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FIG. 10. Lattice structure of calcite.

concentration of color centers at highest coloration,
computed by Smakula's formula, " is of the order

"A. Smakula, Z. Physik 59, 603 (1930).

10"/cm'. If we assume that some defects may be
created by irradiation, the defects originally present
must be less than 10 '/cm'. The efficiency of coloration
is given in Table I.

At low coloration levels about 300 ev are required to
form one color center. This is of the same order as in
calcium fluoride. "The efficiency of coloration decreases

rapidly with irradiation dose similar to other crystals.
The strong luminescence with an emission band at

590 mp can be considered as the recombination of the
trapped electron with the hole and simultaneous
decrease of the absorption bands. This process (the
reverse of coloration) depends on temperature. Illumi-
nation with light of a wavelength exceeding 280 mp
did not produce any noticeable effect on bleaching or
luminescence, nor could a photocurrent (&10 " amp)
be observed.

"A. Smakula, Z. Physik 138, 281 (1954).
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A new and simple diagrammatic expansion is developed for the
free energy of the Ising model with arbitrary spin and range of
interaction. The contribution of each diagram is a product of
(1) the reciprocal of the order of the symmetry group of the
diagram, (2) a product of semi-invariants, with a factor M„ for
each spin in the diagram (I being the number of bonds joined to
that spin) and (3) a sum of products Z;, ;, v, ...(2';;)(2PJvt)
where 2PJ;; corresponds to a bond between spins i and j, and
where the summation is carried out with no restrictions on the
summation indices (i.e., no "excluded volume" corrections). The
expansion variables are the spin deviation operators 0.;=—8—g;,.
The quantity S is chosen to eliminate a large class of diagrams;
this choice also minimizes the corresponding free-energy contri-
bution and implies S=(S;,). By further renormalization of the
vertices all reducible (i.e., simply articulated) diagrams are
eliminated. To zero order the molecular field solution is obtained.
The next approximation consists of the summation of renormalized
simple loop diagrams. The justification of this choice of diagrams

rests, at low temperature, on the decrease of the value of the
higher order semi-invariants, on the relationship of these loop
diagrams to the random phase approximation, and on the agree-
ment with the rigorous low-temperature series result. At the
Curie temperature the same choice of diagrams is justified by a
modiacation of Brout's 1/s criterion, so that the expansion can
be viewed as an expansion in 1/s, where s is the effective number
of spins interacting with a given spin. Finally the choice of loop
diagrams is justified at high temperature by exact agreement to
second order in T,/T (and by a very close agreement to fourth
order) with the rigorous high-temperature series expansion. Thus
the theory agrees with rigorous results in the low-temperature
and paramagnetic regions and has a well-defined criterion of
validity in the intermediate temperature region. For nearest-
neighbor interactions and spin ~ the specific heat is continuous
through the Curie temperature, with an infinite slope on the
low-temperature side of the transition.

INTRODUCTION

HE Ising problem has been one of the most
actively studied problems in statistical mechanics,

principally due to its being perhaps the simplest model
exhibiting a cooperative phenomenon, or phase tran-
sition. ' In its simplest form, the spin-~ Ising model with

* Supported by the Once of Naval Research.
f Philco Fellow during part of this work.
' General references: G. F. Newell and E. Montroll, Revs.

Modern Phys. 25, 353 (1953). C. Domb, Advartces il Physics,

nearest-neighbor interactions, it serves as a useful model
for several physical systems, such as the ordering of
binary alloys. Of particular interest to us is the fact
that the Ising Hamiltonian is part of the ferromagnetic
Heisenberg Hamiltonian, and that the Ising problem is
a convenient preliminary to the ferromagnetic problem;

edited by N. F. Mott (Taylor and Francis, Ltd. , London, 1960),
Vol. 9, p. 140. H. N. V. Temperley, Chartges of State (Cleaver-
Hume, London, 1956), especially pp. 114-1tt2. T. L. Hill, Sta-
tistical Mechanics (McGraw-Hill Book Company, New York,
1956), pp. 286—353.
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we shall give the extension of the present methods to
the ferromagnetic case in a subsequent paper. We here
consider the Ising model of a ferromagnet with arbitrary
spin, and with a strength of interaction ("exchange
integral" ) which is an arbitrary function of the distance
between the interacting spins.

Rigorous solutions have been given for the simple
Ising model for one-dimensional and certain two-
dimensional lattices. ' There also exist series expansions
which are valid for temperatures either very low' or
very high4 compared to the transition temperature T,.
Interpolations' ' between these regions provide the best
available estimates of the Curie temperatures (or
transition temperatures) of three-dimensional lattices.

A number of heuristically appealing approximate
methods have been proposed, such as the molecular
field (or Bragg-Williams) method, ' the Bethe-Peierls
method, ' the Kikuchi method, ' and others. Most of
these are in some sense an extension of the molecular
field method, treating a small cluster of spins accurately
and representing the remainder of the system in terms
of its average properties.

In the limit of an infinite range of interaction, in
which each spin interacts equally with every other spin
in the lattice, the molecular field method becomes
rigorous, and all the cluster methods merge.

The heuristic cluster methods have the advantage of
providing closed form solutions and of having solutions
through the transition region. Their disadvantage is
their lack of a criterion of validity, or of a well-defined
procedure for successively higher approximation; that
is, they do not generally possess clear-cut expansion
parameters.

Another important approximation is afforded by the
spherical model, ' obtained from the Ising model by
relaxing certain mathematical constraints. In particular,
the spherical model permits each spin to be of arbitrary
magnitude, constraining only the sum of the squares of
all the spin magnitudes to have the proper prescribed
value. Solution of this model, which can be carried out
rigorously, gives a Curie temperature somewhat below
the best estimates for the Ising model. It predicts a
specific heat continuous at the Curie temperature, but
with infinite slope on both high- and low-temperature

'L. Onsager, Phys. Rev. 65, 117 (1944). B. Kaufman, Phys.
Rev. 76, 1232 (1949). M. Kac and J. C. Ward, Phys. Rev. 88,
1332 (1952).

3 C. Domb and M. F. Sykes, Proc. Roy. Soc. (London) A235,
247 (1956).

4A. J. Wakeheld, Proc. Cambridge Phil Soc. 47, 419 (1951).
G. S. Rushbrooke and I. Scoins, Proc. Roy. Soc. (London) A230,
74 (1955). C. Domb and M. F. Sykes, Proc. Roy. Soc. (London)
A240, 214 (1957).

5 K. TreGtz, Z. Physik 127, 371 (1950).
sW. L. Bragg and E. J. Williams, Proc. Roy. Soc. (London)

A145, 699 (1934); A151, 540 (1935).
VH. A. Bethe, Proc. Roy. Soc. (London) A150, 552 (1935).

R. Peierls, Proc. Cambridge Phil. Soc. 32, 471 (1936);Proc. Roy.
Soc. (London) A154, 207 (1936).

8 R Kikuchi, Phys. Rev. 81, 988 (1951).
s T. Berlin and M. Kac, Phys. Rev. 86, 821 (1952); M. Lax,

ibid. 97, 629 (1955).

sides of the transition. As we shall see, the results of
our first-order approximation give a Curie temperature
very close to that of a spherical model. The specific
heat is again continuous, but has an infinite slope only
on the low-temperature side of the transition.

A form of expansion was developed by Kirkwood, "
which, although it did not prove to be convenient,
furnished a point of departure for a recent work by
Brout." Kirkwood's method used the formalism of
semi-invariants to effect an expansion in powers of 1/kT,
valid at high temperatures. He utilized an ensemble
microcanonical with respect to the s component of the
total spin, thereafter evaluating the s component of
spin to minimize the resultant free energy. Brout
extended this analysis by rearranging the terms in the
Kirkwood expansion, abandoning the criterion of
expansion in powers of 1/kT. Instead, he classified and
ordered the terms in the Kirkwood expansion in powers
of the expansion parameter 1/s. Here s is the effective
number of spins interacting with a given spin- —a
number of the order of 8 to 12 even for nearest-neighbor
interactions, and larger for a system with long-range
interactions. If every spin interacts with every other
spin (s —& ~) the molecular field method becomes
rigorous, so that the molecular field result is the leading
order term in Brout's expansion. Brout refers to the 1/s
expansion as a "high-density expansion. "

The approach which we develop in this paper has
many similarities to Brout's method, but there are a
number of fundamental differences. Firstly, we use a
canonical formalism with respect to the s component of
spin, rather than Kirkwood s microcanonical formalism.
Secondly, our treatment applies to arbitrary spin rather
than being limited to the case of spin —,. Thirdly, we

regroup the semi-invariant terms of the Kirkwood
series into new basic terms which obviate the need for
restrictions on the summation indices; these restrictions
were responsible for Srout's "dotted-line diagrams"
and for a considerable complexity in his treatment.

The expansion variables in terms of which our theory
is formulated are the spin deviation operators 0-,=8
—S,, The quantity 8 is chosen to eliminate a large
class of diagrams; this choice also minimizes the corre-
sponding free-energy contribution and implies the self-
consistency relation 8=(S;,). By further renormaliza-
tion of the vertices we eliminate all reducible diagrams
(dehned as linked diagrams which can be separated
into unlinked parts by a single cut). Thus the renormal-
ized diagrams actually represent many unrenormalized
diagrams, and the diagrams which are summed repre-
sent relatively large fractions of the over-all interaction.
The renormalization procedure establishes an irre-
ducible linked diagram expansion for the Ising model.

The zero-order approximation in the theory yields
the internal field or Bragg-Williams result. The 6rst
approximation consists of the summation of all simple

"J.Q. Kirkwood, J. Chem. Phys. 6, 70 (1938).
R. Blouti Phys. Rev. 115, 824 (1959); 118, 1009 (1960).
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renormalized loop diagrams, the second approximation
consists of the summation of all double-loop renormal-
ized diagrams, etc. We carry out the calculation
explicitly to the first order.

The justification of the above classi6cation of dia-
grams, in our opinion, cannot be based on a single
consideration valid for all temperature ranges. How-
ever, we believe that there are sufficient evidences of
the validity of the procedure to indicate that the
method is a valid procedure for all temperature regions.
The fact that the free energy is minimum with respect
to 8 at each stage of the approximation is one im-
portant guide to the ordering of diagrams; this criterion
is not satisfied if, for instance, the unrenormalized
simple loop diagrams alone are summed, At very low
temperatures the first-order theory agrees with the
rigorous low-temperature series result —furthermore,
the higher-order diagrams involve higher-order semi-
invariants, which we expect to fall oR rapidly in value.
At high temperatures" the results agree with the
rigorous expansion in inverse powers of the temperature
exactly to second power in 1/T and to an excellent
approximation to 1/T'. In the vicinity of the Curie
temperature, the classification of diagrams corresponds
to an expansion in powers of 1/s, where z is the effective
number of spins interacting with a given spin. The
application of the 1/z classification to the renormalized
diagrams thereby modifies Brout's criterion in a
fundamental fashion, which we show to be at least
self-consistent. Thus, by all the above considerations,
and by the agreement of our results with the rigorous
results in the regions of the latter's validity, we believe
that the ordering of the renormalized diagrams accord-
ing to their numbers of loops de6nes a valid and
convergent approximation scheme at all temperatures.

In Sec. 1, the Hamiltonian is written in terms of the
spin deviation operators and is separated into the
noninteracting ("unperturbed" ) part and the inter-
acting ("perturbation") portion. The corresponding
contributions to the free energy are computed, and the
unperturbed free energy is shown to correspond to a
molecular field result, with a molecular field propor-
tional to S. In Sec. 2 the properties of semi-invariants
are analyzed. The linked cluster expansion of the free
energy is set up and characterized by a diagram
convention in Sec. 3. In Sec. 4 we regroup the terms
of the linked cluster expansion into the more convenient
type of series referred to previously, and a new diagram
convention is introduced to characterize the terms of
this new series. A more detailed analysis of the rear-
rangement of the expansion, and an analysis of the
resultant series, is given in Sec. 5. Section 6 briefly
recapitulates Brout's 1/s classification of diagrams. The
simplest form of renormalization of 8 is presented in

Sec. 7, eliminating zero-order diagrams ("Cayley trees")
and establishing the simple molecular field result. The
renormalization procedure required for this purpose
does not eliminate all reducible diagrams, and we show
in Sec. 8 that it is not a satisfactory procedure for the
higher orders. In particular, the simple renormalization
procedure leaves certain reducible diagrams in 6rst
order; these are directly summed and are shown to lead
to a formal divergence of the magnetization at the
Curie temperature. Having thus demonstrated the
necessity of a fully self-consistent renormalization, we
analyze one aspect of renormalization procedures in
Sec. 9.

In particular, we show that certain large classes of
diagrams can be eliminated by appropriate choice of S,
and that this choice both minimizes the free energy
and evaluates 8 self-consistently as the magnetization.
The basis for this choice of 8 is developed in Appendixes
A and B, and the fact that it is not yet a sufhcient
renormalization is shown in Appendix C. The second
aspect of a full renormalization procedure, eliminating
all remaining reducible diagrams ("Husimi trees"), is
also briefly described in Sec. 9 and is illustrated in
detail in Sec. 10, in which the free energy is explicitly
calculated to first order by summation of the simple
renormalized loops. Finally, the results are computed
and discussed in Sec. 11.

The Curie temperatures of several simple lattices,
with nearest-neighbor interactions and spin —„are
compared with the results of several other investigations
in Table I. The Curie temperatures are somewhat lower
than the results of most other analytic theories, but
are in close agreement with the results of the spherical
model and with the estimates made by TreRtz' on the
basis of graphical extrapolation of the reciprocal specific
heats obtained from exact series expansions at high and
low temperatures. To first order the speci6c heat is
found to be continuous at T., with an in6nite slope on
the low-temperature side of the transition but (in
contrast with the spherical model) with a finite slope
on the high-temperature side.

1. THE HAMILTO5IAN

We consider a crystal containing E equivalent lattice
sites, each occupied by a spin S. The spins interact by
an Ising interaction (—J;,S;,S,,) with a positive
"exchange integral" J;,. The exchange integral is not
restricted to nearest neighbors, but is assumed to be a
function of the distance between the interacting spins
only. With an applied field along the negative s axis,
the Hamiltonian is

K= —Q J;;S;,S;,—NOH Q S;,.

