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The construction of self-consistent Hartree crystal potentials is discussed in terms of screening of “ex-
ternal” ionic potentials by a nearly-free valence-electron gas. An essential preliminary is the introduction
of a repulsive potential which replaces the requirement of orthogonality of one-electron valence and core
wave functions. Because of the excellent cancellation of core and repulsive potentials, the resulting effective
ionic potential Ve is weak. Using an approximate dielectric constant to screen Vg, we obtain a prescription
for estimating a priori self-consistent Hartree potentials in metals and semiconductors. The dielectric
screening can be extended to include exchange and correlation. Comparison with detailed band calculations
for diamond, silicon, and cubic boron nitride reveals the accuracy and limitations of the method. The screen-
ing of the longest wavelength Fourier component of Vs is predicted quite satisfactorily. By studying
bonding and charge transfer effects we find that nonlinear local field corrections (crystal hybridization) are
important in screening of shorter wavelength Fourier components of V.

1. INTRODUCTION

ECENTLY the connection between Hartree screen-
ing of weak external potentials and the dielectric
properties of an electron gas has been discussed by
several authors. Silverman and Weiss® have treated the
screening to first order in the potential of a point-ion
impurity in a high-density electron gas. They found
that the result of a self-consistent Hartree calculation
is the same as that of a many-body treatment including
electron-electron correlation in the random phase ap-
proximation of Sawada.? Ehrenreich and Cohen® have
shown in general that the screening to first order of an
arbitrary external potential is the same in the Sawada
approximation as it is for self-consistent Hartree fields.
Because the response is linear in the external field, the
screening in both cases is determined by the dielectric
constant, or better, dielectric function of a free electron
gas.

These results suggest a general approach to the
problem of estimating an initial conduction- or valence-
electron crystal charge density for self-consistent
energy-band calculations in metals or semiconductors.
Hitherto, conduction-electron charge densities in metals
have generally been taken to be constant outside the
core regions, and no attempt has been made at self-
consistency, with the exception of Heine’s work on Al.*
We shall see, however, that even in the alkali metals
significant corrections to the conduction-electron po-
tential are expected as a result of self-consistent screen-
ing. For many polyvalent metals the corrections may be
quite large.

Again, in the case of nonmetals, only one attempt has
been made at self-consistency, that of Kleinman and
Phillips for several semiconductors.>~7 Here, in con-
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trast to Al, the perturbation of the electron gas outside
the cores is large. To calculate the “covalent” screening
charge they made a laborious sampling of the charge
densities associated with states at the various symmetry
points of the Brillouin zone. The object of this paper is
to present a simple @ priori method for estimating such
charge densities for metals or semiconductors of arbi-
trary crystal structures.

Our approach extends the perturbation treatment of
dielectric screening to crystal potentials which contain
strong, short-range core parts. Before we treat such
potentials by perturbation theory, we must first remove
the effects of the strong core potential. Herring® ac-
complished this by orthogonalizing plane waves to core
eigenfunctions. Phillips and Kleinman® rewrote the
orthogonalization terms as an effective repulsive poten-
tial. Numerical calculations showed that the repulsive
potential almost cancelled the original potential in the
core region, leaving only a weak, long-range effective
potential. More generally, Cohen and Heine® have
shown that the cancellation is always expected because
the repulsive potential is just the original potential
expanded in the basis of core eigenfunctions except for
small correction terms.

In Sec. 2 the self-consistent Hartree problem is formu-
lated using Herring’s basis functions (orthogonalized
plane waves or OPW’s), and the utility of dielectric
screening of the effective potential for a priori esti-
mates is indicated. In Sec. 3 the results are extended
to include exchange and correlation, while Sec. 4 con-
tains a comparison with the results of a detailed band
calculation. The limitations and further applications of
the method are discussed in Sec. 5.

