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Energy Bands in Periodic Lattices Green's Function Method
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The mathematical basis of calculations of energy bands in periodic lattices using the Green's function
method is presented and the method's usefulness discussed. The original formulation of the method by
Kohn and Rostoker is modi6ed to achieve more efficient and accurate evaluation of "structure constants"
using symmetry considerations and the full Kwald summation procedure. Formulas are derived giving
the wave function both inside and outside the sphere inscribed in the unit cell. The method is demon-
strated with the 3-dimensional Mathieu potential. Convergence is found to be very rapid both in this test
case and in practical calculations on metals, and accurate energies and wave functions can be obtained
without elaborate calculation even at points of low symmetry within the Brillouin zone.

I. INTRODUCTION

'N separate papers we give the results of calculations
- - on the energy bands of the alkali metals, ' aluminum, '
and the noble metals, ' obtained by a procedure proposed
by Kohn and Rostoker4 which we shall call the Green's
function method. (The same method was proposed
previously by Korringa' from the diferent point of
view of the multiple scattering of waves. This alter-
native approach has also been discussed by Morse. ') It
is the purpose of this paper to present the mathematical
basis of these calculations. Although the fundamental
equations of the Green's function method were given by
Kohn and Rostoker in their original paper, 4 we have
found it essential to modify their procedures in several
important respects to make the method suitable for
extensive accurate calculations. In particular, accurate
evaluation of the "structure constants" necessitates use
of the full Kwald procedure of summation in both
coordinate and reciprocal spaces, and advantage may
be taken of symmetry to reduce to a minimum the
number of independent structure constants that must
be computed. We have extended the derivation to
provide a formula for the wave function outside the
sphere inscribed in the unit cell, and we have found a
more accurate procedure for calculating the coeKcients
of terms in the wave function inside this sphere.
Together with these new results, this paper summarizes

the formulas of the Green's function method in the
form we have found most convenient for practical use.
We also give a brief demonstration of the method's

accuracy by using it on the 3-dimensional Mathieu
potential, exact eigenvalues of which are known. '

The Green's function method for calculating energy
bands in solids shares with other methods such as those

' F. S. Ham {to be published).' B. Segall, following paper LPhys. Rev. 124, 1797 (1961)j.' B. Segall (to be published).' W. Kohn and N. Rostoker, Phys. Rev. 94, 1111 (1954).
5 J. Korringa, Physica 13, 392 (1947).
6 P. M. Morse, Proc. Nat. Acad. Sci. 42, 276 (1956).' The Green's function method has been applied previously to

the diamond structure and has been tested on a potential for
which the tight-binding approximation is valid t'B. Segall, J.Phys.
Chem. Solids g, 371 (1959)i.

pf augmenteds pr prthpgonalized plane wavesio, u and
the various cellular methods" " the advantage of
taking accurate account of the polyhedral shape of the
atomic cell. With these other methods, it thus represents
a major advance over the spherical approximation of
Wigner and Seitz," which has been used extensively
in band calculations on metals. This is especially so
when one seeks departures from spherical energy surfaces
such as occur even in a "nearly-free-electron" metal
like sodium for states near the Brillouin zone surface.
Recent interest, both theoretical and experimental, has
attached particularly to the shape of the Fermi surface
in metals, '7 and knowledge of band shapes in semicon-
ductors and semimetals has been of vital importance in
understanding the properties of these substances.

An especial advantage of the Green's function method
is its rapid convergence. This is much better than that
found in calculations with other methods as reported
in the literature, though it is probably rivaled by recent
work with forms of the augmented plane-wave method.
In particular, the method permits accurate calculation
at points of low symmetry within the Brillouin zone
without requiring use of unmanageably large deter-
minants. The method has the further advantage that
the calculations are relatively simple and in many
interesting cases can be done by hand, once tables are
prepared of "structure constants" which are charac-
teristic of lattice type but independent of the particular
crystal potential or lattice constant. The method is a
variational one leading to a stationary value for the

' J. C. Slater, Phys. Rev. 51, 846 (1937).
'M. M. SafFren, Ph. D. thesis, Massachusetts Institute of

Technology, 1959 {unpublished)."C. Herring, Phys. Rev. 51, 1169 (1940)."T.0. WoodrufF, Solid-State Physics, edited by F. Seitz and
D. Turnbull (Academic Press, Inc. , New York, 1959), Vol. 4, p.
367."J.C. Slater, Phys. Rev. 45, 794 (1934)."F.von der Lage and H. Bethe, Phys. Rev. 71, 612 (1947).

"D.J. Howarth and H. Jones, Proc. Phys. Soc. (I.ondon) A65,
355 {1952).

'5 W. Kohn, Phys. Rev. 87, 472 (1952)."E.Wigner and F. Seitz, Phys. Rev. 43, 804 (1933);ibid. 46,
509 (1934)."'lhe Fernzi Surface, edited by W. A. Harrison and M. B.Webb
(John Wiley R Sons, Inc. , New York, 1960).
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energy, but the convergence is sufficiently rapid to
permit satisfactory calculation of wave functions as well.

We are concerned in the Green's function method
with solving an integral equation within a single unit
cell. As with "cellular" methods and the augmented
plane-wave method, this is conveniently done only if
the crystal potential can be represented approximately
as being spherically symmetric about each ion and
constant in the cell corners —the "muffin-tin" form of
potential. " This restriction does not seem a severe
handicap in dealing with most solids of current interest,
particularly metals. This approximation to the potential
can generally be corrected for by perturbation theory.

In the course of our work on the alkali metals and
aluminum we have made extensive calculations of the
structure constants for body-centered and face-centered
cubic lattices. These have been collected in tables for
some of the more interesting points in k space and are
available from the authors. "If calculations are under-
taken at more general points in k-space than those
covered in the tables, the structure constants may be
computed efficiently from the formulas of Sec. VII
below using an automatic computer of capacity and
speed comparable to that of the IBM 704.

We do not repeat in this paper the derivation of the
Green's function method or of many of the formulas
we use but instead refer the reader to the relevant
portions of Kohn and Rostoker's paper for such proofs. "
We conform so far as possible to Kohn and Rostoker's
notation, although we have found it desirable to make
some changes in their choice of the basic quantities, in
order to facilitate calculation.