"Extension of the method would easily give rigorous coef6cients
for the higher order terms in 1/T, and would provide a very
convenient alternative to the very laborious method of obtaining
the high-temperature expansion by the Kirkwood method.

The first summation extends over all i and j, and we
define J;, as zero. The quantity g is the Lande factor,
p, o is the Bohr magneton, and El is the magnetic field;
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the quantity gpoII is positive and all spins have S,= +S
in the ground state.

Ke introduce the spin deviation operator

0;=8—S;„ (2)

where S is a quantity to be chosen subsequently. The
Hamiltonian becomes

The remaining term in the free energy F' can be
written formally as an average by introducing the
weighting factor p,

exp( —PXo)
p= =g pip

tr exp( —PXo)

where the single-spin weighting factor p, is

(3)X=xo+ V, S+S
p;= exp( PLO.,)/—P exp( —PLO;)

S—s

where

Xo Eo+I ——Q;0;,

Eo= NS(g—poII+ JoS),

Jo=g; J;; (a quantity independent of i),

I.=gpoII+2 Jo8,

=exp(PLS;,)/g exp(PLS;,). (18)(5)

V= —Q J;,0,0,.
(19)PF'=1n—tr(pe e~)=ln(e ~~)

2. SEMI-INVARIANTS, OR CUMULANTSThe "unperturbed" Hamiltonian Hp is a sum of single-
spin operators and the quantity L/gpo can be considered
as an effective magnetic field acting on the spin devi-
ations.

The magnetic Gibbs function, or "free energy, " is
given by

Preparatory to our expansion of Ii', we consider a
quantity of the form

p(a) = ln(e "}= ln tr(e'*p (x)], (20)

where a is a constant and p (x) is a normalized weighting
factor. Such quantities arise frequently in statistical
theory; when expanded in powers of a the coe%cients
define the so-called semi-invariants or cumulants M „(x):

PF=ln tr exp[——P(Xo+V)], (9)

where P=1/kT, and where the Hamiltonian IIo is
actually the magnetic Hamiltonian (already trans-
formed with respect to the external field) as defined

by Eqs. (4)—(7). Thus, F is a thermodynamic function
of T and II, the analog of the Gibbs function (which
depends on T and pressure).

Separating off the contribution to F arising from Hp

alone, we write

a"
y(a) = Q —M„(x).

n=i n!

It is, of course, clear that M„(x) is not a function of x,
but is simply a constant; the functional notation M (x)
Inerely identi6es the variable x with respect to which

M„ is defined. A useful symbolic way of carrying out
the expansion provides a convenient closed expression
for the semi-invariants. We rewrite Eq. (20) in the form

PF= PF—o l3I"— — (10)
where

—PFo=ln tr exp( —PXo),
and

(6)
Then, using the notation ( ) to denote an average

(7) with respect to the weighting factor p, we rewrite
Eq. (12) in the form

(g)

exp( —Pxo)—
PF'=ln tr exp—(—PV)— . (12)

tr exp( —PXo)

The quantity Pp can be evaluated easily in the
representation in which each of the a, is diagonal:

where

@(a)=lim ln(e *) =limln trLe *p (x)],
a—&p a~

p.(x)=e *p(x).

P(a) = lim ln trfe&'+~&'p(x)]
a~p

(22)

(23)

(24)

PFo= ln tr expL ——P(Eo+L Q ' 0' )] (13) = lime'~. ln trLe"*p (x)], (25)

PEo PIVLS+1V In g—exp(P—LS,) (14)
wllere

D =8/Bn, (26)

= —P1VJoS'+1V ln Q exp(PLS, )
and where e' is the translation operator which

(15) transforms a function of n to the same function of
(a+ed) Expanding e'. o in power series,

= —PlVJoS'+1V ln sinhD1L(S+-', )]
—1V ln sinh(APL). (16)

@(a)= lim P D" ln trfe" p(x)], —
~nt

(27)
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and noting that the e= 0 term vanishes by the normal-
ization of p, we find

We note that the identity (32) also provides a useful
operator for expressing the moments (x") in terms of
the semi-invariants, for we can rewrite that equation
in the form

(28)y{a)=lim g —D.*" ln tr[e-p{g)&.
& on=i'~ [D+(x)j&x~)= (x"+')

(x")= [D+(x)j"-'(x).

(42)
or

(43)Comparing Eqs. (28) and (21) we identify the semi-
invariants and therefore,

M„(x)=limM„i '(x), (29)
(g-) = [D+M, (x)]"-iM,(x)= [D+M, (x)](x"+'). (44)

M„i &(x) =D."ln tr[e *p(g)]. In particular, we obtain30

Or, noting that D ln tr[e™'p(x)$is simply (x)„Eq.
(30) can be rewritten

M i.&(x)=D "—'(x) =D M i"(x). (31)

Equation (31) can be used to compute the semi-
invariants directly, but the following identity is useful
for this purpose

tr(x"e *p)
D &*") =D =& "+') —(x") (x)- (32)

tr(e *p)

( ') = [D+M,$M =M +M ',

(g') = [D+Mi7(M p+MP)

=M3+3MiMg+Mia, (47)

3. LINKED CLUSTER EXPANSION OF —gF'

and this process of step-wise generation of higher
moments is very easily continued.

With these two equations [(31)and (32)$ we now find

easily that

Recalling that
—PF'=ln(e er) (48)

Mii~&(g) =(x)„,
M2& &(x) =(x').—(x).',

M3'&(x) =(x') —3(x') (x) +2(x).',
(34)

(35)
PF'= Q——M„(—V),

n=z ~ I

(49)

(33) we expand in powers of p, as in Eq. (21), obtaining

M„(bx)= b "M„(x), (37)

M (x+b)=M„(x) if n)1, (38)

Mi(x+5) =M i(x)+b. (39)

M4&'(x) = (x').—4(x').(x) —3(g')
+12(x') (x) '—6(x).4. (36)

In the following we retain the symbol o, explicitly
only when necessary for clarity. The appearance of the
D operator in any equation implies first that p is to be
replaced by p and that finally the limit o. —+ 0 is to be
taken. It should be noted that since p is not normal-
ized, replacing p by p requires that the appropriate
normalization denominators be introduced. Thus (x")
=trx"p but(x") =trx"p./trp. .

The semi-invariants clearly satisfy the following
identities:

We now wish to consider the fact that V is the sum
of terms corresponding to all pairs of spins in the
lattice: —V=+ Jg;a.;o;= Q 2J;,o;a;,

st 7 (i 7')

(51)

where (i,j) denotes summation over all pairs of indices
i and j. To investigate the consequences of this form
of V we define a set of parameters e;, which will replace
the single parameter a. In place of p„we define p~ I by
the equation

where, as in Eqs. (29) and (30),

M„(—U)=limM i"&(—V)=limD " '(—V)
a~o ~0

=limD, " ln tr(e rp) (50).

Another closed form expression for the eth semi-
invariant is

pi i
= p exp+ o'„o,a,=pP e"". "',

(', 7) (', 7)

(52)

tr( —Upi-&)
(—V)i i= = r. 2~'( ' )i & (53)

trp( )
where the first summation is over all sets of non-
negative integers pi, p~ . p„such that The derivative D is now replaced by

( 1)"'(g')"' andM-()=- 'E [E(p;-1)'Ill, (40)
p, !(j!)»

g jp;=e.
7=1

(41) Di-&= Z 2~'~ = Z 2~'iD'~.
(s, 7') Bu;~ (~, 7)

(54)
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Then

M„(—V)= lim M (~&(—V)
f aI~0

= lim (Q 2J;;D;;)"In trp(„). (55)
(2, I) (2g)

(38 I) (38» (3,3) (3 4) (3,5)

Expanding the quantity (P(;,,& 2J;,D;;)" by the
multinomial expansion, we write

(4,I) (4,2) (4 3) (4.4) (4,5) (4,6) X
(4, 12)

(2J. .)ifj
(Z2J'D';)"=~!Z II

(i, j) (nij) (ij) p. . !
(56) (5, I) (5,2)

~ ~ ~ r r r etC

(5,Io)

Fxo. 1. Diagrammatic representation of terms.

where the summation is over all sets of non-negative
integers p, , satisfying the equality

Thus

. .
p'j=s

(', 7)

MI pij) = II Dip(j 111 'tip,
(si)

(62)

and M!);i& has precisely the form of M„(—V), but in
each term there are P12 factors 0 10.2, P23 factors 020.3,

instead of 23 equal factors (—V). Thus

M!8;,!=(Oia2) if p12= 1 and all other p;, =0, (63)

M IPij & (0102O 2&3) (0102)(02&8)

if p12 ——p23= 1, all other p;, =0, (64)

M IPij } ((F1%2) P208) 2(01(72')(01P20203)

((0 10 2) )(&20 8)+2(&1&2) (&2() 8)

if p12 ——2, p28 ——1, other p;;= 0. (65)

With this notation we now have

II (2P')" MI"!
f nfi& (ij) P8j!

(66)

ply'= l—im p II (2',,D,,))' jln trp( ), '(58)
( ) -" ( ~'j) (', j) p; !

where II(;j)P3"j=P", and where the summation over 28

in Eq. (49) is effected in Eq. (58) merely by removing
the restriction (57) on the summation of the p, ,

Consider the result of operating with D,, :

D;, ln trp = lim D,; ln trp ( !=(0;0;),
t nI ~0

and

D8,D;; ln trp =D8)(of 0 j)= (0.,0 jo „0-))—(o;0j)(080 1), (60)

where we have omitted the notation {n}and where the
limiting process is again understood. Similarly,

D', (~)=8-'-;)-(~)( ';) (61)

in analogy with Eq. (32). In this way we generate the
quantity II(,j) D,j)"jln trp( ! in complete analogy with
the manner in which a semi-invariant is generated
LEq. (31)).For a given set of integers {p;j}we define

Each term in this expansion, corresponding to a
particular set of integers {p;;},can be represented by a
diagram. To do so we simply draw p;; bonds between
i and j, for each integer p;, in the set. To every choice
of a set of integers there corresponds a diagram, and
the contribution to PP of tha—t diagram is

n (23)'~.,')W, i

(ij) p, j,!

where p,; is the multiplicity of the bonds connecting
sites i and j.

We see immediately that the term corresponding to
any choice of integers {p,,} vanishes if the nonzero
integers p;; can be divided into two sets with no indices
in common. That is, all "unlinked diagrams" vanish.
This follows from the fact that in generating M ) p, ;I by
Eq. (62) we can first apply all the D&1 in one set.
When we then apply a D;, from the second (nonover-

lapping) set the quantity immediately vanishes. To
see this we let Q) be one of the averages generated by
the D21 of the first set, so that ~t involves the o2oi in.
this set. We can let all the nl, ; which join the two sets
vanish, and p~ ~

factors into p~p2, where p~ involves the
spins of the first set and p2 involves the spins of the
second set. Then

ti(4P)P2) I:tr(()P1))l:«(P2)) «(4Pi)
(~)=

tr(p, p,) (trpi) (trp, ) trp,

and this quantity is independent of the indices of the
second set. Hence D;jQ)=0, proving that all such
unlinked diagrams vanish.

All diagrams l or terms in Eq. (66)) can be grouped
into sets of "topologically equivalent diagrams. "A set
of topologically equivalent diagrams is defined by the
requirement that every diagram of the set is carried
into a diagram of the set by any one-to-one relabeling
of the sites of the lattice. We denote such sets of
diagrams by the two indices ()2,I), where the integer e
speci6es the number of bonds in a diagram, and t then
numbers the various topologically equivalent sets of
diagrams with e bonds.

For m= 1. there is only a single set, designated by
(1,1), and consisting of a single bond, as shown in Fig. 1.
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For e= 2 there are two sets of topologically equivalent
diagrams. One set, designated by (2,1), consists of
double bonds. The second set (2,2) consists of pairs of
connected single bonds, which again are indicated in
Fig. 1.

For v=3 there are five sets: triple bonds, (3,1);
connected double and single bonds, (3,2); triangles,
(3,3); branched chains, (3,4); and chains of single
bonds, (3,5).

It should be noted that the diagrams in a set are
similar only in a topological sense —the angles between
bonds and the lengths of the bonds are irrelevant to
the classi6cation.

Let us suppose that a particular set of integers

{p;,}~,& corresponds to a diagram in the set (n, f). The
contribution of this diagram to PP is—

(67)

However the quantity M(p;, » is independent of the
particular indices selected; that is, it is the same for all

diagrams in the topologically equivalent set. As a
particular example, any diagram in the set (2,2)
(consisting of two connected single bonds) has

n, t I ur'j» (ii)

where the second summation is to be taken over all
choices of integers {p,,}which give diagrams in the set
(e,t). ln this last summation the quantity to be summed
is a product of e exchange integrals, with some indices
repeating in a way which is characteristic of the class

(e,t). Thus for the class of triangular three-bond
diagrams the product to be summed is of the form
J;;J';),Ji,. For the class of diagrams (3,2) the summand
is of the form J;,'J;I,.

VVe inquire as to the possibility of replacing the last
summation in Eq. (68) by a simple summation over
the indices. Thus for triangular diagrams we consider
the summation P, ; i J;,J)7,J)„.Obviously, this latter
sum reproduces all triangular diagrams, but it repeats
every diagram six times. This sixfold repetition results
from the fact that the product J~2J~~J3~, which should
be counted once, occurs when (i,j,k) = (1,2,3), (3,1,2),
(2,3,1), (3,2, 1), (1,3,2), or (2,1,3). Hence the final sum-
mation in Eq. (68) can be replaced by 6P;;& J;,J;),J&;.

We consequently designate M (p;;» by M (,t). Similarly,
the product g(, ,) (1/p, ;!)is the same for every diagram
in a set; it. is unity for the set of two connected single
bonds, and it is 1/3! for the set of triple bonds. We
denote this product by P, t.