2. SCREENING OF THE EFFECTIVE POTENTIAL

It was Herring who first pointed out® that the ex-
pansion of Bloch wave functions in plane waves could
be made rapidly convergent in spite of the strong,

8 C. Herring, Phys. Rev. 57, 1169 (1940).
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short-range core potentials by augmenting the basis set
with core eigenfunctions ¢; of the valence Hamiltonian
3Co. The OPW basis functions are then
Xie=(0PW)=[1/(1-% |au|)*]

XLe®r =321 andi],

where au= (¢s,e?* 7). A more convenient form of (2.1)
proposed by Phillips and Kleinman? is

v=[1/(1=2 |b:|) ¢~ 2 bisp:],

where b,= (¢1,¢) and ¢ is a normalized “‘smooth” wave
function. The latter is determined from the wave
equation

2.1)

2.2)

(T+V+V o= Fd, (23)
Vep=2((E—Ey)(¢4,9)dr, (2.4)

which is obtained by substituting (2.2) into Hy=Ey.
The potential V is the sum of V;, the ionic potential,
and V,, the self-consistent screening potential of the
valence electrons.

The utility of the ¢ representation results from the
cancellation of V; and Vz in the core region, so that in

Vett=V:+ Vg, (2.5)

the short-range part of the potential is nearly zero.
This means that if ¢ is expanded in plane waves, rapid
convergence will be obtained, as anticipated by Herring.

The cancellation of the core part of V; by Vi has
been discussed by Cohen and Heine.l® Their equation
(23) can be rewritten to good approximation as

Vetsp=[Vo—2 1o V)b J[1+2 ¢ | (d00) 2]

Because the ¢; form a good basis set in the core region,
the cancellation of the short-range potential is evident.
The correction term in the second bracket in (2.6) is
typically of order 0.1.

If the potential were entirely cancelled, ¢ would be a
single plane wave and the wave function ¢ a single
OPW, Xy. These one-electron states would be occupied
within a Fermi sphere containing the correct number of
valence electrons per atom. The corresponding charge
density would be

(2.6)

pd= Z Xy X
k' <kfp

= 1—2Re Y auoe 't
k' <kF 1—2 Iatk'l2[ ; e i

+ 3 TP PN Y Y

¢

(2.7

When the cancellation in (2.6) is imperfect, we should
calculate self-consistently the change in p,° induced by
Vesr. Because Vg is small, first-order perturbation
theory now suffices to determine this change, p,!—p.
From (2.7), the potential associated with p,0 (aside
from a constant) is restricted to the core region where
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¢, is large, and it is natural to add it to the ionic po-
tential V;. We expect that V. perturbs the valence
charge density primarily outside the cores, so that V;
remains essentially unchanged in the course of making
the valence charge density self-consistent.

Since we are concerned here with Hartree screening,
we will take the ¢, in (2.1) to be eigenfunctions of the
Hartree potential V. The modifications necessary to
include the effects of exchange and correlation are dis-
cussed in Sec. 3. The repulsive potential is also in gen-
eral an operator, not a true potential. For small cores
it behaves as a potential, and we will treat it as such
in the calculations below. This point is illustrated by
an example in Sec. 4.

We now wish to determine the screening potential
V. produced by the valence electrons when we solve
the equation

Hér= (T+Ves+ V)= Exx

self-consistently to first order in Ve Here V, is the
potential produced by the charge density

dps=ps'—pS= 2 (Y —Xiw*X)
i <

(2.8)

(Prpw—1). (2.9)

~y —
w<kr 1= | b2

We have neglected in (2.9) the change in the conduction
electron charge density in the core region associated
with the change in orthogonalization coefficients; it can
be shown that the corresponding change in V, is of
second order in V. A small core approximation, which
makes an error of about 109, in first order in VX, is

dps> 3, (P —1)(14+2 |52

k' <kp t

>~ 3 (Gudw—1).

k'<kr

(2.10)

For small cores the problem thus reduces to that of an
electron gas in a weak external potential. Note the
similarity between (2.10) and (2.6).

Both 8p,; and the potentials in (2.7) have the peri-
odicity of the lattice:

8ps(1)= 3 psKe® T,
K#0

Verr(r) =2 VoK1,
K

VE= chfK+ VsK,

V()= VXKeiKr, (2.11)

K50

where K is a reciprocal lattice vector. We now solve
(2.8) to first order in V for the occupied states k:
VK

Pr=¢1’+Y ————ix’,

(2.12)
K Ey—Exix

and compute the screening charge density p, to first
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order in V:
dps=e 2, N (b — i di?)
v
Nyw—Nyix

=¢ Z _— VKgiKer,
K Fy—Epyx

(2.13)

In (2.13), Ny is the occupation number of the unper-
turbed state ¢ 0=¢* *. From (2.13), it follows that