(KR 2.14)

li (r) = G(r, r') U(r')P(r')dr', (2 3)

Here the summation is over all vectors K„of the
reciprocal lattice, and E is the energy eigenvalue appro-
priate to P(r). The Green's function G(r, r') satisfies

and

(V'+E)G(r, r') =8(r—r'),

G(r', r) =G*(r,r'),

G(r+r„r')=exp(sk r,,)G(r, r'),

(2 5)

(2.6)

(2.2)

for all r, r' within the cell.
Kohn and Rostoker introduced a variational pro-

cedure (KR 2.15, 2.16) for solving (2.3) and showed
that if the resulting wave function is in error by an
amount Px(r), the error in the energy is of order P.
Restricting our discussion to a potential of the "mufFin-
tin" form —spherically symmetric about each ion within
the sphere inscribed in the unit cell,""and constant
elsewhere —we use a trial function of the form

l=0
(2.8)

where the integral is over the interior of the unit cell
of volume r, and (KR 2.9)

1 expt'i(K. +k) (r—r')]
G(r, r') = ——Q (2.4)

(K„+k)'-—Ji

II. BASIC EQUATIONS

We seek propagating solutions f(r) of Schrodinger's
equation

within the inscribed sphere. Here Ri(r) is a radial
function which is finite at r=0 and satis6es the radial
differential equation

in a periodic potential V(r), so that

(2 1) 1 d d l(l+1)———r' +———+V(r) ER&(r) =0, (2.9)—
r' dr dr r'

p(r+r, ) = exp(sk r,.)p(r). (2.2)

Here k is the crystal momentum vector, and r, is any
translation vector of the lattice. Kohn and Rostoker
have shown that P(r) satisfies the integral equation

' The restriction of standard cellular methods to a muffin-tin
form of potential has not generally been recognized, the usual
tacit assumption being that it suffices if the potential within the
entire unit cell is spherically symmetric about the central ion.
But if the potential is not constant in the outer parts of the cell,
one has no assurance that the usual spherical harmonic expansion
of the wave function converges outside the inscribed sphere. This
question is discussed in an article by Ham (reference 17, p. 9)."B. Segall and F. S. Ham, "Tables of Structure Constants for
Energy Band Calculations with the Green's Function Method. "
These unpublished tables for the bcc and fcc lattices may be
obtained from the authors. They include the principal symmetry
points and a few points on the symmetry axes, for a limited range
of energy.

"Equations in reference 4 will be indicated by, for example,
(KR 2.14) if reference to Kohn and Rostoker's Eq. (2.14) is
intended.

for the same value of E used in constructing G(r, r').
The functions 'JJ i;(r) are linear combinations of
spherical harmonics of angular momentum l, with
argument the angular coordinates of r. These com-
binations are chosen such that they transform under
the irreducible representations of the symmetry group
of the wave vector k, and they are normalized, real,
and mutually orthogonal:

d p inesd8'JJ (,(r) 'JJi; (r) = 8 (i.8;,' (2.10).
Only those combinations having the same transforma-

21 We restrict out attention to lattices with a single ion in each
unit cell, located at the center of the cell. "Complex" lattices are
considered by Segall in reference 22, and the methods of the
present paper may be generalized directly to such cases."B.Segall, Phys. Rev. 105, 108 (1957).
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(2.14)

and ji(«) and iii(«) are the spherical Bessel and
Neumann functions, "which are related to the standard
Bessel functions J (x) by

ji(x)= (m-/2x) Ji~;(x),
ei(x) = (—)'+'(7r/2x)V i;(x).

(2.15)

A necessary condition for a nontrivial solution of (2.11)
is (KR 2.28)

Det A);., ).;.=0. (2.16)

Since A~, ~ j is a function of E through the structure
constants, the spherical Bessel functions, and Ri(r),
(2.16) provides an equation for the approximate energy
eigenvalue obtained for a given k from the trial function
(2.8) with its summation terminated at l~.

The Green's function G(r, r') can be expanded for
r(r'(r, as (KR 3.13)

G(r, r')=P P Li" "8i, i, ji(«) j& («')
)r jl

+K5~i 8,; ji(«)ni(«')]pi, (r)'ili, (r'). (2.17)

Alternatively, since G(r, r') is a function of R= (r—r'),
we have (KR A2.8)

G(r, r') = —(1/4irR) cosaR

+P i Zr, ggr, (~R) 'llr, g(R), (2.18)

~' P. M. Morse and H. Feshbach, 3fethods of Theoretica/ Physics
(McGraw-Hill Book Company, Inc. , New York, 1953), Vol. I,
p. 622.

tion properties under the group of k enter (2.8) for a
single P(r).

If the zero of energy is adjusted to coincide with the
constant value of V(r) in the region outside the
inscribed spheres, the integrand in (2.3) differs from
zero only within the inscribed sphere. Kohn and
Rostoker's variational principle then prescribes that
the coefficients Ci, in (2.8) be chosen to make a func-
tional (KR 2.16) stationary under variations in the Ci, .
This requirement leads to equations determining the C&,

(KR 2.27)
(2.11)

Here (KR 3.15)

A»i;=, [ Et(r), ji(«)g(8» i; LRv(r), ji.(«)g
+~alii 8;; LR((r),ni(«)$). (2.12)

The coeflicients 8i, i, derived from G(r, r') are
functions of k and F. and will be defined below. We
define

fF,Gg= fF (r)dG (r)/dr G(r)dF (—r)/dr jr=r;, (2.13)

the functions being evaluated at the radius r; of the
inscribed sphere. In (2.12)

for R&r~. The Zi, q are the "structure constants" which
we have evaluated. We have the relation (KR A2. 14)

where

8ijlr ji ,—47r P Z LJC lj; r j'&
LJ

(2.19)

lj; l' j'CLJ d q singd9 gr~(r) JJi, (r) il(;.(r).

(2.20)

C~~ i; i.,' is zero unless
f
l l' —

f
&I.& (1+1') and (1+1'+I )

is an even integer. Hence

and, from (2.12),
(2.21)

(2.23)

are real for E(0.8i, i, is obtained from (2.19).When
8&0, Zr, q is real when L, and (111') are even, and

iver,

q is real when I and (l+l') are odd. Thus (2.22)
permits calculation of A~j. ~ j in terms of real quantities
when E(0, as does (2.12) for E)0.

