F. Cornwell, Proc. Roy. Soc. (London) A261, 551 (1961).

FIG. 3. Cross section of the Fermi surface in the k k„plane of the
Brillouin zone (solid line) for Er= —0.433 ry. The dashed circle
is a cross section of the spherical Fermi surface for free electrons.

can be mapped with the use of Eq. (4). It is largely
spherical. A cross section of the Fermi surface in the
k,k„plane is shown in Fig. 3. There are small bulges, of
the order of S%%uq of the radius along the L110) axis,
which may be signi6cant in the understanding of elec-
tron transport properties. An experimental determi-
nation of the Fermi surface in lithium is urgently re-
quired for further progress.

The width of the occupied portion of the band is
3.39 ev in fair agreement with the experimental "re-
duced width" of 3.22 ev found in the x-ray emission
measurements of Bedo and Tomboulian. "The author
has, however, no explanation for the shape of the
emission spectrum.
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