The summation over all diagrams in Eq. (66) can be
replaced by a two-step summation; 6rst over all classes
of diagrams and then over all diagrams within a class.
Thus

(68)

Let 8'„,t be the number of ways in which the vertices
of a diagram in the set (e,t) can be numbered 1, 2, 3
keeping the connectivity of these indices unchanged—
that is, if vertex 1 is bonded to vertex 2 in one
numbering it must be in all numberings. Then the
final summation in Eq. (68) can be replaced by
W'„, i

' P;,;,),...'( ) where the prime on the summation
excludes overlapping values of the summation indices.

For the class of square diagrams we 6nd 8'„,t ——8
and the summation in Eq. (68) can be replaced by

8 Z A)&;~A(Ju)

where the prime on the summation implies i&k and
j/l. It is, of course, immaterial whether i= j, etc., as
J;,=0.

Similarly, for the diagrams (3,2) we find W'„&——1,
whereas for (5,10) we find W„,i ——8.

It is convenient to write E„,tS'„,t '=G„,t ', so that
G„,t is the product of lV„,t and the factorials of the
multiplicities of each of the bonds in the diagrams.
Then we can rewrite Eq. (68) in the form

1 ~ I ~

where the pattern of repetitions of the indices in the
final summand corresponds to the class (n, t) of topo-
logically equivalent diagrams.

A convenient interpretation of the quantity G„,& is
in terms of the order of the symmetry group of the
diagram (n, t). The symmetry operations permitted are
permutations of equivalent parts of the diagrams. Thus
for the diagram (5,10) we can reflect the entire diagram
through a vertical line, or we can reQect either the
left-hand fork or the right-hand fork through a hori-
zontal line, thereby permuting or interchanging the
equivalent arms of the fork. Each of these operations
is a twofold operation, giving G„,t=2X2X2=8. If the
central bond were a double bond, G„,t would contain
an additional factor of two.

For multiple bonds the symmetry group contains the
p! permutation operations, where p is the bond multi-
plicity.

The linked cluster expansion, Eq. (69), is essentially
that obtained by Brout."We are concerned with this
form of expansion only as an intermediate step, pro-
ceeding to a further rearrangement of Eq. (69) to
obtain a series in which the terms have a simpler form,
and in which the troublesome restrictions on the
indices (indicated by the prime on the last summation)
are removed.

4. REARRANGEMENT OF THE CLUSTER
EXPANSION

In the next section we will rearrange the terms in the
linked cluster expansion to introduce a new type of
expansion. In this section we first demonstrate this
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rearrangement for the particular cases of one-, two-,
and three-bond diagrams.

For the class of single bonds we have

—pF(i, i) = 2p(0 ioi)-,' Q J(;——2$(2p) JOMi', (70)

where Mi=(0) and where the factor of 2 arises from
the factor Gg g '. The quantity Jo was previously de6ned
$Eq. (6)]. In this case the terms are of simple form
and require no rearrangement.

For the class of two connected single bonds we have

where the summations without primes permit unre-
stricted summation over indices.

The grouping of the restricted summations, coming
from different classes of diagrams, to give an unre-
stricted summation in Eq. (74) is a general result. We
shall demonstrate how this occurs for the three-bond
diagrams.

The simple open-chain diagrams L(3,5) of Fig. 1]give

PF(&—,» ——(2P)'M(i »-', Q' J;;J,&J&(
j, j,k, l

—»(~,~) = (2p)'L(~i~~'~i) —(~i~~)(~i~~)) 2 E' JvJi'
i, j,k

=-,'(2P)'MPMi2 Q' J"J I,Jg, i
i, j,k, l

(75)

=-,'(2p)'MiM2Mi Q' J,;J;i.

The remaining class of two-bond diagrams is the
class of double bonds. For these, G2, ~=4, corresponding
to the interchange of bonds and to the reAection
operation which interchanges the vertices. Hence

—Pp(~, i) = (2P)'L(~i'~') —(~i~i)')-. 2 J~P

= (2P)'L(Mg+MP)' —Mi')-', Q J;i2

=-', (2P)'MiMii Q' J(;J;iJ;i.
i, j,k, &

(76)

The triangular diagrams (3,3) give

pp(i, »= (2p)'Mo). ~)6 2' J'iJi7 Ji'
i, j,k

The three-bond branched chain diagrams (3,4) give

—P~(~.4) = (2P)'M(~, 4) 6 2' J'iJ'iJ'(
i, j,k, L

=i(2p)'LMp+2M2Mp)Q J' (72) =
6 (2p)'$(~1'~2'~a') 3(~1~—2)(~1~2~3')

where we have used Eq. (45) to express (0') in terms of
the M„'s.

Equations (70) and (71) involve simple products of
semi-invariants corresponding to the vertices in the
associated diagrams. In Eq. (70) the diagrams involve
two singly bonded vertices and the term involves M&'.

Equation (71) is associated with three vertices; singly
bonded, doubly bonded, and singly bonded. The
corresponding term involves M~M2M~.

Equation (72) has a more complex structure, involv-
ing M2'+2MiMi. It can be read from the diagram as
follows: From the diagram (2,1) we first read Mi'. If
the diagram were opened on either the right or the left
we would read &2M~'. If the diagram were opened
simultaneously on the left and right it would be
unlinked, and we would write no contribution. Thus
the proper combination of semi-invariants can be read
from the diagram by successively considering it opened
in every conceivable way which does not make it
unlinked, and associating a simple product of semi-
invariants with each such form of the diagram.

Now combining all two-bond diagrams, we obtain

pF(i, i) pF(i.» = ~(2p)'M~' 2 J'J'

+2( )( )( ))Z' J'JJ J '
ijk

—i (2p) ELM, '+33IIi2M(2) Q' J,,J,,JI„
i, j,k

(77)

Note that M2' comes from the closed form of the
diagram, whereas there are three ways of considering
the diagram opened, each implying M2'M &'.

The diagrams of the type (3,2) give

pp(3, 2) (2p)'M(3, 2)g p Jij Jjk
ijk

=—', (2p)'LM2M, Mi+Mi'M, Mi

+2MQMP]Q' J;i',p. (78)
ijk

The first term in brackets corresponds to the closed form
of the diagram, the second term corresponds to opening
it on the left, and the third term corresponds to the
fact that either the upper or the lower double bond can
be opened at the center vertex.

Finally, the triple-bond diagrams (3,1) give

+ ,', (2P)'MMMM)'Lg J '+-Q' J"J i]
ijk

=-'-(2P)'M ' Q J; +-,'(2P)'M, M,' Q J,;J;,, (74)
ijk

—PF(i,) —— (2P) 'fMi'+ 6MiMg M i
312

+2MiMii j6Mi'Mi']Q J; . (79)
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Adding all three-bond diagrams, we find

—PFs ———,', (2P)'PM'Q J, +6MsMsMi(Q' J; J;s

+Q J, )+2Mss Q' J;,J,pJs,
ijk

+2MsMis( Q' J;JJgJri+3 Q' JosJ;s+Q Jl,')
ijkl ijk

+6MssMis( Q' J;,J;sJi,i++' J;,J;sJs;
ijkl

ijk

+s(2P)'Ms' 2 AyJgaA'+s(2ls)'MsMi' Z A;JrIAi
ijkl

ijkt

Equations (70), (74) and (81) demonstrate our
desired type of expansion, for the particular cases of
one-bond, two-bond and three-bond clusters. The
individual terms will be represented by diagrams,
according to the following convention.

In Eq. (74), the term i~(2P)'Mss+, , J,is will be
represented henceforth by the diagram (2,1), and the
term s (2P)'MsMis P;;s J,;J;s will be rePresented
henceforth by the diagram (3,5). Thus each diagram
henceforth implies the factors (2P)"G„, ', a simple
product of semi-invariants corresponding to the indi-
vidual vertices, and finally an unrestricted summation
of a product of J;,'s.

In Eq. (81), the five terms are successively repre-
sented by the diagrams (3,1), (3,2), (3,3), (3,4), (3,5),
and it can be corroborated easily that the terms are
associated with these new types of diagrams by the
convention explained above.

We now discuss the general features of this regrouping
of terms, so that each new type of term (represented
by a new type of diagram) involves a simple product of
semi-invariants and an unrestricted summation of J;;s.

S. THE REARRANGED EXPANSION

The specific examples above have demonstrated the
general features of a rearrangement of the terms of Eq.
(69), leading to a new type of expansion. This rearrange-
ment does not mix terms of different e (where n is
number of bonds); we therefore 6x our attention on the
various terms of a given ts in Eq. (69). Each term
corresponds to a particular topological type of diagram
and consists of three factors: a weight factor (2P)"G„,~ ',
a quantity M(„,t,), and a restricted sum of products of

and we again note that the various summations within
each set of parentheses combine to give unrestricted
summations, so that

—PF, =-,—', (2P)'M, ' Q J,,'+-,'(2P)'MgMsMi Q J.,gJ, I,

Fro. 2. Opening of the old-type diagram at top Lby Eq. (82)g
gives the four new-type diagrams shown.

exchange integrals. The restriction in this latter sum
prevents the various indices from taking common
values. After the rearrangement, the terms again corre-
spond to particular topological types of diagrams and
consist of three factors: the same weight factor
(2P) "G„,~ ', and a product of semi-invariants of single
spins (with degrees corresponding to the number of
bonds joined to that spin in the diagram), and an
unrestricted sum of products of exchange integrals.

The essential step in the rearrangement of terms is
the decomposition of the quantity M(, &~ into a sum of
products of semi-invariants of single spins, these
individual products then being reclassi6ed among the
diagrams of various topological type.

Consider a representative quantity M~ &), it is the
sum of products of averages of spin deviation operators.
The leading term is a simple average of all the o.,'s
represented in the diagram, and the remaining terms
subtract all possible opened forms (i.e., separately
averaged factors) so as to insure the vanishing of
unlinked diagrams.

Each term in M(„,~) can be written as a sum of
products of single-spin semi-invariants, and each of
these terms corresponds to one of the new-type dia-
grams. Thus, (o.iso.ss) )which is the leading term in the
old-type diagram (2,1)] can be written as

)Ms(1)+Mrs(1)]LMs(2)+Mrs(2)] =Ms(1)Ms(2)
+Mi'(1)Ms(2)+Ms(1)Mi'(2)+M '(1)MP(2)

associated with the four new-type diagrams" shown
in Fig. 2. In general, this decomposition into terms
associated with new-type diagrams can be accomplished
by using Eq. (44) to write

(o s")= LDs+Mi(k)]"—'Mi(k). (82)

This equation is subject to a direct interpretation, for
we note that

[Dg+Mi(k)]M (k) =M„~i(k)+Mr(k)M„(k).

Thus if a site has m bonds attached to it, and if we
operate with Dan+Mr(k), we generate a site with nz+1
bonds and an opened site. Consequently, at each step
in the building up of the term (o.&") in Eq. (82) we
introduce the possibility of the new bond being either
closed or opened at the site k. In this way the leading
term in an old-type diagram generates a series of new-

type terms corresponding to every possible way of

'3 It should also be noted that the remaining term corresponding
to the old-type diagram (2,1) is —(o&o2)'= —MP(1)MQ(2), which
subtracts away the unlinked new-type diagram of Fig. 2.



1766 G. HORWITZ AN D H. B. CALLEN

opening each vertex in the original diagram. The
remaining terms in M(, ~) then subtract away all
unlinked diagrams. Hence we arrive at the result
which we have demonstrated in particular cases above:

The spin factor M(„,&) of an old-type diagram can be
written as a sum of spin factors M„(1)M„(2) corre-
sponding to new-type diagrams. The new-type spin
factors correspond to each way of opening the original
diagram, ignoring all unlinked diagrams.

Symbolically, we write

M(„,,) ——P, A„M(„,), (83)

where iV(, ~ ) is a product of semi-invariants of single
spins such that every p-bonded vertex in the diagram
is represented by a factor M„(o), and A « is the number
of ways of opening the diagram (tt, t) to obtain the
diagram (m, t')

The second aspect of the rearrangement of the
cluster expansion involves collecting all terms with
similar spin averages of the new type. We therefore
substitute Eq. (83) into the cluster expansion, Eq. (69).

PIi'= Q—(2P)"G, g 'A«M(, g) Q' J;;Js( . , (84)
nrem' (0

where

(86)

The summation in Eq. (86) is over all classes of
diagrams t which can be opened to produce t'. It in-

cludes the particular term t= t', and all other diagrams
t which are more closed than t'. We indicate this
explicitly by splitting off the term t= t', to write

G„]
Ag, g

Q' J,,JI,( . (87)
(s)

We now wish to show that the second term in this
equation can be absorbed into the first term merely by
removing the restriction on the first summation. That
is, rI„~ is the unrestricted sum of a product of J, s,
with a pattern of indices corresponding to the diagram
(~,t'):

(88)J,,J);(.

In order to establish this result, we consider the
effect of removing the restrictions on the summation
in the first term of Eq. (87). Some sets of indices
thereby become equal, corresponding to diagrams t of
greater closure. The number of such diagrams is clearly
equal to the number of ways of closing the diagram t'

where the final summation is over the summation
indices, which refiect the pattern of the diagram t.

Collecting terms with similar 31(„~), we have

PF'= 2—(2P)"G ~ 'M(, ~)8. ~ (83)

Fro. 3. A more-ciosed diagram (a) and two types of more-open
diagrams (b) and (c) obtained from it.

to obtain t. Let this number of ways of closing t' to t
be denoted by 2&,&. Then it would follow that these
additional terms, introduced by removal of the restric-
tions on the summation, are precisely supplied by the
second term in Eq. (87), if we could show that

A g, g= (G„,(/G, g)A (, ( . (89)

—Pp'=E(2P) "G,~ 'M(, oa .~. (90)

To prove this relation we proceed to count the num-
ber of ways of opening the diagram («,t) to produce
the diagram (n, t'); that is, we compute A, &. For
simplicity we consider first the case in which the
diagram (e,t) must be opened at only a single point,
as, for instance, Fig. 3(a) being opened to Fig. 3(b)
(with A« ——2 and A~, ~

——10 in this case). Now let us
suppose that we agree to open the diagram at a partic-
ular location, obtaining the various ways of opening
the diagram by rotating or refiecting or permuting the
diagram so as to bring various equivalent elements to
the appointed location. We can count the number of
ways of opening the diagram by counting the number of
permutation operations which bring new (but equiva-
lent) elements to this location. This number of permu-
tations clearly is equal to the total number of permu-
tations of the diagram G„~ divided by the number of
permutations which do rot bring new elements to the
location, G'. This latter number G' can be thought of
as the order of the symmetry group of the diagram if
one of the elements to be opened is held fixed at the
appointed location. Thus we have found that A~~

=G &/O'. We now compute the number of ways of
closing the diagram (tt, t') to produce (n, t), using the
same device. Again we bring certain elements to the
appointed location, where they will be joined together.
The number of ways of doing this is equal to the total
number of permutations G,~, divided by the number
of permutations if a given set of elements is held fixed
at the location; again O'. Hence A~ ~

——G', ~/G', and
from these relations we immediately corroborate Kq.
(89).