III. PROCEDURE FOR EVALUATING EIGENVALUES

Energy eigenvalues are found by locating the values
of E for which the determinant of the A~j., ~ j vanishes,
according to (2.16). We have found it convenient to
tabulate the structure constants Zr, J, the radial
functions, and the spherical Bessel functions at a
sequence of energies, evaluate the determinant at a few
of these energies near an eigenvalue, and interpolate to
locate the zero. Starting from a trial function com-

The equations above have been modified from the
form given by Kohn and Rostoker, in order to eliminate
powers of i=(—1)' that otherwise enter the final
equations when E)0. Thus we use real angular func-
tions 'lli;(r), and we introduce a factor i' in (2.8) to
permit choosing all the C~j's real in a lattice possessing
inversion symmetry at the ion. Accordingly, i l' "8i;;i,
in (2.17) replaces Ai, , i; in (KR 3.13), and from (2.18)
and (KR A2.8) we find that our 7)r,q equals i ~ times
Kohn and Rostoker's Dr, ~. Our 7)r,q are real numbers
for simple bcc and fcc lattices for E)0.

For 8&0, Ir becomes imaginary according to (2.14).
In place of (2.12) we now express A» i,' as

Aij;l'j' L~l(r), ~i(fir [r)]gli'(liiv8lj;i'j'
&&[Bi (r), Ui ([~fr)g+ fxfbii "o;;

X f +i(r) Vi( [
lr [r)g) (2 22)

where

gii =i&'+' " (l+l') odd
=i l'+" (l+l') even,

hii1=$, (1+1)odd

=1, (l+l') even
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prising a single 'Jji;(r), we have added independent
terms until further increase in the size of the deter-
minant makes no further change in the eigenvalue.

The quantity PR&, j&] is a factor in allA&, &; appearing
in the {lj) row of the determinant. Hence if $R„,j„)is
zero at E=E', all determinants arising from trial
functions containing 'g„;(r) are zero at E'. However E.'

is not an eigenvalue of the original integral equation
(2.3),'4 so that. such roots of (2.16) must be distin-
guished and excluded.

An inconvenience in interpolation may occur if an
eigenvalue falls near a value of (K„+k)', for G(r, r')
as a function of E has simple poles at these points. Such
singularities occur whenever there exist solutions to the
homogeneous free electron Schrodinger equation

(—~' —~)~(r) =o, (3.1)

and to the boundary conditions (2.7) for the same k
for which G(r, r') was constructed, since at this E a
solution of the inhomogeneous equation (2.5) does not
exist. A determinant of the A~;, ~; is thus singular at
this 8 if from these free electron solutions one can
form a linear combination belonging to the same irre-
ducible representation of the group of k as the 'tii, (r).

Eigenvalues frequently occur near such singularities,
since an eigenvalue in a crystal is often close to the
corresponding free electron energy. It is possible to
reformulate the integral equation (2.3) to eliminate a
singularity, and to construct a variational principle
equivalent to the resulting inhomogeneous integral
equation which leads to a stationary value for the
energy. However, we have not found this to be as con-
venient a procedure for calculation as that based on
the homogeneous integral equation (2.3). Accordingly,
we have chosen to use the latter in all of our work and
to tabulate the structure constants using a sufliciently
small interval in E. Satisfactory interpolation has usu-
ally been possible if there is at least one tabulated point
between an eigenvalue and the nearest singularity. The
singularity in A~, ~;. may of course be removed by
multiplication by $E (K„+k)'$. —

IV. CALCULATION OF VIVE FUNCTIONS

Within Inscribed Sphere

The wave function within the inscribed sphere is
given by (2.8); the coeflicients C&, are determined by
the linear homogeneous equa, tions (2.11).

Instead of solving these equations directly at the
eigenvalue, which necessitates evaluating the structure
constants at that energy, we may set one of the coef-
ficients equal to unity and solve for the (I—1) others
at the tabulated energies, using {e—1) of the equations

24 This follows from Appendix 1 of reference 4, where the integral
equation is converted to a set of linear equations for the C».
These equations di6'er from (2.11) in that the coeAicient of Cg;
is Ai;;&; /PR&, j&j. The determinant of these equations does not
vanish at the zeros oi LR~, j~g.

used in constructing the determinant that gave the
eigenvalue. %e then interpolate the resulting values for
each C» to the eigenvalue. However, although many
C~; are small at the eigenvalue, they are often found in
this fashion to vary rapidly with energy. Interpolation
is consequently unreliable, and this procedure provides
little means of estimating the accuracy of the final
result.

%e have chosen to calculate the coefficients by
modifying this procedure to permit more accurate inter-
polation and to make evident the extent to which the
value of the coefficient converges to a final result as e
is increased. Let us denote the linear equations (2.11)by

(4 1)

Cg=1,

we prove in Appendix I that for q=2, 3, ~ e

(4.2)

+ 2
K, ~=a+&E K

(43)

Here L, K, and IX, are determinants as follows:

I —( )m+1

A g

Agg Ega

~~3 (44)

Ag A3

Agg

A22
+f8

A

~~3
A.23

ga

Ag

A2

A„,
(4 5)

K is the (m —1)th order determinant obtained from

(—) +'I. by suppressing the first column and last
row. H, is (—1) times the determinant obtained from
E by replacing the last row by zeros except for a one
in the column that contained A ~,, in E .

From (4.3) we see that Ce has been expressed as a
series such that an increase in e, the number of equa-
tions and coefficients in (4.1), adds terms to the series
without modifying the terms already present. L is
the mth order determinant of the A;J,'s, the zeros of
which give the eigenvalues in the approximation of
retaining m terms in the trial function. Thus terms in
the series (4.3), evaluated at the approximate eigenvalue
obtained from L„, shouM diminish in magnitude with
increasing m as the eigenvalue obtained from L
approaches that obtained from L„. The individual
determinants L, K, and H, vary smoothly with
energy, except of course near a singularity, and they
can be interpolated to the eigenvalue more satisfac-

where we have ordered the C~; in order of decreasing
importance in the construction of the wave function
and have relabeled them for simplicity as C„q=1 . e.
Setting
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torily and their error estimated more reliably than has
been possible with the C, themselves. Thus the advan-
tage of (4.3) is that it exhibits the convergence of the
value of C, as e is increased and permits a satisfactory
estimate of its error due to uncertainty both in the
location of the eigenvalue and in the interpolation of
the various necessary quantities.