Nyw—Nyxix
SpK=eVEY — (2.14)
& Fp—Eeix
and from Poisson’s equation, which is
K2V X=4xedp,X, (2.15)
we find that
4rre? ]\"Yk"“ Nk1+K
V¥=—VusiX+V X Y —.  (2.16)
K? ¥ Ep—Epyx
Equation (2.16) can be written
4rre? Ny— Nk'+K
VKI:H———-— > —-————-——-——:|= V. (2.17)
K? v Eyryx—Ew

Now the bracket on the left in (2.17) is just the static
dielectric function e(K,0) in the Hartree approximation
for free electrons as first calculated by Lindhard.!* Our
self-consistent Hartree potential is thus

V()=2"x [Vei/e(K,0)Je™® *. (2.18)

Note that (2.18) can be calculated from atomic wave
functions and energy levels and a property of the free
electron gas. Thus, with little labor, the crystal poten-
tial can be made approximately self-consistent at the
beginning of a detailed band calculation.

3. EXCHANGE AND CORRELATION

For accurate band calculations, the effect of exchange
and correlation must be added to the one-electron
Hamiltonian. A prescription for doing this has been
described by one of us in terms of a generalized Koop-
man’s theory® based on Hubbard’s formulation® of the
many-electron correlation problem. It is found that,
neglecting local-field corrections, the one-electron po-
tential for valence electrons is

V=Vi+Vst+Ai+BotBu, 3.1)

where V; and V, are the Hartree Coulomb potentials
defined in Sec. 2. The exchange and correlation inter-
action between valence and core electrons is written as
A In the “small core” case, core energies are sepa-
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rated from valence energies by much more than the
plasma energy, so that core-valence exchange is essen-
tially unscreened.’? In addition, the spherical symmetry
of the core enables one to write the exchange operator
Qi as an exchange potential 4;,.14

The quantity By in (3.11) is a constant potential?
associated with the zero-point Coulomb energy of the
plasma oscillations. It has no effect on the self-consistent
problem except through the modification of ¥z because
of the shift of core levels relative to valence levels.

Spatially dependent valence-valence- exchange and
correlation are described by the screened exchange
operator ®,,, which, like V,, is to be calculated self-
consistently. Hubbard has shown!® that when local
potentials are treated self-consistently a large class of
self-energy corrections vanish, and Pratt!® has extended
Hubbard’s treatment to include nonlocal potentials
such as screened exchange. Pratt has also emphasized
that Hubbard’s theory, like all other quantitative treat-
ments of correlation, is based on perturbation theory,
not the variational principle (as in the Hartree and
Hartree-Fock methods). By treating first-order ex-
change and correlation self-consistently we minimize
higher order corrections, so that the largest of these is,
for example, screened second-order exchange. The
latter has been shown!? to be quite small, indeed prob-
ably negligible in practice.

We have seen in Sec. 2 that an external potential
V¥e®r perturbs the free-electron gas, inducing a
charge density p%¢** %, which in turn produces a screen-
ing potential V Xei¥-r, When exchange and correlation
are included in our one-electron Hamiltonian, we expect
similar oscillations in the exchange and correlation
“potential.” In general, ®,, is an operator, so that it
cannot be represented as a potential B,,. However, if
we take advantage of the fact that the screened ex-
change interaction Re{[e(¢q)¢®]1™} is almost constant
for ¢X2kr, and work only to first order in VX, as in
Sec. 2, we find that ®,, can be put in potential form.
More accurate methods which should be used to calcu-
late ®,, in practice have been illustrated for Si.}” Here
we explore the formal results for a nearly free electron
gas which should be useful in making a priori estimates
not only of VX but of B,,* as well.

The general expression for ®,, is*?

Bpstry=—er g [P
¥ 712

1
XRC—*dsfgl,/k'(l‘l). (32)
o (r12,0xk
Here o is the complex wave-number and frequency-
dependent screening function of the free-electron gas'®

14 See, e.g., reference 4 or reference 7.

15 J, Hubbard, Proc. Roy. Soc. (London) A244, 199 (1958).

16 G. W. Pratt, Jr., Phys. Rev. 118, 462 (1960).

17 J, C. Phillips and L. Kleinman, Phys. Rev. (to be published).
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in a spatial representation.!? In order to simplify the
self-consistency problem obtained when (3.2) is added
to the Hamiltonian, we replace o(r13,01x) in (3.2) by
0(r12,0). In Si this approximation'” changed B,, by
only 5%. In (3.2) we must evaluate the density matrix

ps(rL,12) = %: Vi (r)Yw (11). (3.3)