If there is more than one location at which the
diagram (tr, t) must be opened, as in opening Fig. 3(a)
to produce Fig. 3(c), then the above formulas for both
A«and A«must be divided by G". Here G" is the
number of permutations among equivalent cutting
locations. The relationship (89) clearly remains valid.

To summarize, then, we have established the follow-
ing expansion for PF'—
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Equivalently,
Jp—=Js.

z= zi+~2s2+ ~ass+

(91)

Here (e,t) designates a topological type of diagram
consisting of n bonds and the sum is over all topologi-
cally distinct diagrams. G„,& is the order of the sym-
metry group of the diagram (e,t). M«& is a product
of semi-invariants of single spin s such that each
p-bonded vertex in the diagram is represented by a
factor M~. g„,i is the unrestricted sum of a product of
J; s, the pattern of summation indices on the J, s
corresponding to the pattern of bonds in the diagram.
A diagram henceforth denotes the corresponding term
in Eq. (90).

6. CLASSIFICATION OF DIAGRAMS

As in all diagrammatic methods, only limited subsets
of diagrams can be summed. The essence of the ap-
proximation scheme lies in the criterion for the selection
of the dominant sets of diagrams. At this point we are
not yet in a position fully to develop such a criterion,
but it is desirable to indicate in a rough way the types
of diagrams which are apt to be most important, so as
to focus and guide the development of the theory.

In succeeding sections we shall find it essential to
renormalize the vertices in the diagrams, so that each
vertex will represent not a single spin, but entire
complexes of linked spins. Each renormalized diagram
will then represent a large number (in fact, an infinite
number) of unrenormalized diagrams. The criterion for
the selection of subsets of diagrams will be formulated
in terms of these renormalized diagrams, and we shall
find that the eth order correction to the free energy
arises from the summation of renormalized diagrams
containing n loops. In order to motivate this classifi-
cation we review an argument due to Brout." In its
original form this argument ostensibly applies to the
unrenormalized diagrams, and we so present it here.
In the following sections we shall find that it fails for
the unrenormalized diagrams, but it nevertheless guides
the development of the renormalization procedure.

Brout bases his classification on two observations.
First, if the range of interaction is inlnite (so that each
spin interacts equally strongly with every other spin
in the lattice) the rigorous solution of the Ising problem
is the Bragg-Williams or molecular field solution, and
it is observed that in the actual physical case the
molecular Geld solution is at least qualitatively success-
ful. The second observation is that even with short-
range interactions each spin in a three-dimensional
lattice interacts with a rather large number of other
spins (eight for a bcc structure, and twelve for an fcc
structure). Brout has therefore suggested an expansion
in powers of 1/z, where s is the effective number of
spins with which a given spin interacts.

A convenient definition of s is obtained by equating
Jp to Js, where J is the value of J;; when i and j are
nearest neighbors:

where s~ is the number of nearest neighbors, s2 is the
number of second-nearest neighbors, etc., and where r2
is the ratio of the exchange integral J,; for second-
nearest neighbors to its value J for nearest neighbors.

The Curie temperature is at least roughly determined
by equating kT, to the energy required to invert one
spin:

Ol

2JpS' kT„

(2P,J)S' 1/s.

(93)

(94)

V. ZERO-ORDER DIAGRAMS: THE
MOLECULAR FIELD

We shall now show that summation of all diagrams of
zero order, or Cayley trees, leads to the familiar
molecular Geld approximation. Direct summation of
these diagrams is carried out in Appendix A, but we
here utilize an alternative and much simpler procedure.
We show that it is possible to choose the hitherto
undetermined parameter S in such a way that all
Cayley trees vanish identically. This choice of 8
transfers all contributions of zero order into the
unperturbed contribution —PF0, which we have already
computed.

Every Cayley tree, having a free end, contains a
factor Mi(0). Choosing S so that Mi ——0 therefore
eliminates all such diagrams. Accordingly, we determine

If we now recall the contribution of each bond to a
diagram, we note that each bond contributes a factor
2pJ;;, as well as influencing the spin-dependent factors
(semi-invariants) at its termini. We temporarily
associate these contributions to the semi-invariants
with the factor 8 in Eq. (94), thereby identifying the
contribution of each bond to a diagram as having a
value of the order of 1/z. However, one of the summa-
tion indices in g„,i can take E values, and each other
index summed. in g, i can take s values effectively.
Hence, a completely open diagram, with m bonds and
(m+1) free summation indices, is classified as zero
order in 1/s. A diagram containing one closed loop,
with m bonds and e free summation indices, is classified
as first order in 1/s. Diagrams containing two closed
loops, such as (3,1) or (4,3) of Fig. 1, are classified as
of order (1/z)'.

Two points in the above argument are obviously
inadequate. Equation (93) for the Curie temperature
is not accurate, and the contribution of each bond to
the semi-invariants at its termini is certainly not
adequately represented by the factors 5'. Correction
of these factors will be made in terms of the renormal-
ization techniques, and we shall find that Brout's 1/s
criterion is more reliably stated in terms of the re-
normalized diagrams. At this point we use the above
considerations to indicate that the most open diagrams
are apt to be the most significant physically.
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8 by The specific heat is obtained from

Mr(p)=(o)=(8 —S,)=8—(S,)=8—M, (s.)=0, (95)

or denoting this value of 8 by 8p,

where

BEp BEp BSp= —kP' =NAP'$2jpSp+gpoH], (104)
ap

So——(S,)=P S, exp(PLS, )/P exp(PLS, )

=SB,(PLS), (96)

B8p BMr(s.) BMi(s,) BSp

ap ap BSp ap
(105)

where B,(x) is the Brillouin function for spin S,

1 2S+1i
B,(po) = (2S—+1) coth ix

2S 2S i

—coth — . (97)
2S

It is to be observed that quantities are conveniently
expressed sometimes in terms of spin variables a.; and
sometimes in terms of 5;,. Semi-invariants can be
written in terms of either variable, M„(p) or M (S,).
From the properties of semi-invariants given in Eqs.
(37)—(39), we have M„(p.)=M (S,) for I even and
M„(p.)= —M„(s,) for e) 1 and odd; for n = 1,
Mr(p') =8—Mi(S,). In the following, either M„(o) or
M (S,) may be indicated simply by M„ in those places
in which its specific meaning is clear by context.

From Eq. (16) we now have

PPp= —NPJp8p +N ln sinht PL(s+-,')g
—N ln sinh(pPL),

and the magnetization is, to this approximation,

~o= —a&o/BH =
gpoN(S*) =gpoNSo

=gppNSB, (PI,S).

(98)

(99)

BSp BMi(S,) BMi(S,) BSp

aH aH aS, aH
(101)

and where BMi/BH irnPlies constant 8p, and BMi/B8p
implies constant II. Thus

BSo gpopMo

BH 1—2PJpMp
(102)

Inserting Eq. (102) into (100) we obtain

Xo——(gpo)'PMp/(1 —2PJoMp). (103)

This, of course, is the familiar result of the Weiss
internal field approximation, and from Eq. (7) we
identify the Weiss field as 2Jp8/gpo.

It is useful to write the expressions for the magnetic
susceptibility and the specific heat for comparison with
later results. The susceptibility is, to zero order,

Xp = (1/N) (BSEo/BH) =gyp (B8p/BH), (100)
where

with 8p constant in the differentiation of M& with
respect to p, and p constant in the differentiation with
respect to Sp. Thus

B8o/ap = (2JpSp+ giJoH)Mo/ (1—2pJpMo). (106)

Thus the speci6c heat becomes

c« Ir7 PPJ pS——oyg»PH jM,/(1 2PJpM—,). (107)

There remains one important formal property of the
expression for Fp, which should be noted. Before
committing ourselves to a choice of 8 we might have
inquired as to the dependence of Fp on this undeter-
mined parameter. Then from Eq. (15)

a~,/B8= 2NJ.(8—(S.)i,
and the choice of 8 for which

(108)

BFp/BS =0 (109)

8. SUMMATION OF FIRST-ORDER DIAGRAMS

The straightforward procedure for improving the
zero-order approximation is the summation of all
diagrams in Eq. (90) which, according to Brout's
criterion, would be of first order in 1/s. This is very
easily done, but as we shall see, it leads to an unsatis-
factory result. The procedure is of interest, nevertheless,
because analysis of the cause of its failure suggests the
renormalization procedure which provides a satisfactory
solution of the problem.

We consider those diagrams in Eq. (90) with a single
closed loop. To this loop there can be appended an
arbitrary number of branched or unbranched chains;
however, the choice of 8 which we have adopted
eliminates all such chains and leaves only the bare
loops. For m=2, 3, 4, these single-loop diagrams
are, respectively, a double bond, a triangle, a square, etc.

The symmetry of an e-sided polygon consists of an
e-fold rotation and a reQection, so that the order of the

is 8=So——(S,).
Consequently the choice of 8 which we made for

analytic convenience, in Eq. (95), is the "best" choice
of 8. To summarize, then, we have found that the
choice of 8 which eliminates diagrams of the zero
order has two important physical properties. It is equal
to the average value of S„evaluated to zero order.
And it minimizes the free energy to that order. These
properties will be important guides to the choice of 8
in higher order.
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group is G,&=2n. Alternatively, there are 2e ways of
numbering the vertices, as we can assign the number 1
to any of the n vertices, and then proceed with the
numbers 2, 3 4. . in either clockwise or counterclock-
wise order. Thus,

00 1
PF—o'= Z (213)" M—o" Z J'~J~' Ji' (110)

n=2 2s 7g o ~ ~

Let
r; —r;= Sl,

rl, —r, = 62,

eigenvectors transform according to the irreducible
representations of the translation group of the lattice.
The ith element of the qth eigenvector therefore is
e'&'i, and the qth eigenvalue is J(q). Equation (116)
represents the trace of the eth power of the matrix,
which is equal to the sum of the eth powers of its
eigenvalues. The diagonal values of the matrix, J;;,
vanish, so that the trace of the matrix, and hence the
sum of its eigenvalues, vanishes, as in Eq. (118).

Inserting Eq. (116) into Eq. (110) we now find the
contribution of the first-order diagrams to be

00—PF&'&=+ Q —L2PM&J(q)]",
n=l 2'

(119)

where r; is the vector position of the ith site. Then,
assuming that the exchange integrals J;;=J~l depends
only on the vector distance 5i between the sites (and
not on r, as well), the summation over the indices i, j,

~ ~

where the inclusion of the term for m= 1 is justified by
Eq. (118).Carrying out the summation

(120)—PF&"= —-' P, in[1—2PJ(q)M&].
can be replaced by

Combining this first-order contribution with the zero-

J,,J,.„. .J„.=& g J»J». . .J,„(112) order contribution LEq. (15)], the free energy to first
i, j,k ~ ~ ~ 5y, 50 ~ ~ bn order is

with the restriction that

5—=Bi+Go+ +5 =0. (113)

S—PFi ———P (Fo+F&'&) = —P1VJpSo'+X ln Q ee~e*

1—g exp(iq 6)=
Ã q

1 if 6=0

0 if G&0,

This restriction on the sum of the 6's insures the closure
of the chain, to make a loop. This condition can be
incorporated into Eq. (112) by introducing the repre-
sentation of the Kronecker delta,

——,
' P lnL1 —2PJ(q)M&]. (121)

where

BIi g

=&gpo So+
BM2-

r
gpoP BH

(122)

The magnetization is, to first order,

where the g ranges over the Brillouin zone, taking the
discrete values of the reduced, rationalized, reciprocal
lattice. Then

But for any e

1 2PJ(q)r=-
21V o 1—2PJ(q)Mo

(123)

=2 J"(q) (116)

where J(q) is the qth Fourier component of Jo,

J(q)=go Jo exp(iq 6), (117)

g J J) Ji ——g "P J»J»
q 51,52

XJp„expt iq (Bi+So+ +5.)] (115)

BM /BH= (BM /BH)+(BM /88)Ir88/BH, (124)

the first derivative on the right being taken at constant
8. Furthermore, noting that the density function with
respect to which the spin averages are taken in M„(S,)
is of the form e~~e'= expLp(giipH+2JoS)S, ], and
comparing this form with the p defined in Eq. (23),
we can introduce a D operator by the definitions

and where, in carrying out this summation, it is to be
recalled that for 6=0, Jq has been defined as zero. This
has the consequence that

and
D= (1/2N o) (~/~ )~8 (126)

D = (1/Pg p p) (8/BH), (8 constant), (125)

P, J(q) = Jo=p ——0. (118)

Equations (116) and (118), which will prove to be
very convenient, have a simple interpretation. " The
quantities J;, can be considered as elements of an
EXP matrix. The elements of this matrix are trans-
lationally invariant, from which it follows that the

This new D operator is the negative of the D operator
previously defined and used; accordingly, it generates
the M„(S,) rather than the M„(a.), by the equation
M +i(S,)=DM„(S,). In this connection the comments
just below Eq. (97) should be recalled. Henceforth we
shall use the notation D for either type of operator,
implying always that D appropriate to the type of spin



1770 G. HORKI TZ AN D H. B. CA LLEN

BM„(s,) gwpMp=gpopM. +i+2p JoM'.+i (127)
1—2PJoMp

M„+i(S,)= gpop
1—2PJ,M, (S,)

(128)

and inserting this into Eq. (122),

M,r
9Ri=gjlpN 8p+

1—2PJpMi

operator in the context. Hence, by Eqs. (31) and (102),

M, =(S,)=-,'tanh(-', PI.),
Mp= p sech'(pPL),
3f3= —2Mg3f 2.