The principal source of uncertainty in the C, as
obtained from (4.3) is in the interpolation of L, since
a small absolute error in the value of I. at the eigen-
value causes a large relative error in the corresponding
term of (4.3) if L is small. To reduce this uncertainty
we may take advantage of the fact that the different
I. usually vary with energy in a very similar fashion
over a small energy range. We then determine constants
cr and P such that

s(E)=L (E)—cr —P L„(E) (4.6)

is as small as possible over an energy range including
three or four tabulated points 8, near the eigenvalue.
In particular, we find the values of cr and P which
minimize P, Ls(Z;)]'. If the zero of L defines the
eigenvalue E,', then by (4.6)

L (8')=cr +s(E'). (4 7)

If s(E) is plotted at the few tabulated points, one

usually finds that s(E) is a smoothly varying function
of energy and that one can estimate its value at E'
with less uncertainty than one would have to attach
to a direct interpolation of L (E').

y(r) = n LG(r, r') p''f(r')

—lt (r') p'G(r, r')]d5', (4.8)

where r lies within the unit cell but outside the inscribed
sphere. We now use the expansion

Outside Inscribed Sphere

Since the part of the unit cell outside the inscribed
sphere does not have spherical symmetry, expansion of
the wave function in spherical harmonics as in (2.8)
does not provide a convenient representation in this
region. Instead, we expand lf (r) in this region in plane
waves.

We recall that V(r) is zero for the muflin-tin potential
outside the inscribed sphere, so that the domain of
integration in the integral equation (2.3) is the interior
of the sphere. We can then transform the integral
equation to provide a representation of P(r) for r)r,
in terms of known quantities evaluated at the surface
of the sphere.

Substituting for I V(r')f(r')] in (2.3) from Schro-
dinger s equation (2.1), integrating by parts, and using
(2.5), we obtain

which is valid for r'&r, for r within the unit cell."The
function Pr, z(r) may be expressed as

where s is arbitrary, 0&s(r. Substituting from (4.9)
and (2.8) into (4.8), we obtain for r)r,

P(r) =«,s Qi; Ci,Zi;(r)$j t(sr, ),Ri(r,)] (4..11)

The functions 7)r.q(r) are closely related to the
structure constants Zr.J, in particular to those of
"complex" lattices. "

To obtain a plane-wave expansion for f(r) outside
the inscribed sphere, we use (4.10) directly in (4.11).
However, whereas Pr, q(r) is independent of the choice
of s used in evaluating the series (4.10), the coefficients
of the plane waves in the resulting expression for f(r)
do depend on the choice of s. This lack of uniqueness
in the series is not surprising, for we require of the
series only that it converge to the correct g(r) for
r&r;; diferent plane wave expansions may represent
the same function in this region but entirely diferent
functions within the inscribed sphere. "To obtain the
"best" possible approximation to P(r) outside the
sphere in terms of E given plane waves,

g (r) = piv(r) =P F„expLs(K„+k) r], (4.12)

we vary the F„to minimize

llf (r) —~N(r) I'« (4.13)

On substituting from (4.11) for lf (r) using (4.10), we

"Q(r, r') satishes the homogeneous equation (V' +E)G(r, r') =0
throughout the region r'(r if r lies within the unit cell. G(r, r')
therefore has an expansion of the form (4.9). Equation (4.10)
follows in a manner analogous to the proof of Eq. (A.9) of
reference 22.

"Morse (reference 6) has proposed an alternative plane-wave
expansion for P outside the inscribed sphere. This is obtained by
substituting into (4.8) from (2.4) and (2.8):

4sr;s exp'�(K +k) rg
Z C&; Z— 'JJi;(K„+k)

(K„+k)2—E
X [R~(r),ji(( K„+k( r;)].

However, it appears to us that this series may not converge,
because of the appearance of f(d/dr) ri(~ K„+k~ r~)g. Even if the
series should converge, its convergence is conditional and very
slow, so that the series is at best inconvenient for practical use.
On the other hand, the series (4.10) can be proved to converge
for s&O, although conditionally, and it can be summed readily
using the Ewald procedure (Sec. VII). The series in (4.1.4}
converges absolutely for s)0.

4~ 1 expts(K„+ 1 ) r]
&~~(r) = ——

r jr, (~s) (I„+k)'—E

X jr, (l K„+k
I
s)'tr&z(K +k), (4.10)
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obtain as equations for the Ii „
N err C),.

Z [ji(«'),~i(r')3
7' ii gi(KS) [r (4—n-/3)r, ']V,= V, (r)dr— V,(r)dr. (5.4)

where V, is a constant chosen equal to the average of
V,(r) in this region:

—ji(l K +k
I
s)'Jji, (K„+k), (4.14)

=i (K„+k)'—E

for 1&m&X, where

exp[ —i(K„—K„) r]dr

Here v- is the cell volume. In calculations we select the
zero point in the energy scale such that V,=O.

The difference 5V(r)=V, (r) —V i(r) may be ex-
pressed throughout the cell as a Fourier series

8V(r) =P „5V„exp(iK„r). (5.5)

= ~-—(4 .'/IK- —K-I)j.(IK-—K-I')
A simple way to obtain the ratio

I4(r) I'd 14(r) I'd
cell

If, however, such a representation is to be used only in
(4.15) the region outside the sphere, the series is not unique.

This was also the case for the wave function as discussed
in Sec. IV. We may then choose a "best" representation
for a given E plane waves, for use oely in the region
r&r;,

[and thereby to make possible normalization of P(r)
once the integral of IP(r) I' over the inscribed sphere
is evaluated) is to shift the potential for r(r, by a small
constant amount hV with respect to the constant level
V=0 in the cell corners. We then find the new eigen-
value by the usual method of Sec. III. The difference
d E between this and the original eigenvalue is also
given by first-order perturbation theory as

5V(r)=W~(r)=g W„e px(iK r„),
n=l

by minimizing

(5 6)

I&V(r) —W (r)l d. , (5.7)

with respect to W„. We 6nd that the 8 „satisfy the
equations

AE= EV(1—M),

which then determines co.