We proceed as in Sec. 2 to divide ps(ry,r2) into its “one
OPW?” part and a perturbed part:

ps(11,19) = p,2(11,12) +0ps (11,12), (3.4)
pL(r,1)= 3 Xi*(1)Xw (11), 3.5)
k' <k
> 1 [eix (r1—r2)
psoz pik’ - (r1—r2
w<ir 1= | @y |?
t
= Guedi(r)em =3 apo ¥ F (ry)et
t t
+ Z dt“k'*dﬂk'¢t"*(r2)¢t’(rl)]- (3.6)

¢t

In the brackets in (3.6) the last three terms involve
core orbitals. The screened exchange interaction in
(3.2) is short-range, so that the contribution to the
screened exchange operator of the last three terms in
(3.6) is confined to the spherically symmetric core
region. As was the case with the core-valence exchange
operator @, advantage can be taken of the spherical
symmetry to represent these terms as a potential. They
can then be added to the core-valence exchange po-
tential A4 4,.

The treatment of 8p,(r1,r:) also parallels that of
dps(r) in Sec. 2. Thus py(r1,rs) is the same as p(ry,rs)
except that in (3.6) ei*'-(n—m) ig replaced by ¢w*(r2)
X ¢ (r1) and @ is replaced by bk As before, the latter
change leads to core corrections of at least second order
in Ve, which we neglect. Thus, we have, as in (2.10),

8ps(11,19)

= ¥ [ (rgu (n) =™ @ 4T [bu|7]

k' <kp

~ 3 [pu*(ro)pw (r)—e™ ] (3.7)

W <kp
to lowest order in | b |2

Using (3.4) we can now define

G?’vv(#k: Bw0¢k+6&m)¢k, (38)

where ®,,0 is the “free electron” part of the screened
exchange potential from the first term in the brackets
in (3.6). B,,® is spatially constant, while §®,,, which is
associated with dp,, contains spatial oscillations when
written in potential form. We now investigate the effect
of 6®,, on the basis functions ¢x.

1821

Our single-particle Hamiltonian, including exchange
and correlation operations, is

'}C¢k= [T+ Veff+B0+va0+ Vs+663vv]¢k,
Veffz V1+ VR+A ive

(3.9)
(3.10)

[In (3.10), V;and 4, include orthogonalization terms. ]
Our Hamiltonian is divided into zeroth- and first-order
parts 3¢=3Co+3C4,

3Co= T+ Bo+B"+VersX0,
3C1=V otV s+ 6By

(3.11)
(3.12)

The last two terms are to be calculated self-consistently
to first order. Writing ¢r=¢'+¢x’, we have

3Copi’ = Eildi0,
EY= ﬁ2k.2/2m+B0+ VeffK=0+ <va0>-

(3.13)
(3.14)

The last term in (3.14) is the screened exchange energy
B(k) in the free electron gas. Because of translational
invariance we have

dil= 2 cx(k)eiEtKr T, (3.15)
K0
so that from first-order perturbation theory
/dsfle_i(k'H()'”3(316ik'”
(k+KJ3e, | k)
CK k)= = (316)
E—Ex.x E— Exyx°
By substituting (3.15) in (3.7) we obtain
3ps(11,12)
= Z gk’ - (r1—r2) Z [ck*e—ikrz_[_cKeiK'n], (3_17)
k! <kr K50

which, from (3.12), gives

(k+K|se:| k)
47e?
=Vu+ X —(cx(k)+c_x*(kK))
rv<kr K2
+ 3 > | &rdirs {cx’ expt
k' <kr K’7#0 g 1’12,0 712

X[— (k+K) . 1'1+k‘ l'2+k" (1'1— I'2)+K" r1]
Fc_x* expi[— (k+K) - ri+k-ro+k - (r1—12)
+K'-1;]). (3.18)

The effective interaction [o(r12,0)712]" in (3.2) is
defined as the Fourier transform of [e(¢,0)¢* ™. Thus
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the last term in (3.18) reduces to
4me?

k%ﬂi‘[ (k—K')2(k—K’, 0)

1 4me?