The Curie temperature is de6ned by

(133)
(134)
(135)

out the differentiations. But M4 involves averages of
even powers of S, and does not vanish at p= p„whereas
M3 does vanish. Hence the magnetization is divergent
at the Curie temperature.

The divergence of the magnetization can be shown
explicitly for the case of spin —,. The semi-invariants in
this case are

= gppN Mi+—
1—2PJoMp

The susceptibility is

1 am~
=gpo p

N BH -1—2PjoMp

(129)

2P,jpMp = -,'P, jpLsech'(-', PL) gz, o
——1,

P,Jp =2.

The quantity of interest in the magnetization is

Mp —
4 tanh(-', PL) sech'(-', PL)= llm

1—2P,joM ' 1—2P,JpL» sech'(-'PL)]

(136)

(137)

(138)

M4F+Mpoh 2PJpMp'I'—+, (130)
(1—2PjoMo)' (1—2PjoMp)P

tanh(-,'pL) sech'(-,'pL)
lim
L—+0 1—sech'(-'PL)

(139)

where
1 ( 2PJ(q)

El
2N p (1—2PJ(q)Mp

(131)
= —io limLsinh(-, 'PL) cosh(-,'PL) j '

~0
(140)

and where Eq. (128) has again been used to carry out
the indicated differentiation.

From Eq. (130) we find that the susceptibility
diverges at 2P,jpMp ——1, or at the same temperature as
in zero order. However, this is not a satisfactory
solution, as we shall now find by an examination of the
behavior of the magnetization. at this temperature.

The second term in the magnetization is MpF/
(1—2PjpMp). The factor 1' is well-behaved as the
temperature approaches the Curie temperature; the
denominator vanishes as p —+ p„and the factor Mp
also vanishes. This latter fact follows from the definition
of M3 in terms of averages of odd powers of S„which
vanish at (and above) the Curie temperature. Conse-
quently, we must carefully consider the ratio Mp/
(1—2p, jpMp). To do so we assume a small magnetic
field to be present and we expand in powers of this field:

Mp+(BMp/BH)H BMp/BH
lim' 1 2P„.Jp)M, + (BMp/BH—)Hj —2P,Jp(BMp/BH)

gppM4 ( gppMp
i

—2P jo—
1—2P.JoM p k 1—2P.joMp~

(132)—2P,JoMp

where we have again used Eq. (128) in order to carry

One might, perhaps, surmise that the divergence of
the magnetization arises from some subtlety in the
manner in which v e have approached the limit cV —+ ~ .
Specifically, the upper limit I=- op in Eq. (119) implies
that closed loops of unbounded length can be drawn in
a lattice, whereas the true upper limit is of the order
of E. However, let us not specify this upper limit, and
merely substitute the sum (119) for the last term in
Eq. (121).Then the magnetization becomes

1~.=~g~.8. !P 'EZ --PPJ(q—)M.]"
q & 2e 8H

(141)

83f2

=Ngpp8p —-',p
—'Mp —' —p +$2pj(q)Mpj", (142)

BH

and the quantity BM&/BH is precisely the quantity
which, as we have seen, diverges. Hence the divergence
is quite independent of the process of taking X—+ ~.

Finally, we note two aspects of the solution to first
order. Whereas in zero order S represented the magnet-
ization, we see from Eq. (129) that it does not do so to
first order. Secondly, whereas Iio was minimum with
respect to variations in 8, F~ is not. For

BPj
=2NjpL8 —Mi(s, )j

BS
8—ipP ' Q in)1 —2PJ(q)Mp] (143)

8
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=2NJo S—Mi(S.)

2PJ(q)
M3

2N a 1—2PJ(q)M2

= 2 VJoL8—
M i(S,)—M3 (5,)I']No,

(144)

(145)

where we have used the relation (126) to carry out the
differentiation. Now Ii is clearly independent of 8, and
we should expect that BF /BS should vanish to every
order in a consistent expansion. The fact that Ii~ is
not minimum with respect to S is an indication of an
improper classification of diagrams, and it provides
us with a guide to the reclassification which eliminates
the divergence in the magnetization.

9. RENORMALIZATION; ELIMINATION OF
S-REDUCIBLE DIAGRAMS

Preparatory to generalizing the method of elimination
of diagrams by appropriate choice of 8, it is convenient
to review the standardized diagram terminology as
used, for instance, by Uhlenbeck and co-workers. "

A vertex of a diagram is called an articltation poirit
if the diagram can be severed into disjoint parts by a
single cut at that vertex. A linked diagram having one
or more articulation points is called a tree, whereas a
linked diagram having no articulation points is called
a star. Thus every tree can be thought of as composed
of stars joined together at articulation points.

Trees can be classified according to the types of stars
of which they are built. A Cayley tree is a tree for which

every star is a simple bond, and consequently every
vertex is an articulation point (or a terminal vertex);
these are the diagrams which were summed in Appendix
A. A Hnsimi tree is a tree composed of stars which are
simply polygons or "loops."Another tree of particular
interest to us is that for which every star is either a
simple bond or a loop, such as (4,6) of Fig. 1; we shall
refer to these as Cayley-HNsimi trees.

Returning now to the analysis proper, we can describe
our procedure as follows. The summation of Cayley
trees, as carried out in Appendix A, is equivalent to the
method of Sec. 7, in which all Cayley trees were elimi-

nated by the choice of 8. The diagrams classified
provisionally as first order in 1/s were the Cayley-
Husimi trees consisting of a single loop and appended
chains of bonds, but the choice of 8 reduced these only
to simple loop stars, which were then summed in Sec. 8.
Because this procedure did not prove to be satisfactory,
we now consider the possibility of eliminating a much
wider class of diagrams by a different choice of the
parameter 8.

The diagrams which we shall eliminate by the new
choice of 8 consist of all diagrams having a single bond
joined to an articulation point, ; we call such diagrams

'4R. J. Riddel, Jr., and G. F. Uhlenbeck, J. Chem. Phys. 21,
2056 (1953).

8 red-lcibte. The 8-reducible diagrams can be considered
to be composed of S-irreducible diagrams connected to-
gether by single-bond chains. It is useful to refer to these
S-irreducible substructures as hypervertices of various

types. The single bonds joining these hypervertices in an
8-reducible diagram can also be considered to be of
various types, corresponding to the types of hyper-
vertices at their ends. To stress this classification of the
bonds we refer to them as hyperbortds If w.e then think
of the 8-reducible diagrams as chains of hyperbonds
and hypervertices, they form an evident generalization
of the Cayley trees.

Consider the class of 8-reducible diagrams composed
of a prescribed class of hypervertices and connecting
hyperbonds. These diagrams can be generated and
summed by the following method. A given type of
hypervertex is selected as a generator, and this gener-
ator is considered as unique and distinguishable from
all other hypervertices which may subsequently be
joined to it; such a distinguishable structural element
is called a root. The general set of 8-reducible diagrams
is built up by adding hypervertices and hyperbonds to
this root, just as the Cayley trees were built in Appendix
A. We shall later describe this synthesis process in

greater detail, but we now assume that the total free-

energy contribution from the complete set of rooted
diagrams is computed. This is not the true free energy
from the desired class of S-reducible diagrams, because
the selection of a unique root introduces certain errors.
However, as shown in Appendix B, these errors are
eliminated by repeating the calculation using every
separate type of hypervertex as root and every separate
type of hyperbond as root; subtraction of the contri-
butions generated from all hyperbonds from the contri-
butions generated from all hypervertices gives the
proper free-energy contribution.

Consider the synthesis of rooted diagrams generated
from a specific type of hypervertex as root. Let pF—
be the contribution of this (type n) hypervertex itself,
considered as a diagram. To generate 8-reducible
diagrams from this hypervertex we first add one or
more single bonds to each of the vertices of the hyper-
vertex; this is accomplished by replacing every M (o)
in PF by expL2PJ—pMi(o)DjM„(a), where we inter-
pret exp(2pJDMi(o)Dj as p(e!) '(2pJOMi(o))"D". The
linear term in the series expansion of the exponential
adds a single bond, the quadratic term adds two single

bonds, etc. The operator D promotes M to M +~ as
required when an extra bond is appended at the vertex,
and the factor M, (o.) is the contribution of the free-
hanging end of the added bond. The second step in the
generation of rooted diagrams is the addition of a
hypervertex of any of the permitted types (n,p, ) to
the free-hanging end of each of the single bonds. This
is accomplished everywhere by replacing, in every
exponential operator above,

Mi(o.) ~ Mi(o) —(P/N)DF (P/N)DFp—
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Single bonds can then be attached to each point, again
with the replacement of all M„(o) by exp[2PJpMi(a)D)
XM„(o). The indefinite continuation of this process
leads to the generation of all rooted 8-reducible dia-
grams with a root of type n. The process can be closed
by replacing every M„(o) by exp[2PJpM&(o)D/M~(o),
where, self-consistently,

Mi(o) =Mi(o) —(p/N)DF (p/N—)DFp ~,—(146)

and where —(p/N)F, —(p/N)Fs, are obtained
from —(P/N)F, —(P/N)Fs, by replacing every
M„(o) in each by exp[2pJpMi(o)D)M (o). The sum
of all diagrams rooted in the n-type hypervertex is then
—(p/N)F Simi.larly, the sum of all diagrams rooted
in the p-type hypervertex is —(p/N)Fs. To obtain
the sum of all uerooted diagrams we must, according to
the procedure described previously, subtract from
—(p/N)F„(p/N)F—s (p/N)F—— the sum of
diagrams rooted in each type of hyperbond.

Generation of diagrams from a given type of hyper-
bond as root follows the above procedure closely. The
contribution of an n Ptype hy-perbond is, for instance,
2PJp[—(P/N)DF $$ (P/N)DFo—7; the factor 2PJp
represents the bond itself, —(p/N)DF represents the
hypervertex at one end, and —(p/N)DFp represents
the hypervertex at the other end. To this root we can
then adjoin single bonds, then hypervertices on the
ends of these, and so on.

Rather than carrying out the calculation outlined
above, the procedure can be aborted at the first step
by choosing 8 so that the right-hand member of Eq.
(146) vanishes. Physically, we choose 8 so that the
sum of contributions of all hypervertices which can be
a%xed to a free bond end vanish. Then

Mi(&) (P/N)DF- —(P/N)DFP+— =0, (147)

or, writing this in terms of the 5, variable,

S=Mi(S,)+(P/N)DF +(P/N)DFp+ . (148)

The bars on F and Fo indicate that the value of S
appearing within these quantities is that value deter-
mined self-consistently from Eq. (148), or that value
for which S=Mi(S,) [compare Eqs. (148) and (146)7.
With this choice of 8, the only nonvanishing diagrams
are the hypervertices themselves, so that

PF'= PF PF—PF +—. — —(149)

The above result can be seen alternatively in terms
of the general procedure of subtraction of hyperbond-
rooted diagrams from hypervertex-rooted diagrams.
With the choice of 8 above, the hyperbond contributions
sum to zero, since a bond can have the end Mi(o), or
—(P/N)DF, or —(P/N)DFp, etc. , which sum to zero

by Eq. (147). The hypervertex-rooted diagrams give
just —(P/N)F, —(P/N)Fp, etc. Adding these contri-
butions to the zero-order contribution, and multiplying

by lV to account for the possible positions of the root,
we again obtain Eq. (149).

Similarly, the fact that 8 is equal to the expectation
value of S, follows from the equivalence [see Eq. (125)$
of the operator D to (1/gppp)(B/BH), and from the
identification of Mi(S,) as (1/gppN)(BFp/BH). Hence
Eq. (149) states

1 BPo BF~ BFp
8= + + +

gyp' BII BB BH
(151)

[Mp+Dli' +Mp+ ]
gpo&

(152)

To summarize, then, we can henceforth restrict our
attention to 8-irreducible diagrams alone, with contri-
bution PF, providing th—at we impose the condition
that BF/88=0, or alternatively and equivalently, that
gppNS is evaluated self-consistently as the magnet-
ization.

The choice of 8 described above eliminates only
8-reducible diagrams; it does not eliminate all reducible
diagrams. That this is an insufficient renormalization is
corroborated in detail in Appendix C by computing the
free energy to first order using only the 8 renormal-
ization. Whereas the simple renormalization gave a
divergent magnetization at the Curie temperature, the
8 renormalization leads to no Curie temperature at all.
In order to obtain physically acceptable results it is

necessary to eliminate all trees, carrying out the
expansion in terms of the remaining irreducible dia-
grams (stars) only.

As an illustration of the diagrams which are not
eliminated by the 8 renormalization we consider

specifically the first-order contributions. The basic
first order diagram is the simple loop, and a full
renormalization should leave only this diagram. We
therefore consider all Cayley-Husimi trees, or all

diagrams which can be made by interconnecting loops
and chains of single bonds, excluding the possibility of

Two important points, which we now demonstrate,
are the following. The choice of 8 in Eq. (148) minimizes
the free energy (149).And the significance of S is that
it is equal to the average value of S„as determined by
Eq. (148).

That 8 minimizes the free energy follows from the
fact that, when applied to the contribution of 8-
irreducible dia, grams [see Eq. (126)], D is equivalent
to (1/2pJp) (8/88), where D is the generating operator
for the M (S,). Furthermore, Mi(o)=8 —Mi(S,) is

equal to (1/2pJp)(p/N)(BFp/pj8), where Fp is the
zero-order free energy [see Eq. (108)$. Hence, Eq.
(148) can be rewritten as

BPO BIl~ 0I'
p

p +p +p -+
2pJpN 88 BS 88

1 8(PF)
(150)

2PJpN pj8
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closing these chains. All such diagrams containing any
single bonds are eliminated by the 8 renormalization,
leaving clusters of loops, or Husimi trees. Unfortunately,
we do not have another parameter such as 8 with
which to eliminate these remaining reducible diagrams.
We therefore do this by summing all ring diagrams
which can be attached to a given vertex, incorporating
this sum into the contribution of the vertex. This
method of renormalization will be illustrated in detail
in the following section.