(4.16) N

QW„p „=
n=l

5V(r) exp( —iK„r)dr, (5.8)

V 4(r)=VO(r)
for r&r;.

In the cell outside the sphere we choose

V„,(r) = V„

(5.2)

(5 3)

V. RELATION OF "MUFFIN-TIN" POTENTIAL
TO CRYSTAL POTENTIAL

Direct application of the Green's function method
has been restricted to potentials having the "muon-tin"
form. We shall show here how a suitable muon-tin
potential, V i(r), may be derived from the actual
crystal potential V,(r). We shall give expressions for
their difference in a form convenient for the use of
perturbation theory.

Inside the sphere of radius r, inscribed in the cell,
V, (r) may be expanded in terms of those linear com-
binations of spherical harmonics which are unchanged
by the symmetry operations of the crystal. For a cubic
crystal with one atom per unit cell, we have thus for
r&r,

V, (r) = Vo(r)+ V4(r)I.4(r)+ V4(r)L4(r)+ . (5.1)

Here L4 and L4 are (44r)& times the normalized sym-
metric "Kubic harmonic" (type n) of 3=4 and 6,
respectively, as defined by von der Lage and Bethe."
We choose the muffin-tin potential to be

for 444=1 J4I, with p „given by (4.15). Using (5.1)
and (5.5), we have therefore

Z 1V ..= ~V.—4 2 (-)'"L (K-)
n=l L=4, 6 ~ ~ ~

X r'Vi(r)j t(K r)dr (5.9).
This choice of the mufhn-tin potential insures that

perturbation corrections due to 6V(r) are small if the
wave functions are simple. Thus if terms with t'&2 are
negligible in the wave function, the terms involving 1.4,

L4, etc. , in 6V(r) for r &r, give no first-order correction.
The choice of V, in (5.4) leads to a zero first-order
correction if lg(r)l' is constant for r&r. , Thus this
correction is small if f(r) can be approximated accu-
rately in this region by one plane wave.

First-order perturbation corrections may be calcu-
lated in a straightforward manner using (5.1) and (5.6)
when f(r) has been found for the muffin-tin potential.
We have expressed P(r) and 8V(r) in terms of spherical
harmonics for r&r, , and in terms of plane waves for
r&r;. Second-order corrections may also be calculated
if other states of the same k and the same symmetry
have been treated.
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VI. THE MATHIEU POTENTIAL —AN EXAMPLE

As an example of the application of the Green's
function method, we consider here the Mathieu problem
for a simple cubic lattice. %e shall compare our results
with exact solutions obtained by separating Schro-
dinger's equation in Cartesian coordinates and using
known properties of one-dimensional Mathieu func-
tions. '7

%e take as the crystal potential,

V (r) = Ui+U&Leos(2'/a)+cos(2my/a)
+cos(2ws/a) j. (6.1)

Expanding V, (r) as in (5.1), we obtain

Vs(r) = U,+(3Us) ') sin), (6.2)

where $=2irr/a. The "muffin-tin" potential is then

V t(r)=Vs(r), for r&a/2,
= V„ for r)a/2, (6.3)

where from (5.4)

V.= Ui —UsL9/m (6—w) j. (6.4)

Choosing the zero of energy such that V, =O, we have

U, = U,L9/w(6 —w) ). (6.5)

The "best" representation, (5.6) and (5.'7), for 8V(r)
= V, (r) V t(r—) outside the sphere is trivial:

W„= UsL9/m (6—w) j, for K„=o,
W„=-,'Us, for K„=(2w/a)(1, 0,0), etc. , (6.6)

W„=o, for
l
K„

l
)2s-/a.

For a test case we choose Us= ——,'(2w/a)'. Calculated
eigenvalues for several states at 1' (center of zone) and

TABLE I. Eigenvalues for the Mathieu potential and its
"muffin-tin" approximation.

State"

I'1(1)
F1(2)
~15
X4.
X1

e forb the
Mathieu
potential

—0.843
+0.364
+0.250—0.263—0.756

~ forb the
mufI»n-tin

approximation

—0.810
+0.335
+0.254—0.215—0.730

a The notation used for the irreducible representations of the simple
cubic lattice is that of L. P. Bouckaert, R. Smoluchowski, and E. Wigner,
Phys. Rev. 50, 58 (»936).

~ The parameter e is related to the energy eigenvalue through

g = (2~/g)2q.

' P. M. Morse, Phys. Rev. 35, 1310 (1930); Tables Relating )0
3Iotht'en Fnnctions (Columbia University Press, New York, 1951l.

Explicit expressions for Vt(r), V„and 5V are given
in Appendix II for a crystal potential which can be
expressed as a sum of spherically symmetric terms
centered on each lattice site,

V, (r) =Q, U(l r—r, l). (5.10)

X (end of l 100j axis) are listed in Table I along with
the exact values for the Mathieu potential. The cal-
culated values were obtained by including in the trial
function all terms of correct symmetry with 3 &4. The
rapid convergence found as terms are added is illus-
trated by the results for X», in Table II.

Ke may also illustrate the usefulness of perturbation
theory in correcting the calculated eigenvalues for the
diFference between the crystal potential, in this case

TABLE II. Convergence of the X1 eigenvalue for the
"muffin-tin" approximation to the Mathieu potential. '

Order of matrix

ixi
2X2
4X4

—0.723—0.730—0.730

a The parameter e is related to the energy eigenvalue through

Q = (2~/g)2e.

Taking for (E„—Es) the difference between the two
lowest states of symmetry I'», we 6nd Ae(2)= —0.01.
Thus hen&+Bet'l =—0.03, while the difference between
the exact and approximate lowest I'» eigenvalues in
Table II is he= —0.033.