" (k+K—K)2%e(k—k'+K,0)

where cx (k') is given self-consistently by (3.16), (3.18),
and (3.19). We see that cx (k) depends only on cx (k')
and c_x*(k’). Because cx and cx: are independent, in
the linear approximation the screened exchange opera-
tor has been reduced to (nonlocal) potential form.
However, we still have to deal with an integral equation
for cx (k) in terms of cx(k’). Now e(g)q?is almost con-
stant for ¢S kr, and the k’ dependence of 6B is small
compared to that of the nonlocal repulsive potential
itself. For our @ priori estimates, we simplify the in-
tegral equation by assuming that the average effective
interaction (k—k')2e(k—k’, 0) is that of k'=0. Then
from (3.18) and (3.19)

(k+K}3¢,| K)
me? B(k)
=VeX+ 2 ““_‘(CK‘["C— Nt—— 2 cx(®)

k<kr K2 k' <kp

cx (k')

x*(k’)} (3.19)

k-+
+EL-—) Z Cc— *(k/)7

N k' <kp

(3.20)

where N is the number of electrons per unit volume.
According to (3.16) we have

> cx*(k)
B <kr
3 (k’l(Kidk’—-K)ﬂ (—K'|3¢;| - k'—K)
k' <kp Eklo_"Ekl~K0 —k'<kF Ek'o_Ek'+K0
(K'+K|3¢, | k)
=2 ———= 3 cx(k), (3.21)
k'<kF Eklo'—Ekl_l_KO k' <kp
so that (3.20) simpliﬁes to
(k+K|5¢; | k)= V& +— 2 ex(k)
B <krp
B(k)+B(k+K)
> (k). (3.22)
K <kp

By summing (3.16) and using (3.22) to compute Fx
=Y« cx(k’) self-consistently, we find

41:'62 Nkr"Nk'+K
Fxl:l—— Ty DX e
K2 Ekfo—Ek'_,_K
(Ne—Ny4x) (ﬁk'+ﬁk'+x):|
Ey'—Ey x°
Veffx

=2 —; (323
¥ <kr Eyd— Eir g°

2N w
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in close analogy with (2.17). The complete perturbing
potential is Vg divided by the brackets on the left side
of (3.23), so that

=T

4re? Nk'—'Nk'+K
I 3 e

K % E'—

(3.24)

ex(K,0)=

Eyr, x®
#K?* (Bw+Br+x)

X {14 . (3.25)
2mhw,  2hw,

The extra term in the brackets in (3.25) is the screened
exchange correction to the dielectric function which
screens the driving potential Vg In Si, Bro~2—2.5 ev,
hwy~17 ev, and for K=2ra"1(1,1,1), #2K?%/2m~14 ev.
Thus the extra term is about —0.13.

4. COMPARISON WITH BAND CALCULATIONS

The results of Secs. 2 and 3 enable us to make a
priori estimates of self-consistent Coulomb potentials
without having carried out a band calculation. On the
other hand, approximately self-consistent band calcula-
tions have been carried out for diamond and silicon.®”
In these calculations the secular equation was solved
exactly (instead of to first order in Vx), but the sum
over k' (which we have been able to evaluate analyti-
cally because of our nearly free electron approximation)
was replaced by a sampling of 32 states of the valence
band. It is therefore of interest to compare the a prior:
estimates with the results of references 5 and 7 as well
as the x-ray data for diamond.'®

To do so we must first estimate V¥ in diamond and
silicon. According to Cohen and Heine!® Vg, as given
by (2.4), can be grouped as

Ve=VeetVrpt---, (4.1)

where only Vg, operates on functions with p symmetry,
etc. Because of the ! dependence of Vg, a suitable
average of (4.1) must be made.

Our chief concern in estimating p, is to represent
(k'| V r| k'+ K) correctly, where k’ refers to the valence
band and K to one of the first few reciprocal lattice
vectors. We recall that Vg is a local approximation to
the orthogonalized plane wave terms which for this
matrix element is

> ui LE(K) — EniJan* &+ K)anu (k).

In the small-core approximation, a.,(k’) is approxi-
mately constant and @.,(k’)~k’. Thus the s repulsive
potential is that for the state K/,
Zn [E(k’)—Ensjans*(k,"i“K)aM(kl)

30 [E(K) = EnJans* (K)ans(k'), (4.3)

18 1. Kleinman and J. C. Phillips, Phys. Rev. (to be published).
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while the p apparently is not:

20 LE(K) = EnpJany* (K +K)an (k')
~(k'+K) K.

However, inversion symmetry makes Y« k’-K=0, so
that the correct p repulsive potential is again that for
the state k'.