From this point of view it is perhaps useful to
characterize the S renormalization as a renormalization
of terminal vertices, and the remaining renormalization
as one of im/crea/ vertices. That is, if we start with a
simple diagram composed of loop and bonds, we Q.rst
reinterpret the terminal vertex so that its contribution
implies the possibility of addition of a loop; this is the
8 renormalization, and we renormalize to zero, so that
such diagrams vanish. In the remaining diagram we
then select an internal vertex and reinterpret it so that
it implies the possibility of adjoining all combinations
of loops. We cannot renormalize to zero, so that the
single loop diagram does remain. However each of its
"vertices" now has a relatively complex meaning.

10. RENORMALIZATION: ELIMINATION OF
REDUCIBLE DIAGRAMS TO

FIRST ORDER

In Sec. 9, a procedure for the elimination of 8-
reducible diagrams was exhibited. That renormalization
was effected by an appropriate choice of the parameter
8. In this section we complete the elimination of all
trees, making use of the method of subtraction of
hyperbond-rooted diagrams from hypervertex-rooted
diagrams, which was shown in the concluding portion
of Appendix 8 to be applicable even to trees which are
not 8-reducible. The discussion which follows will be
specifically in terms of the renormalization of the first-
order diagrams constructed of simple closed-loop stars;
generalization to higher orders offers no special difB-
culties.

We designate as type e hypervertices all hyper-
vertices which are Husimi trees (clusters of loops).
Let PF be the con—tribution of this type of hyper-
vertex.

Consider now the class of diagrams consisting of type
n hypervertices interconnected by open chains of simple
bonds, i.e., what we have called Cayley-Husimi trees.
All such diagrams, other than the particular diagrams
consisting simply of a single type n hypervertex, are
S reducible by definition and can be eliminated by
choosing S as the self-consistent solution of

I'io. 4. Insertion of hypothetical dotted-line bonds to reduce
S-irreducible diagrams to arlalogs of S-reducible diagrams.

The remaining diagrams consist only of single type n

hypervertices; that is, of Husimi trees.
In Appendix 8 we have shown that the Husimi trees

can be generated in a manner completely parallel to
the 8-reducible diagrams. We introduce a construct
there which makes it evident that these diagrams are
topologically similar to the 8-reducible diagrams and
further allows them to be described by the same
terminology. The construct consists of "dotted line
bonds" which schematically separate each articulation
point from the various loops with which it is associated,
as indicated in Fig. 4. These diagrams can now be
described as consisting of simpler hyperbonds. In this
case there are two types of hypervertices, the articu-
lation points and the loops. There is a single type of
hyperbond, for every dotted bond terminates in a simple
vertex and in a loop (with a point removed). We shall
now review the general discussion of the subtraction
technique, as discussed in Sec. 9, for application to
this class of diagrams.

To compute the free energy contribution PF of-
the Husimi trees or loop clusters, the diagrams are
generated first from each type of hypervertex regarded
as a root; in this case a simple vertex root and a loop
root. From the contributions of these hypervertex-
rooted diagrams we subtract the contributions of the
same set of diagrams generated from the hyperbond,
as root; in this case the dotted-line bond.

Consider first the diagrams generated from a single
vertex by connecting in turn one, two, three, . . . loops
at the given point. Each of these diagrams has a
distinguishable point, the root, and contributes a factor,

I'= (1)2F)P,2PJ(q)L1 —2PJ(q)M27
—', (155)

for every loop joined to that point. The root itself
contributes M2, M4, M6, . . . for one, two, three, . . .
loops joined at the root. The contribution of these
diagrams is exactly analogous to the series obtained
for the zero-order diagrams in Eq. (A2). The contri-
bution of these diagrams is thus

qi"' =&~ Kl'+-,'M 41'+—Kl'+ "
3!

i.e. )

~( PFo) ~( PF-—)-
+ =0,

BS 88
—1 BFO &F ~o+~S=---

Egp, p BB

(153)

(154)

where

(157)
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and
1 8 )

2pJO BSJr
(158)

Di is an operator raising the order of a semi-invariant
in precisely the same fashion as the operator D, except.
that the subscript denotes that r is to be regarded as
constant when operating with Di.. Thus the series of
Eq. (156) can be summed, giving

(168)
where

—pF"'= —NJop8'+IV&, (169)

Subtracting the compensating sum from the direct
sums we obtain for pF—,

PF—=Ny 1V—y ,' —P—,ln(1 —2PJ(q)M2j
—1VM21'. (167)

Adding pF—to —pF» —— psV—J»8'+Ng we obtain

pI7 i — ppi(—») —pj's(&)

q&o) = N/exp(I'Dr') —1]P. (159) and

The generation of all appropriate Husimi trees by
successively including loops at each vertex of the above
loops, etc., as we have seen in Sec. 9, is accomplished

by merely replacing r by F, where

2PJ(q)

21V» 1—2pJ(q)M2
= I'(Mg), (160)

and where, self-consistently,

M2= exp(l'Dr')M2 (161)

where
M2 ——Dr' exp(1'Dr')&=Dr'»),

p= exp(1'Dr')P

(162)

(163)

It is to be noted that the differentiation with differential
operation Di is now to be performed with constant r.
Thus we can also write (161) as

—pPo) = —-,'Q» ln/1 —2pJ(q)M2$ —iVM21'. (170)

Equation (169) represents the renormalized zero-order
term, in which the renormalization consists of replacing
p by p. Equation (170) represents the renormalized
first-order term. In addition to replacing M& by M&,
i.e., renormalizing the vertices, there is the additional
term —ElM2 in the free energy, arising from the
dotted-line bond-rooted. diagrams. In this term again
3f2 is replaced. by Mq.

In Appendix D we obtain an integral representation
for the renormalized semi-invariants, We find

M, (PL)= (2 )
'* du M„(PL,—u(2I')|)

)&exp( —u'/2), (171)

@(pL)= (2~)-l du $(pL —u(21')')

&&exp( —u'/2). (172)
Thus for the direct sum of diagrams generated from a Further,
point-root we obtain O'M, /8 (pL) '= M„+„ (173)

q, =NLexp (I'Dr') —1]y=N y —1V@. (164) while
O'M„/BI'= M„~2,. (174)

The second direct sum, consisting of the contribution
of diagrams generated from a loop-root, is obtained
from the contribution of the loop-root itself by replacing
M& by M2. Thus the second direct sum is

q2
————,

' Q» lnL1 —2PJ (q)M2], (165)

with M2 given by Eq. (161).
To obtain the compensating sum, we now generate

diagrams from a dotted line bond-root. First we recaH
the contribution of the generator itself, before affixing
additional loops. The contribution of loops with no
points distinguishable is g» g (1/26)$2PJ(q)M2j",
as we saw in Eq. (119).When aKxed to a dotted-line
bond, one point of the loop is distinguishable, thereby
eliminating the e-fold rotational symmetry, and giving
as the contribution of the generator

2pJ(q)M2
k Z ZPPJ(q)M~3"=! Z =ErM, .

n » 1—2pJ(q)M2

Affixing all possible loops to this generator clearly is
accomplished merely by replacing M2 by M2 and r by
I'. We thus find for the compensating sum,

From Eqs. (168)—(170) the free energy is

—p1"g—— pN J»8)2+1Vy-
——,

' p» lnL1 —2pJ(q)M2$ —)Vi'M2, (175)
where

M„(pI.) = (2~)-l du M„(PL—u(2I') ~)

)&exp( —u'/2), (176)

@(PL)= (27r) '* du exp( —u'/2)

Xln Q exp(LPL —u(21')'*]S,), (177)

This renormalized form of the first-order free energy
LFqs. (168)—(172)) is our fundamental result. Along
with the elimination of aH reducible diagrams to first
order we have maintained the convenient properties of
S; namely, that S be equal to the average value of S„
and that this choice of 8 is the best choice in the sense
that the free energy is a minimum with respect to 8.
In the next section we shaH examine some of the
properties of our solution.

11. RESULTS AND DISCUSSION

g3
——2V3E2I'. (166)



DiACRAMMATIC EXPANSION FOR iSING MOBFL

and. where (175) is subject to the condition

BF»/8S=O, (178)

spherical model. Defining F(x) by

F(x)= (1/N)P, Lx—J(q)/Jp)-', (187)

BRj 1 BEg
— — =3f~

&gpo &gpo aa
(181)

the derivatives (BFi/81")(Bl'/BH) vanishing by Eq.
(180), and similarly with respect to (BFi/88) (88/BH).

The internal energy is obtained again by diGer-
entiation at constant 8 and I' )by virtue of Eqs. (178)
and (180)j, giving

Ei/N=N '8(PFi)/BP, (H, I' and 8 constant) (182)

=JpS»s $2JpS»+gI»sH jM—»

I'M s/P+—I'M s I'M s (1—83)

JpS»'+gi»pHS»

1 2PJ(q)Ms
(184)

2NP s 1—2PJ(q)Ms

The first of these terms has exactly the form of the
molecular field result (with, of course, a different value
of 8). The second term is readily recognized as the sum
of (renormalized) simple loop diagrams. This latter
term represents the effect of short-range spin-spin
correlations, absent in the molecular field result.

The susceptibility is

X=N 'BOR»/BH= gpp88i/BH. (185)

In Appendix E we have evaluated 88/BH and from
Eq. (E7) we have

Ms+ ZMss/(I ZM»)—
1—2PJpLMs+ ZMss/(1 —Z3II») ]

In order to study the above results it is convenient
to express I' and Z in terms of a function F(x) which
has been studied by I.ax" in connection with the

"M. Lax, Phys. Rev. 97, 629 (1955).

which is equivalent to

Si——(Ng»»s) 'BF»/BH at constant P and S
=91zi/Ngp, o. (179)

The choice of Si is associated with the elimination
of the 8-reducible diagrams. The renormalization of
the semi-invariants, as defined. in Eqs. (176) and (177),
is associated with the elimination of the remaining
reducible diagrams to first order.

The erst-order free energy is stationary with respect
to functional variations in I' at constant S, P, and H, for

8( PF»)/—BI'=NP(8$/8r') Msj=—0. (180)

The fact that —pFi is stationary with respect to
both S and r' is useful in the evaluation of S from
Eq. (179)

then if

we have
x= (2PJ'sMs) '

I =PJ,LxsF (x)—x$, (189)

2PJ(q)

2N s 1—2PJ(q)M, J

—1
Lx'F'(x)+2xF(x) —1]. (190)

2M''

M, (x) =-,' tanh(-', x),

M s(x) =DM i (x)= -', sech'(-', x),

Ms(x) = —2MsM».

(IW)

(195)

(196)

Using the integral form of 3f2 particularized to spin

The properties of F(x) for three-dimensional lattices
with nearest-neighbor interactions have been shown to
be as follows. F(x) has some finite value (of the order
of unity) at x=1, and decreases monotonically for
values of x greater than one, behaving as const/x for
suKciently large x. For x&1, but in the vicinity of
x=1, F(x) has the approximate form F(x)=F(1)
—0.8(x—1)&, the coefficient 0.8 varying slightly from
lattice to lattice. Thus F(x) has a negatively infinite
slope to the right of x= 1. Furthermore, F(x) diverges
for x(1, and this region of the variables is not
physically acceptable. It should be noted that I' is well
behaved as x ~ 1 (from above), whereas Z diverges as
g —+1.

With these results we are able to investigate the
behavior of x, and in particular to evaluate the Curie
temperature. The Curie temperature is the temperature
at which x diverges (for H=O) and is therefore deter-
mined by the condition

1—2P,JsMs —2P,JshMss/(I —hM») =0. (191)

We see that a solution of the equation is obtained from

1—2P,JpMs ——0,
or

(193)

That this is so follows from the fact that 6 diverges at
x=1, so that the third term in Eq. (191) reduces
simply to 3IIs /3II». This ratio, in turn, vanishes at the
Curie temperature because all odd semi-invariants
involve averages of odd powers of 5, and therefore
vanish at T„whereas even semi-invariants do not.

In order to compare our results with other investi-
gations we specifically study th|; case of spin —', and
nearest-neighbor interactions in face-centered, body-
centered, and simple cubic lattices.
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totally dominating the factor 1/z and vitiating the
basis of the classification of unrenormalized diagrams.

The agreement of our results with the rigorous high-
temperature series is evident, thereby providing an
independent justification for the selection of the loop
diagrams. Each bond in a diagram is associated with a
factor P, and the first-order term in P is contributed by
a single bond, the second-order term by the summation
of all diagrams with two bonds, etc. Our first-order
expansion contains all diagrams with one and two
bonds, omits only the diagram (3,1) (Fig. 1) of all
those with three bonds, and only the diagrams (4,1),
(4,2), and (4,4) of the twelve types of diagrams with
four bonds, and since odd semi-invariants vanish at the
Curie temperature and above, the only one of these
omitted diagrams which makes a nonzero contribution
in the high-temperature region is the quadruple bond
(4,1). Furthermore such omitted diagrams probably
contribute the smallest contributions because they
involve the highest-ordered semi-invariants. Conse-
quently, the first-order results agree exactly with the
high temperature results to the coeKcient of T ', and
the coefficient of T 4 is approximately correct. It would
be quite easy to add the missing four-bond diagram,
and, in fact, our method provides a technique for
carrying out a rigorous high-temperature expansion
which is much simpler than the conventional Kirkwood
method. "

Finally, our results agree with the rigorous low-
temperature results —and in the ferromagnetic case, in
fact, reduces to the spin-wave result, as we shall see in
a separate paper. This again justifies the choice of
renormalized loop diagrams in the low temperature
region. An g priori rather than an g posteriori justifi-
cation apparently could be based on the behavior of
the semi-invariants considered as functions of their
order. The second semi-invariant M2(S,) is the mean
square of (S,—S) and the third semi-invariant M3(S,)
is the mean third power of (S,—8), although higher
semi-invariants do not maintain this simple form.
Nevertheless, it is plausible that the values of the
semi-invariants decrease rapidly with increasing order.
Particularly in the low-temperature region this suggests
a classification of diagrams according to the order of
the associated semi-invariants. The closed-loop dia-
grams which we have summed are just those which
involve no renormalized semi-invariants of higher than
second order.