The Mathieu potential is a severe test of the Green's
function method because the exact potential is repre-
sented poorly by the muffin-tin approximation, par-
ticularly in the region outside the inscribed sphere
where the Mathieu potential varies considerably with r.
Nevertheless, the eigenvalues for the muon-tin poten-
tial listed in Table I are not greatly different from the
exact values for the Mathieu potential and it appears
from the results for Ft(1) that this difference can be
calculated correctly and conveniently by perturbation
theory from the difference in the potentials. The crystal
potential for a real solid should usually vary less
outside the inscribed sphere than is the case for the
Mathieu potential. Thus these results indicate that the

the Mathieu potential, and its muffin-tin approxima-
tion. For the lowest state at I'» in Table I, we find by
the methods of Sec. IV that the normalized wave
function outside the inscribed sphere is given by (4.12)
with a&F.„=0.302, 0.048, and 0.007 for the reciprocal
vectors K„=O, (2s/a, o,o), and (2rr/a, 2'/a, o), respec-
tively. The 6rst-order perturbation correction due to
8V(r) given by (6.6) is then found to be he&'& = (a'/4tr')
&(dE(') = —0.025. This is small, as expected from the
fact that V, is chosen so that J'/iVdr=o. To estimate
the second-order correction we replace the energy
denominator in the second-order perturbation formula

by an average energy of excitation, (E„—Es), and sum
over excited states, obtaining

4 {(ol(av) lo) —((ol~vlo)) )
AE(~& = (6.7)

a (g„g,)
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muon-tin approximation should usually sufEce to yield
fairly accurate eigenvalues for crystal potentials en-
countered in practical calculations, and that improved
accuracy can be achieved if the difference between the
crystal potential and muon-tin potential is corrected
for by perturbation theory.

PLANE

VII. CALCULATION OF THE STRUCTURE CONSTANTS

Ewald's Method

Practical use of the Green's function method requires
accurate tabulation of the structure constants Z)I,I
appearing in the expansion (2.18) for G(r, r'). In order
to achieve a desired accuracy of six significant figures,
we have found it necessary to use the complete Ewald
method including summations in both coordinate and
reciprocal spaces. The use of reciprocal space alone as
proposed by Kohn and Rostoker in Eq. (KR A2. 10)
requires an inconveniently large number of terms in the
sum. %e present in this section the complete Ewald
procedure.

An alternative representation of G(r, r') =G(R),
where R= (r—r'), is (KR A2.20)

«p[z» I
R—r.

I ]
G(R) = ——2 exp(ik r,), (7.1)

4x- ~ IR—r,
I

where the sum is over all lattice sites r„and ~ is related
to E by (2.14).

Following Ewald'8 we use the relation

exp[i»IR —r, I]

FIG. 1. Contour of integration C in complex P plane for integral
in Eq. (7.2) of text; Pp=arg», 0(g(s-g.

G(R) =G, (R)+G,(R). (7 3)

An identity given by Ewald, which may be proved by
Fourier analysis and is valid at each point along the
contour (0,-',rt'), then may be used to transform Gr(R):

which follows by a simple transformation of an integral
representation of the Hankel function H;"&(s)."The
contour of integration C in (7.2) is shown in Fig. 1,
where p= arg», and for the following manipulations we
require that 0(g(rr. Thus we require that » have a
nonzero positive imaginary part in our derivation, but
the final formulas are valid for arbitrary ~ as may be
proved by analytical continuation.

Distorting the contour of integration in (7.2) to
run along the real axis beyond the point $= art'*, where
rt)0 is arbitrary, we substitute from (7.2) into (7.1)
and break each integral into two parts, (0, rsrt') and
(srt', +~). G(R) is thus expressed as the sum of two
terms

IR—r,
I

otc)

Q, exp[—(R—r,)'P+ik. (r,—R)]
= (rr'/r&') Q~ exp[ —(Ks+k)'/4P+iK„R]. (7.4)

exp[ —(R—r )sos+»0/4es]d( (7 2)
%e obtain, setting A=K',

(K„+k)'—E7 n

1 exp[i(K„+k) R] exp([—(K„+k)'+E]/rt}
G~(R) = (7 5)

Gs (R) = ——,'rr-& P exp[ik r,—(r,—R)'P+E/4$]dg. (7.6)

These series converge absolutely for any finite p)0
and each term is an analytic function of 8 throughout
the complex plane except at the simple poles of (7.5)
at E= (K„+k)'. Hence by analytical continuation, the
sum of the series represents G(R) for all E.

Expanding Gr(R) and Gs(R) termwise in spherical
harmonics with respect to R, and comparing with
(2.18), we obtain

we take the limit R ~ 0, obtainings0

ZI|J'O& = —(4rr/r)» ~ exp(E/rt)

I
K„+k

I

~ exp[ —(K„+k)'/rt]
xP

n (K„+1)s—E

@I.Z= @I.Z ' +@I.z ' +200 ' &Io. (7 7)
x y»(K„+k), (7.8)

Since R may be chosen arbitrarily in evaluating ZI.I,

ss P. Ewald, Ann. Phys. 64, 253 (1921).

00 G. N. Watson, 2 Treatise ow the Theory of Besset Ftslotions
(Cambridge University Press, New York, 1944), 2nd ed. , p. 178,
Eq. (4).

"Formulas equivalent to these have been derived also by
Morse (reference 6).
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gzq&'&=n. '(—2) +'i~a ~ P' r,~ exp(ik. r,)'JJr.z(r, )

(E/i&) '
Zoo "&= ——Q

2ir =Os!(2s—1)
(7.10)

P~ exp —g'(r, r)'+ — d(, (7.11)
4(2

where the sum is over all r„ including r, =0. 'Zi, q&'&(r)

is given by (4.10) if the convergence factor

exp( [—(K„+k)'+ E]/i&)

is inserted in each term of the sum, and the limit s —+ 0
taken.

Symmetry of Structure Constants

Setting R= (r—r'), we see from (2.4) and (2.6) that
G(—R) =G*(R). Since the '/zan(R) were chosen to be
real, it follows from (2.18) that X)zq is real for E)0
and that i X)J.z is real for E(0. Accordingly in (7.9)
we may replace i~ exp(ik r,) by [icos(k. r,)] or
[csin(k. r,)] according as L is even or odd. [For
"complex" lattices, Zi, q is in general complex. )

It is evident from (2.4) that G(SR)=G(R) if the
operator S is any symmetry operator belonging to the
group of the wave vector k. From (2.18) it then follows
that only those 'Zi, z are different from zero which
correspond to a '/jr, z(R) belonging to the symmetric
representation of the group of k. This fact can be used
to greatly reduce the number of independent X)i,g that
need be computed if the group of k contains more than
the identity operator.