In diamond and silicon, Kleinman and Phillips®”?
have found that the valence band is about half s and
half p in atomic character. In Tables I and II we list
Vess in diamond and silicon, calculated from

VefiK= Vix+%(VRsK+ VRpK). (4.5)

From Tables I and II we see that VX!, where
K#=3(2na™)?, is much greater than V%=, K,#=K..
According to the linear theory developed in Secs. 2
and 3, each component VX is independently screened
by e(K;). A detailed study of the valence screening
charge density in diamond!® has shown that because
Vet¥tis so large (VesX1>~Er/2), our linear theory gives
Vi correctly only for K;=K;. The higher Fourier coef-

(4.4)

TaBLE I. Fourier coefficients of ionic, repulsive, and effective
potentials, per unit cell, in rydbergs, for diamond. Also listed are
Vs, the valence Coulomb potential, and Vex, a Thomas-Fermi ex-
change potential which gives a good approximation to the screened
exchange potential.

K2 VK VeSS  3(VaS+VrX)  Ver®
3 —1.05 0.57 0.28 —0.77
8 —0.42 0.43 0.22 —0.20

11 —0.32 0.37 0.19 —0.13

16 —0.19 0.30 0.15 —0.04

K2 VeffK V.vK VexK VK
3 —0.77 0.32 —0.16 —0.61

ficients are strongly modified by nonlinear hybridizing of
05" with p X1 A detailed discussion of nonlinear screen-
ing, which may be called local-field corrections or crystal
hybridization, is given in reference 18. Here we are con-
cerned with linear dielectric effects, so that we consider
only VX1,

According to (2.18) and (3.25) we have two choices
for the screening factor €(K;). These are:

1. The Hartree dielectric function for the free-elec-
tron gas, €°(K,), as in (2.17).

2. The free-electron dielectric function e.*(K;) with
screened exchange included, as in (3.25).

The screened potential corresponding to the first
choice, Vei%1/ (K1), does not include valence-valence
exchange. To it, therefore, we must add the screened
exchange potential to get the total potential to be used
in band-structure calculations. The results for diamond
and Si obtained by taking the exchange potential from
Tables I and II are compared in Table IIT (line 1)
with the results of the detailed sample of the charge
density; the agreement is excellent. The screened po-
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TasrE II. Fourier coefficients of potential in rydbergs, for silicon.
The notation is the same as in Table I.

K? VX VX VEsX $(VRE+VRX) Verr®
3 —0.79 0.62 0.39 0.50 —0.29
8 —0.37 0.43 0.26 0.34 —0.07

11 —0.29 0.36 0.22 0.29 0.00

16 —0.23 0.27 0.17 0.22 —0.01

VeffK .sK VexK VK
3 —0.29 0.15 —0.07 —0.21

tential corresponding to the second choice already in-
corporates exchange, VeiX1/ee®(K1) is also given in
Table IIT (line 2); the agreement with the sampling
calculation is noticeably poorer. Thus the approxima-
tions in Sec. 3 significantly underestimate the decrease
in € caused by exchange.

5. FURTHER APPLICATIONS AND LIMITATIONS

From the quantitative success of linear screening
(choice 1) for semiconductors we conclude that a fortiors
linear screening can be used to estimate self-consistent
charge densities in metals. Many band calculations
have assumed that p, was given by p,?, as in (2.7). Also
the Wigner-Seitz spherical approximation has often
been made. (For a discussion of the errors introduced
by the latter approximation, see Heine* or Callaway
and Glasser.'®) From (2.18) or (3.24) we can see that
most of these calculations were not self-consistent,
since large band gaps (V.:¥7#0) were often found. The
screening we have discussed tends to reduce band gaps
and make the E(k) curves more closely resemble those
of a nearly free electron gas.