In conclusion, then, we have given a theory which,
to 6rst order, agrees with the rigorous low-temperature
and high-temperature results, which agrees well with
the best estimates in the Curie temperature regions,
and which is justified by plausible and self-consistent
criteria, in each temperature region, for the choice of

diagrams.
1Vote added in proof M. Coopersmith . has informed

D. ter Haar, Elements of S/atistical Mechanics (Rinehart and
Company, New York, 1956).

us of his discovery that the spontaneous magnetization
of the spherical model becomes zero at two distinct
temperatures, one corresponding to the conventional
Curie temperature at which the susceptibility diverges,
and a second temperature at which the magnetization
is discontinuous. The conventional solution is formally
unstable. Our model exhibits similar properties. Englert
and Brout have suggested the following diagrammatic
interpretation. The susceptibility is obtained by differ-
entiating the free energy twice —each such differenti-
ation effectively rooting a point. By rooting two points
the differentiations effectively introduce cross-link
bonds, and thereby inconsistently introduce 1/z' dia-
grams in the expression for y. Englert points out that
elimination of these spurious diagrams can be eftected
simply by holding t

'I' constant in the differentiations
with respect to P or P, or equivalently, by setting
6=0 in our result. The Curie temperature is unaffected
but the specific heat is then discontinuous (and nonzero
above the Curie temperature). A detailed discussion of
this problem will be given elsewhere by Englert,

APPENDIX A. DIRECT SUMMATION OF
ZERO-ORDER DIAGRAMS

In this Appendix the zero-order diagrams are summed
directly, thereby giving the zero-order free energy;
we thereby illustrate the equivalence of the direct
summation to the alternative procedure of elimination
of diagrams by an appropriate choice of 8.

A second important point illustrated is the use of a
compensating summation technique whereby diagrams
are summed by first summing several classes of rooted
diagrams and subtracting certain classes from others.

The zero-order diagrams consist of open chains,
which may be forked in complex ways. A diagram
having n bonds has (n+1) vertices. Consider some
particular zero-order diagram, such as Fig. 6(a), which
has 6 bonds and 7 vertices. There are two sets of
equivalent vertices; the vertices 1, 2, and 3, and the
vertices 6 and 7. Each such set of r equivalent vertices
contributes a factor 1/r! to the weight factor of the
diagram. Suppose we now add some structure to the
diagram, joining it in every possible way to one or

8 I

j.' IG. 6. t.xeneration of Cayley trees.
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more of the equivalent vertices; let us say to the
vertices 1, 2, and 3. Furthermore, let the contribution
of this added structure when formed be A, this quantity
including a product of exchange integrals, internal
weight factors, and spin factors (semi-invariants). The
result of adding these structures is to change the factors
M)3/3 1 which occurred in the initial diagram to

or

where

OQ

Z(»= Q —M„+)(2pJOM))"
n=o m!

]3(0) ~ ] (» — M (2pJ g(»)3
3!

(A5)

(1/3!)M)3~ (1/3!)(M)+A)'
= (1/3!)(M)3+3M)22+3M)A'+2'). (A1)

The four terms on the right correspond to the following
four ways of adding the structure A. The erst term
involves the addition of no new structures. The second
term involves the addition of one new structure; this
leaves only two equivalent vertices and changes the
proper weight factor from (1/3!) to (1/2!)= (3/3!).
The third term involves the addition of two new
structures; these are equivalent, and again the proper
weight factor is 1/2!. Finally, the fourth term corre-
sponds to the possibility of adding the structure A to
each of the three vertices.

According to the above procedure, to join structures
A to r-fold equivalent vertices one merely replaces M1"
by (M&+A)', and this properly accounts for the
changes in the multiplicities.

We fix our attention on a particular vertex, to which
we adjoin bonds, in turn adjoining new bonds to those,
and thus sequentially building up all possible diagrams.
We shall 6nd that certain diagrams are counted
multiply, because they can be built up in different ways.
However, we first ignore this fact and sum the sequen-
tially built diagrams directly. We shall then demonstrate
the procedure for correcting for the multiple counting
in the summation.

Consider the sequence of attaching one, two, three,
. . . bonds to a particular vertex. The contribution of
this sequence of diagrams is

ao

M„ig(2pJOM)) "+' (A7)
8(2PJpM)) ~0 (m+1)!

ln(exp (2PJOM, 0))
8 (2pJOM g)

=(«xp(2p JOMi~))/(exp (2pJOM, O))

=S—M, &'& (S,),

and where

(S.exp(2P JOM)o))
Mg(» (S,)=

(exp(2P JoM&0))

(A9)

(A10)

= (Q S.exp{[2pJOM, (S,)+g&,p&)S,})/

(Z exp{[2pJOM (S,)+gpopH)S, }). (A11)

To summarize: adding bonds to the vertices of the
diagram ta(0) merely replaces M&(o.) by Z&" [Eq. (AS)).
The quantity Z &" has precisely the same form as M) (a)
[Eq. (A10)), except that in the density function the
quantity 8 is replaced by M) (S.) [Eq. (A11)).

If the process above is carried out for every diagram
represented in Eq. (A2), we obtain

[2pJpM)(0.))"
2 (0) —g („(0)= P M„(&)

00

(A2)
r(»= g —M.( )(2pJ.Z(»)"

n=1 n=l = ln(exp(2P JoZ&'&0)). (A12)
or, by virtue of Eqs. (20) and (21),

2'(') =in(exp[2PJDM)(~)o')).
Adding another shell of bonds to each of these

(A3) diagrams, we 6nd

Now consider the particular diagram with three
bonds, which is responsible for the contribution t3") in

Eq. (A2). To each of the free ends we can aKx one,
two, three, . . . bonds in turn. As we have seen, the
effect of these additions is

1
t3")=—M~(2pJpM)) —+—M~(2p Jo)'

3! 31

1
Mg+Mg(2p JOMg)+ —M3(2p J&)M))'

2!

T(2) = ln(exp(2P J&)g(»~)),

y, (» —S M (»(S )

(A13)

(A14)

M&"'(S )= (& S*exp{I 2pJOM)("(S,)+grope)S, })/—8

and where M).'»(S,) has the form of M, &'&(S,) with
M) (S,) replaced by Mi(» (S,) in the exponential
weighting factors

+ +—M~~)(2pJOM)) "+
e!

(A4) (~ exp{I 2pJoM)("(S.)+g) OpJJ)S.}). (A15)
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Continuing, we find

where

T'"' = in(exp(2P Jot'"'o)),

Z~"~=8—M &"&(5,),

(A16)

(A17)

M~&"& (5,) = (P 5, exp{(2PJoMi~" '& (5.)+gIJoPH]S. ))/

(Q exp{L2PJoMg&" "(5,)+gpoPH]$, )). (A18)

In the limit, as n~ ~, we equate M~'"'(5.) to
M&&" "(S,) and denoting the limiting value by

R&"= (1/2!)(2PJo)M '(o.) (A21)

Adding all possible bonds precisely as we have done
above again simply replaces M&(0) by 8 3II&(5,) so—

M~(5,)= (g S, exp{$2PJoM~(5, )+gpoPH]5, ))/

S

(Q exp{L2PJoMg(5, )+gpoPH jS,))
=58 52PJoM (5 )5+gpoPHS j, (A19)

where, as in Eq. (97), B8 is the Brillouin function.
The correspondence with the zero-order result of Sec. 7
begins to emerge, the quantity 3II~(S,) being identical
to the quantity 8o there introduced.

The limiting value of T&") is obtained by replacing
M&&"&(S,) by M&(5,) in Eqs. (A17) and (A16):

T= ln(exp{2PJoLS—37II~(5,)jo)). (A20)

However, this quantity is not the proper contribution
to the free energy, because certain diagrams have been
multiply counted. For instance, adding one bond to
Fig. 6(b) produces Fig. 6(c). Also, adding one fork to
Fig. 6(d) produces Fig. 6(c). In our counting we have
permitted both of these possibilities, so that the latter
diagram has been multiply counted.

In the above procedure, we have arbitrarily singled
out one particular vertex as the generating center of
all diagrams. By making this vertex unique we have
destroyed the symmetry of some diagrams, attributing
to them incorrect weight factors. Thus suppose our
initial vertex is labeled i in Fig. 6(e). Adding a fork
to j we obtain Fig. 6(f), and we have attributed the
weight factor ~ to this diagram. Clearly, it has a
threefold symmetry, but that symmetry was reduced
by singling out the origin vertex i as a root. In terms
of the expansion having no distinguishable points, the
rooted diagram gives the wrong contribution unless j
rather than i is the root.

I.et us consider an alternate way of generating
diagrams. We fix our attention on a particular bond as
root, rather than a particular vertex. This bond alone
gives a contribution

that the sum of all diagrams generated by a unique
bond is

8= (1/2!)(2PJo)L8—3fg(5,)j'. (A22)

Again, various diagrams have been incorrectly counted.
However, we now show that by subtracting E. from T
we cancel all counting errors and obtain the correct
contribution to zero order.

Consider some diagram such as Fig. 6(g). In gener-
ating from a unique point, this diagram can be built
with the central vertex as the root, and it then carries
the correct symmetry factor. But it can also be built
with one of the other vertices as roots, and it then
carries an incorrect symmetry factor. Both of these
possibilities are included in T. In generating from a
bond, the diagram has the same (incorrect) symmetry
factor as it has in building from an outer vertex.
Hence in the difference T—E, only the contribution
arising from the central vertex root remains, and it
carries the correct symmetry factor.

For every Cayley tree a similar pairing of bonds and
vertices is possible, so that in the difference T—R only
the contribution from certain central elements remain.
The basis of this pairing of vertices and bonds lies in
the concept of the central element of a diagram.

It is a well-established theorem" that every Cayley
tree has either a central vertex or a central bond,
defined as follows. One severs the diagram at the
articulation point closest to each extremity of the
diagram, thereby removing every bond with only a
single articulation point (i.e., every terminal bond).
One then repeats the process with the residual diagram,
again removing each terminal bond. After repeating
this procedure a certain number of times (this number
is called the order of reducibility of the diagram), only
a single vertex or a single bond (with its two associated
vertices) remains. This remaining vertex or bond is
called the center of the diagram.

At each step in the reduction of a diagram, the
removal of a terminal bond also removes the terminal
vertex. The bond and vertex which are thus removed
together clearly have the property that in the original
diagram rooting one or rooting the other changes the
symmetry of the diagram in the same way. The diagram
rooted at such a vertex and the diagram rooted at such
a bond cancel in the difference T—R.

Rooting the central element of a diagram does not
change the symmetry of the diagram. This is almost
self-evident, for rooting the diagram at an element
merely makes that element unique and distinguishable.
But the central element is already unique and dis-
tinguishable, so that rooting it does not alter the
diagram symmetry.

The considerations above are essentially a proof of
the subtraction procedure. In the first and simplest
case, in which the diagram of interest has a central
vertex, then all contributions cancel in T—R except

M. S. Green, J. Math. Phys. 1, 391 (j.960).
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that generated from the central vertex as root, and
that contribution carries the correct symmetry factor.
If the central element is a bond, however, we must
consider two cases. Let us suppose that the two vertices
at the ends of this bond were nonequivalent in the
original diagram. Then each of these vertices con-
tributes the given diagram to T, and each with the
correct symmetry factor. The bond itself, as a root,
contributes the diagram once to E, again with the
correct symmetry factor. Thus the diagram remains
correctly in the difference T—R. The remaining case is
that in which the two vertices at the ends of the central
bond were equivalent in the original diagram; this
implies a twofold reRection symmetry in the original
diagram, as in (5,10) of Fig. 1. Then we generate the
diagram from one of these vertices in T (only from one
of the vertices, because we use every type of vertex
once as root). But in rooting such a vertex the diagram
loses its reflection symmetry and hence has a symmetry
factor twice as large as it should. From this we subtract
(in R) the bond-rooted diagram, with the correct
symmetry factor. Again the difference T—E is correct.

Accordingly, we obtain the zero-order free energy by
writing

(A23)PF ~o~ = PFp—+IV (T— R), —

where Fo is given in Eq. (15). We thus And

—pF &'& = ', lV (2pJo)3—Ip—(S.)

+Ã ln Q exp(L2P JoM~(S,)+gpoPHjS, ), (A24)

which is identical with Eq. (98), in virtue of the
identity of M&(S,) and So. Thus we corroborate that
the renormalization process of Sec. 7 is completely
equivalent to the direct summation procedure, utilizing
the method of subtraction of rooted diagrams as
developed above.

The zero-order diagrams have been summed by the
expedient of subtracting the contribution of all dia-

grams generated from a unique bond root from the
contributions of all diagrams generated from a unique
vertex root. In Appendix 3 a topological analysis of
these and related higher order diagrams leads to the
conclusion that it is always possible to generate dia-

grams from various roots regarded as unique, and that
by appropriate subtraction of the resulting contribu-
tions all unrooted diagrams can be counted correctly.

APPENDIX B. SUMMABILITY OF S-REDUCIBLE
DIAGRAMS

In this Appendix we extend the method of sum-

mability by subtraction of rooted diagrams, established
for the zero-order diagrams in Appendix A, to a more
general class of diagrams.

It was shown in Appendix A that the zero-order
diagrams could be generated and summed as follows.

One first chooses a vertex as a root. To this vertex
root one adds bonds in various ways, in turn adding
bonds to these bonds, and thereby successively rami-
fying the structure to obtain all possible zero-order
diagrams. Rooting the diagrams simplifies the calcu-
lation of the effect of adding successive structures, but
leads to two types of errors. The symmetry factors so
obtained are incorrect, and diagrams are multiply
counted. Each of these errors is compensated for by
repeating the process, starting from a unique bond-root,
rather than from a unique vertex-root. The difference
in the contributions so calculated gives the proper
contribution of the zero-order diagrams.

The diagrams to which we 6rst wish to extend the
above method of summation are the "8-reducible
diagrams, " defined as diagrams having a single bond
joined to an articulation point. Further generalization
to all trees will be made subsequently.

It is clear that any 8-reducible diagrams can be
considered as composed of 8-irreducible diagrams con-
nected together by single-bond chains. To suggest a
relationship of 8-reducible diagrams to Cayley trees it
is useful to refer to these 8-irreducible substructures as
"hypervertices" and, for our present purposes, to think
of them merely as different varieties of points, strung
on single-bond chains. It is useful also to think of the
single bonds as "hyperbonds" of several varieties,
determined by the nature of their two associated
vertices (or hypervertices).