VIII. DISCUSSION

Our experience with the Green's function method
from our work on the alkali metals' and aluminum' has
borne out Kohn and Rostoker's expectation that the
method converges rapidly as terms with increasing l
are added to the trial function. We have found that a

where in the summation in 'Zr, q"& the term r, =0 is to
be omitted, In deriving these results we have combined
the term in [(cos~R)/R] obtained from (2.18) for I.=O
with the r,=0 term of G2(R) in (7.6). The singularities
in each of these terms as R —+ 0 cancel when they are
combined, and X)oo&'& in (7.10) results.

A similar derivation yields corresponding expressions
for the structure constants of "complex" lattices, "or
for the functions X)r,~(r) introduced in (4.9) and (4.10)
to express the wave function outside the inscribed
sphere. For the latter we find '7&op&'&(r) =0 and

Q~~(2&(r) x
—$( 2)L+liL~ L—
XP. ~r.—r~~ exp(ik r,)'JJLJ(r r)

trial function including all independent terms with
l=0, j., 2 that are allowed by symmetry generally
suKces to give an eigenvalue for the muon-tin potential
accurate to at least ~0.002 rydberg for states in the
conduction bands of these metals. This is similar to the
accuracy found in this paper for the Mathieu potential.
At symmetry points (for example I', H, P, and E in a
bcc lattice) where for /(2 there are at most two
independent terms, this accuracy can thus be achieved
very simply since it requires at most a second-order
determinant. Along symmetry axes such as [100],
[111], and [110], and along certain. lines in the
Brillouin zone surface, three or four independent terms
sufFice for this accuracy. Such calculations can be done
quite easily without the help of anything more than
a desk calculator, once tables of the structure constants
have been prepared and suitable radial functions
obtained. Points of lower symmetry in the zone of
course require more terms and are best done with the
assistance of an automatic digital computer, but even
for these the number of terms required for good accuracy
is comparable to that required at symmetry points in a
calculation by the orthogonalized plane wave method.
Usually the simpler calculations on symmetry points
and lines suKce to give valuable insight into the elec-
tronic structure. If a suitable interpolation formula is
available, it is possible to get from these alone a good
quantitative understanding of the entire band.

For states in unoccupied bands above the conduction
bands, corrections due to terms with l&3 increase
with increasing energy. Many such states at symmetry
points, however, require no more than 3 or 4 terms in
the trial function for the accuracy discussed above. The
ultimate accuracy that can in any case be obtained by
adding terms to the trial function is limited by the
accuracy with which interpolation of the determinants
can be carried out between the energies at which the
structure constants have been tabulated. Using a
tabulation interval of De= (a/2m)'BE=0. 0333 in most
of our work, we estimate that interpolation can usually
be made accurate to Ae= ~0.00l.

Wave functions may also be calculated from the
Green's function method, and the results using the
procedure we have outlined have been gratifying in
their convergence. Inside the inscribed sphere, the
coeflicients of the s, p, and d terms in the spherical
harmonic expansion of the wave function of a con-
duction band state can be obtained with an accuracy
which we estimate for the alkali metals and aluminum
to be usually within 5%. If one of the coe%cients is
small compared to the others however, as in the case
of l&3 for conduction band states, or /=1 or 2 for k
near k=O, then the relative accuracy with which it is
given is poorer. Outside the inscribed sphere the wave
function is given as a Fourier series. We have found
that the coefFicients are reasonably small except for
those plane waves having (K„+k)' close to the cal-
culated energy eigenvalue. Thus a few plane waves
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usually suffice to represent P(r) in this outer region,
provided we use the "best" of the many equivalent
Fourier series in this region, with the "best" series
chosen as discussed in Sec. IV.

Explicit examples of the convergence of eigenvalues
and wave functions are given in our papers reporting
the results for the alkali metals and aluminum.

The Green's function method offers substantial
advantage in a number of respects over other methods
that have been described in the literature. Since it
imposes via the Green's function the correct periodicity
boundary conditions for the polyhedral unit cell, the
method makes available results on distortions in energy
band shapes, particularly near the zone surface, that
cannot be provided by the widely used Wigner-Seitz
method. "This latter replaces the boundary conditions
on the polyhedral cell by similar conditions on the
equivalent sphere and thus insures that the resulting
bands will be spherical. Although usually an accurate
method for obtaining the energy and effective mass of
the conduction band of a metal at k=0 (as we have
verified with the Green's function method'), the
Wigner-Seitz method thus cannot be used without
substantial modification to obtain desirable information
on the shape of the Fermi surface and the various band
gaps at the zone faces.

Other cellular methods such as those proposed by
Slater " Kohn " and Howarth and. Jones " either
require the tedious evaluation of surface integrals over
the cell surface or use the correct boundary conditions
at only a few selected points on the cell surface. In the
latter case the results have proved to be rather sensitive
to the selection used, and in all the cellular methods
there is good reason to doubt that the usual spherical
harmonic expansion of the wave function converges in
the part of the cell outside the inscribed sphere. "The
Green's function method uses such an expansion only
within the inscribed sphere, where it is unquestionably
valid with a muffin-tin potential.

The convergence of the Green's function method is
much better than that reported in published calculations
with other methods that take account of the polyhedral
shape of the unit cell, notably the orthogonalized plane
wave (OPW) method. This is true even if core functions
needed in the OPW method have been carefully deter-
mined to be appropriate to the crystal potential; if
inaccurate core functions are used the OPW convergence
is very much further worsened. Recent work' with forms
of the augmented plane wave (APW) method, however,
reportedly exhibits convergence comparable to that of
the Green's function method, although hand calcu-
lations at symmetry points wouM appear easier with
the latter if structure constant tables are available.
Calculations have usually heretofore been limited to
points of fairly high symmetry, in order to reduce to a
manageable number the terms in the wave-function
expansion needed for adequate convergence. Because
of the rapid convergence of the Green's function method,

calculations are practicable at general points in the
Brillouin zone, although a stored-program computer is
usually necessary for such work.

A great advantage of the Green's function method
over all other methods, as pointed out by Kohn and
Rostoker, is that much of the work in using the method
is done once and for all for a particular lattice structure
when tables of the structure constants, X)z,g, have been
prepared for suitable values of k and E. These have
proved rather more dificult to calculate than was
believed at the time of Kohn and Rostoker's proposal
of the method, as rather extensive tabulations have
been required, and the infinite series for ZL, z converges
too slowly to give adequate accuracy unless the Ewald
procedure is used and the sums in both spaces evaluated.
But with the availability of high-speed digital com-
puters with a large rapid-access memory, such as the
IBM '/04, the structure constants now can be computed
readily.