The principle limitation of our method lies in the
linear dielectric approximation. Nonlinear hybridization
effects contribute to the formation of the covalent band
in diamond.'®* We may also consider hybridization cor-
rections in heteropolar (partially ionic) semiconductors
such as boron nitride.® Here again we find that only the
first Fourier coefficient of charge transfer (V1% in the
notation of reference 6) is given correctly by the linear
theory. Further explorations of hybridization correc-
tions by detailed self-consistent band calculations are

TasrE III. Dielectric constants and Fourier coefficient
[Ki=27a¢"1(1,1,1)] of total potential (in rydbergs) for diamond
and silicon. The first and second lines correspond to the approxi-
mations 1 and 2 for dielectric screening described in Sec. 4. The
third line gives the value obtained from sampling crystal charge
densities at 32 points in the valence band, in self-consistent
calculations including screened exchange.

(K)o eK)si V& VgiFa

Hartree free electron 1.66 196 —0.62 —0.22
Screened-exchange free electron 1.55 183 —0.51 —0.16
Band value —0.61 —0.21

19 J, Callaway and M. L. Glasser, Phys. Rev. 112, 73 (1958).
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desirable. Nevertheless, we may conjecture that this is
a general result, namely: linear dielectric screening
(choice 1) gives quantitatively correct results for the
valence response to the longest and strongest wave-

M. H. COHEN AND J. C.

PHILLIPS

length component of the effective potential. An im-
provement of the theory of Sec. 3 would permit quanti-
tatively accurate @ priori estimate of the screened
exchange potential as well.
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A previous calculation of energy bands in lithium which employed the orthogonalized plane wave method,
has been extended with the determination of the energies of states along the [1007, [1107], and [111] axes in
the Brillouin zone. The Fermi energy has been determined. The Fermi surface predicted by these calculations
is not in contact with the Brillouin zone, and is only slightly distorted from the sphere characteristic of free

electrons.

INTRODUCTION

HE work reported here is an extension of a previ-

ous calculation of energy bands in lithium! based

on the method of orthogonalized plane waves (OPW).2
The earlier work considered only states at the four
principal symmetry points in the Brillouin zone of the
body-centered cubic lattice: I', H, P, and N (see Fig. 1).
This calculation revealed the existence of a large energy
gap (about 3.1 ev) between the two lowest states at the
face center N. Since the Fermi surface of the electron
distribution in a monovalent, body-centered cubic metal
(considering the electrons to be free) approaches the
boundary of the Brillouin zone most closely in the
vicinity of the face center N, the question of possible
contact between the Fermi surface and the zone became

4

Fic. 1. The Brillouin zone for the body-centered cubic lattice.
Points and lines of symmetry are shown.

I M. L. Glasser and J. Callaway, Phys. Rev. 109, 1541 (1958).
This paper contains references to previous work.
2 C. Herring, Phys. Rev. 57, 1169 (1940).

important. Cohen and Heine® concluded that existing
experimental information suggested a large area of con-
tact between the surface and the zone boundary. The
experimental data which they considered are not, how-
ever, definitive in this regard since the crucial cyclotron
resonance, de Haas-van Alphen effect, and ultrasonic
attenuation measurements have not been reported. It
seemed desirable to extend the energy band study to
include enough points in the interior of the zone to make
possible a determination of the Fermi energy and,
hence, to make a definite prediction concerning contact.

The extension was made in the following way. The
Fourier coefficients of the crystal potential (derived
from the semi-empirical potential of Seitz* as quoted by
Kohn and Rostoker®) were modified to take account of
the fact that the normal component of the gradient of
the crystal potential must vanish at many points on the
surface of the atomic polyhedron. Energy levels were
determined at twenty-one points on the surface and in
the interior of the zone, including the four symmetry
points previously mentioned and seventeen other points
located along the [1007, [1107, and [111] axes (4, Z,
and A, respectively, in Fig. 1). These energy values were
used to determine the seven lowest coefficients in the
expansion of the energy in Kubic harmonics, and from
these, the Fermi energy was determined according to a
method proposed by de Launay?® in a different problem.

While this work was in progress, other calculations of
energy bands in lithium have been reported by Ham’

3M. H. Cohen and V. Heine, Advances in Physics, edited by
N. F. Mott (Taylor and Francis, Ltd., London, 1958), Vol. 7,
. 395.
P F. Seitz, Phys. Rev. 47, 400 (1935).
5 W. Kohn and N. Rostoker, Phys. Rev. 94, 1111 (1954).
¢ J. de Launay, in Solid-State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc., New York, 1956), Vol. 2, p. 219.
7 F.S. Ham, in The Fermi Surface, edited by W. A. Harrison and
M. B. Webb (John Wiley & Sons, Inc., New York, 1960), p. 9.