The Green's function method, as well as the APW
method (and in. a rigorous formulation all cellular
methods too), is convenient to use only with solids in
which the potential can be approximated by one in the
muffin-tin form. While the OPW method has the
apparent advantage that the potential is not restricted
to any particular form, this is offset by its relatively
slow convergence and the need for accurate knowledge
of the core states. For most solids of interest it should
be possible to choose a mufFin-tin potential that ap-
proximates the crystal potential sufficiently closely to
permit correcting for the difference by perturbation
theory. The muffin-tin potential need not be continuous
at the inscribed sphere, so that it may be chosen in each
region as in Sec. V to equal a suitable average in that
region of the actual potential. As we have seen in Sec.
VI, even for the Mathieu potential the difference
between the exact eigenvalues and those obtained for
the muffin-tin approximation is not large and is ade-
quately corrected for by perturbation theory. A self-
consistent potential for most solids departs relatively
less from its muffin-tin approximation than is the case
for the Mathieu potential. This is particularly so for a
metal since for the latter the conduction electrons act
to screen the electric field due to an ion within a distance
typically 3 to —,'the lattice constant. Estimates of the
perturbation corrections for occupied states in alu-
minum'using Heine's. self-consistent potential, are only of
the order 0.01 ry. In practice, of course, a self-consistent
potential is not yet known with any reliability for most
solids, and the region of principal uncertainty is the
cell corners. Use of a suitable "muon-tin" potential is
therefore likely to be as accurate, particularly in metals,
as other approximate potentials that have been used
in calculations, and as our knowledge of potentials
improves, perturbation theory should provide a means
of making the necessary corrections.

We conclude, then, that the Green's function method
is one of the most accurate and rapidly converging
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methods available for calculating eigenvalues and wave
functions in solids. Structure constants may be cal-
culated readily using the formulas developed in this
paper, or in special cases are now tabulated and avail-
able from the authors. The further calculation of eigen-
values and wave functions for particular solids then
may be carried out using the procedures we have out-
lined, and at many points and lines of symmetry in the
Brillouin zone this work can be done with the use of
only a desk calculator.

we obtain from (A1.4)

Eqq n H qI
+E„Eq =q+1 E E„1

From (A1.2) and (4.4) we Find that

Eqq = —Lq 1.

(A1.5)

(A1.6)

The desired equation (4.3) follows from (A1.1), (A1.5),
and (A1.6).

ACKNOWLEDGMENTS

The authors would like to thank Professor Walter
Kohn for his advice and interest concerriing their work,
and Professor J. N. Snyder for his guidance in the use
of digital. computers in the preliminary phases of the
structure constant computations. We would like also
to thank Mrs. Josephine Morecroft and Miss Elise
Kreiger for their invaluable and competent assistance
with the structure constant computations.

V4(r) = (1/4~) 2

We find

2x. jr

dq singdgl. ,(r) U(
~

r—r,
~
).

(A2. 1)

Uo(r) = U(r)+ ~U(~)d~, (A2 2)

APPENDIX II. DEVIATIONS OF LATTICE SUM
POTENTIAL FROM MUFFIN- TIN FORM

If the actual crystal potential is given by (5.10), we
have in (5.1)

2ft's s

Ts+T

r2+r 2 P'4

)& P( — — d$, (A2.3)
2rr,

where P4(x) is the I egendre polynomial of degree l, and
the prime on the sum means that r, =0 is omitted. The
coefficient nio&'~ is that of L(21+1)/4~]'Pi(cos8) in the
expansion of Li(8, y) in terms of normalized spherical
harmonics with polar axis taken along r, . For a face-
centered cubic crystal and "Kubic harmonics" as
defined by von der Lage and Bethe, "we have for the
nearest-neighbor sites, in the $110] directions,

C,=E„,/E„, q=2, e (A1.1)
where

A1

A.g

A

A12

A22

A„1 2

A1q

A„1 q

Ag1

A

0

APPENDIX I. PROOF OF SERIES SOLUTION FOR
COEFFICIENTS Cq

1 2l+1
We prove here that (4.3) is the solution of the first V, (r)=

~

pl «, c'.)

(r4 1) linear equ—ations (4.1) if we set Ci ——1 as in (4.2). 2rr, 4'
We drop the equation with i =r4 in (4.1), this being the
one added in extending the trial function from (r4 —1)
to e independent terms. From Cramer's rule" and some
simple manipulation of the determinants, we have

(A1.2)

E„1q
—II„q

(A1.3)~nq+n —1
1 L„1

whence

The last row of En, has all zeros except for 1 in the
column containing A, q Vile now apply a theorem of
determinant theory" to the 2-rowed minor in the lower
right corner of E„q: "If D' is the adjoint of any deter-
minant D, and M and 3II' are corresponding ns-rowed
minors of D and D', respectively, then M' is equal to
the product of D ' by the algebraic complement of
M." Using definitions of L, E, and H q given in
Sec. VI, we have

4i4O= —(1/4) P~/3) '*, a4o = —(13/16) (2~) ' (A2.4)

Only these sites will contribute appreciably to Vi(r)
if U(r) falls off sufficiently rapidly with increasing r to
be negligible beyond adjacent cells.

The constant potential Vo is found from (5.4) to be
given by

[r (4/3)7rr 3]—Uc

r'U(r)dr 47r r' Vo(r)dr. (—A2.5)

The coefFicients 6V in the Fourier series (5.5) for
5V(r), valid throughout the cell, is

+nq ~n—1,q II'nqL n—1

E„E„1 E„E„1
(A1.4)

8V = (4rr/r) U(r)j 0(E r)r'dr

Applying this recurrence relation for E„,/E repeatedly,

3' M. Bocher, Introduction to Higher A/gebra (The Macmillan
Company, New York, 1907), p. 43."Reference 31, p. 31.

—(4rr/r) Uo(r) jo(E r)r'dr

+(47r/r)(V, /E )r j i(E r,)—V.b o. (A2.6)