As discussed in Sec. 9, all 8-irreducible substructures
can be considered as hypervertices, so that S-reducible
trees become analogous to Cayley trees.

Each 8-reducible tree has either a central bond or a
central hypervertex, defined by a straightforward
generalization of the reduction procedure described for
Cayley trees in Appendix A.

Each step of reduction removes, from each branch,
a single bond along with its external hypervertex.
Furthermore, the symmetry of the diagram is identical
if either this bond or this hypervertex is considered as
root. That is, the contribution calculated for the
diagram if generated from that hypervertex as root is
identical to the contribution generated from that bond
as loot.

Consider the class of diagrams that is composed of
all possible interconnections (by single-bond chains) of
a particular set of types of hypervertices. We could
attempt to calculate the contribution of this class of
diagrams by generating the diagrams from a dis-
tinguishable hypervertex of any type. Or we could
calculate the contribution by generating the diagrams
from each type of hyperbond as root. If the sum of the
contributions calculated on the basis of each type of
hyperbond as root is subtracted from the sum calculated
on the basis of each type of hypervertex as root, all
contributions except those arising from the central
root of the diagram will vanish.

If the center of a diagram is a hypervertex, it is clear
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that the above subtraction procedure leads to the
correct summation of diagrams.

If the center of a diagram is a hyperbond, the net
contribution after the subtraction procedure consists
of the contributions generated from the hypervertices
at the ends of the bond, minus the contribution gener-
ated from the single bond itself. We consider two cases;
either the two hypervertices are of the same type, or
they are of different types. In the former ease the
hypervertices generate the diagram with a spurious
factor of two, arising from the fact that the true
symmetry of the center should contribute a factor of
one-half because of the reflection symmetry, but that
this symmetry is destroyed if one of the equivalent
hypervertices is considered as unique. The central bond
generates the diagrams properly, and the subtraction
procedure therefore again leads to the correct summa-
tion. In the second case, the two hypervertices at the
ends of the central bond are different. In this case,
each of the hypervertices generate the diagrams with
correct symmetry factors, as does the central bond
itself. In the subtraction the bond-rooted diagrams
cancel the hypervertex rooted diagrams of one hyper-
vertex, leaving those of the other hypervertex root.

To repeat then, we have shown that all S-reducible
diagrams are summable as follows. Each type of
8-irreducible substructure is considered as a "hyper-
vertex" and used as a root for the generation and
summation of the diagrams. Similarly, each type of
hyperbond (a simple bond terminated by particular
types of hypervertices) is used as a, root. If the sum of
hyperbond-rooted contributions is subtracted from the
sum of hypervertex-rooted contributions, the resulting
difference is the correct summation of the diagrams.
This is the result required for Sec. 9.

The generalization of this subtraction procedure to
more complicated trees which are not 8-reducible, is
straightforward. For any such tree every articulation
point is a junction of two or more stars. In order to
make clear the direct applicability of our previous
discussion to this case, we make the following construct.
At each articulation point we indicate the connection
of each star to the articulation point by a hypothetical
dotted-line bond, as in Fig. 4. Such dotted-line bonds
make no contribution to the free energy, of course, but
serve to reduce the topology of these S-irreducible
diagrams to that of the 8-reducible diagrams already
considered. The analysis applied above to the S-
reducible diagrams is then clearly applicable to trees
that are not 8-reducible. The hypervertices in this case
are either the articulation points or one of a set of stars.
The hyperbonds comprise the dotted-line bonds, which
now always join one simple vertex to a star.

Consider finally the class of trees composed of
interconnections of a particular set of types of stars.
These diagrams can be generated from a distinguishable
star of each type (excluding single bonds) as root,
leading to a set of contributions. Or, alternatively, these

diagrams can be generated from the distinguishable
hyperbonds and dotted-line hyperbonds as roots.
Subtracting the latter sums from the former sums then
gives the correct contribution for all diagrams. Thus
we find that we can sum all trees by this subtraction
procedure, and we shall consider all trees as reducible
diagrams, all stars as irreducible diagrams.

APPENDIX C. A SIMPLE BUT ASYMMETRICAL
RENORMALIZATION PROCEDURE

In Sec. 10 we develop the theory of symmetric
renormalization of all vertices. A simpler procedure,
described briefly in Sec. 9, is simply to renormalize
open end-vertices, as done in zero order. Ke show that
such a procedure results in 8 being equal to the magnet-
ization, and in the free energy being minimum with
respect to 8, although it does not eliminate all reducible
diagrams. That this last requirement is important is
demonstrated by the fact that this simple renormal-
ization does not yield a satisfactory solution to first
order; all divergences are eliminated, even in the
susceptibility, so that no Curie temperature is obtained.

As first-order diagrams we consider closed loops with
attached chains (Cayley-Husimi trees). These chains
may either terminate in open ends, or may have simple
loops attached to their ends. This latter possibility
associates with the first-order diagrams a certain
number of higher-order diagrams, of course —this being
a feature of any renormalization process. We choose 8
so that the contribution of the "end" of the chain (be
it open or terminated by a loop) va,nishes. The only
first-order diagrams remaining then become the simple
loops without side chains, and we therefore obtain the
expression (121)

S
PFg'= PiVJo8'+—X l—n Q exp (PLS,)—S

—E inL1 —2PJ(q)M ]. (C1)

In this expression, the quantities L, and M2 are defined
in terms of the 8, which still must be computed.

Consider a particular chain attached to some diagram.
If the chain is open it contributes a spin factor M~(0)
to its diagram. If it carries all possible double bonds
(the simplest closed loops) it contributes an additional
factor of (2P)' P; J;PMSM2 to its diagram. If it
carries all possible 3-bond loops it contributes
2 (2P)' g~q J;,J;qJq;M3M22 to its diagram, the factor of

coming from the possibility of interchanging the
equivalent indices j and k. In fact, if we denote the
contribution to pF of a closed cycle dia—gram by f,
its contribution when joined to a, chain is (1/$)DF„,
where DM2" ——eM2" 'M3,' that is, D is our index-
raising differential operator. The factor e accounts for
the fact that any of the e points on the loop can be
joined to the chain; and the promotion of one of the
factors M2 to M3 corresponds to the effect of the
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Fio. 7. Diagram (a) is eliminated, but diagram (b) is not elimi-
nated, by the renormalization procedure of Appendix C.

The fact that renormalization confined to the ends of
chains eliminates the reducible diagram Fig. 7(a), but
retains the diagram of Fig. 7(b), suggests that these
diagrams should be treated in a symmetrical fashion.
This is done by renormalization of all vertices in the
diagrams, in Sec. 10.

jointure. The quantity f is the Nth term in Eq. (119),
and the sum of all possible contributions arising from
loops attached to the end of the chain is

APPENDIX D. INTEGRAL REPRESENTATION OF
THE RENORMALIZED SEMI-INVARIANTS

In this Appendix we obtain an integral representation
for the quantities M„and it. An examination of the
properties of those quantities will show that the M„
retain all the basic properties of the original semi-
invariants, and that p serves as the generating function
of these renormalized semi-invariants.

We have previously defined [in Eqs. (162) and
(163)] the quantities

M, (o)——DF"&

=M, ( )— D Q in[1 —2PJ(q)M&(~)]
2E

2PJ(q)M ( )=8—Mi(S,)+ -- Q
2lV o 1—2PJ(q)Ms

C2
and where in addition

=8 M, (S,)—rM, (S,),

M„(PL)=M, (x)=exp(rDr')M. (x),
r=-O, 1, 2 (D1)

where r was defined in Eq. (120). Setting the total
contribution of the end of the chain equal to zero, we
evaluate 8 by

8=M, (S,)+rM, (S,). (C~)

We now show easily that this choice of 8 minimizes
Fi. Differentiating Eq. (C1), which is identical to
Eq. (121), we obtain the result given in Eq. (150),
whence

(BFt'/BS)H 2iVJo[8———Mi(S.)—I'Mo(S, )7=0. (C4)

This relation also makes it particularly easy to
compute the magnetization, by diAerentiating F&' at
constant 8,

01t,'= aF, '/aH =1V—gp, [M,+rM, ]=NgpoS.

Hence this renormalization achieves both of the
desirable features: F~' is minimum, and 8 is the
magnetization. However, computing the susceptibility,
we obtain

85Ky
X,'=— =g74oBS/BH= gpo(B/BH)[M, +rMo]

37 BH

Ms+rM4+AMoo
=gpop (cs)

1—2PJo(Ms+rM4+AMoo)

The quantity DM3' approaches zero as S approaches
zero (as it must at the Curie temperature). If there is
to be a transition, the remaining terms in the denomi-
nator must vanish as 8 vanishes. However, there is no
solution to the equation

1=2PJ,[M,+rM, ],
and hence this type of simple renormalization leads to
no transition at all.

Mo= Q= exp(rDr')p(pI)

=exp(I'Di') ln P exp(PIS, ). (D2)

The diRerential operator D& was defined by

Di = (1/2P Jo) (d/r)8), I' const. (D3)

The only detailed property of the M„which we use
is the index raising property of the differential operator:

Dr~.=&~,+&.

In particular it is to be observed that all these functions
depend on the external field H and the parameter 8'

only through the function PJ.=x=P (2Jo8+g@oH).
Thus we can also regard

Dr = (4)/Bx), r collst. (D5)

The exponential exp(ikx) is an eigenfunction of any
operator function of the form exp[a(d/dx)'], where

exp[a(d/dx) "7 exp(ikx) =exp[a(ik)'] exp(ikx). (D6)

(D7)

where

M, (k) = (2~)-i e'»M (x)dx

On substituting (D7) in Eqs. (D1) and (D2), we obtain
for the transformed semi-invariants,

M.(*)=(2ir) ' e ""*exp( rk')M„(k—)dk'(D9).

This suggests the utility of introducing the Fourier
integral for the M„,

M, (x)= (2~)
—

& e
—'."M„(k)dk,
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M, (x)= (27r) & F(k)G(k)e '"'dk (D10)

Ke regard this integral as the Fourier transform of the
product of two functions: 1

M„=exp (I'Dr') M„=g —r "M„~o„(x),
o er

(D20)

by parts. It can also be obtained from the expression

where
F (k) = exp( —I'k'),

G(k) =M, (k).

(D11)

(D12)

BM„~ 1 r™.+o-(x)
ar i (u—1) I

r"
Mf+—o+o„(x)=Mt~o(x). (D21)

o mt
The Fourier transforms of the two functions F(k) and
G(k) are

f(x) = (2ir)
—

& F(k)e "*dx—

Thus all of these quantities can be generated by
repeated operation of Di on the generating function
Mo= p, just as the M„were generated from P.

and
= (2I') ~ exp( —x'/4r), (D13)

g(x) = (2m)
—l G(k)e '" dx=M„(x). (D14)

APPENDIX E. CALCULATION OF TOTAL
DERIVATIVES OF S AND j."

Equations (154) and (160) for S and I' are of the
implicit form

The J"at(leg theorem relates the Fourier transform of
the product F(k) and G(k) to an integral of the product
of f(y) and g(x—y) in the form

(2ir) & F(k)G(k)e "dk

= (2~) ' f(y)g(x —y)dy (D15)

Thus using Eqs. (D13) and (D14) for f and g, we obtain

8=M, (p,H, 8(p,H), r(p, H)),

r=w(p»8(p») r(p»)) (E2)

Differentiating with respect to H leads to coupled
equations for aS/aH and ar/aH:

aS aMi aMi aS aMi aI'
+ +

aH aH aS aH aI' aH

M„(x)=(2n-) i (2I')—' exp( —y'/4I')
ar aw awa8 awar

+ +
8H BH BS BH BI' BH

XM, (x—y)dy. (D16)

It is convenient to make the substitution

(2I')—ly=- u,
whereby

M„(x)= (2ir) ' exp (—u'/2) M„Lx—u(2I') &7du. (D18)

/a31„(x) " aM, Lx—u(2r)&7 1

ax r- ax (27r)'*

Xexp( —u'/2)du=M„+i(x). (D.19)

The derivative with respect to I' can be obtained by
differentiating equation (D16) directly and integrating

This is then the integral representation of 3f„which
we have sought. It will be observed that in the limit
that the first-order effects become negligible, i.e.,

I ~0, M„(x)~M„(x).
More explicitly, the M, (x) are functions not only of

x=pI, but also of the quantity I'. The differential
properties of the M„(x) are conveniently obtained by
means of the partial derivatives (aM, .(x)/ax)z and
(aM„(x)/al'), . The first of these is obtained directly
by differentiating equation (D18):

Bh BMg

ap ap

Recalhng that

aMi aS aMi aI'

aS ap al ap

awa8 awar

a8 ap aI' ap
(E6)

w = (21v)
—i Q {2PJ(q)/L1 —2PJ (q)M,7),

we compute the eight derivatives listed in (E3)—(E5):
83fj 1 8Mg

=3f2,
Pgpo aH 2PJo aS

1 88' 1 BR'
= aM„

Pgpo aH 2PJo a8
83fg

=M3,
ar

8$'
= AM4,

BI

BMg 8 H/'

=JM„=p-'(r+ ZM,)+ZI M, .
ap ap

Similarly, for a8/aP and ar/aP we must solve the
equations
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Solving Eqs. (E3) and (E4) for BS/BH and BI'/BH I.'Hospital's rule. Differentiating, we obtain
we obtain

DM3
=Pgi p

1—AM4

aM'
1—2PJ, M,+ . (E8)

1—AM4

The solutions of Eqs. (E5) and (K6) in turn are

BS L BS
+P '37o(1'+ZMo)

BP Pgpp BH

&L(1—2PJpMo) (1—ZM4) —2PJo&M '7 ' (E9)

ai P I'(1 2PJpMp)+g(LMo+P M 2Jo37 o)

BP (1—ZM4) (1—2PJpMp) —2PJpZMoo
(E10)

B8 ZMoo-
=Pgpp Mo+

BIJ 1—AM4

~3f 2
3

1—2PJp Mo+, (E7)
1—AM4

lim
II~0

1 2P—.JpMo 2—P.Jo P.gppMo= lim
Mi4 ~ ' 4 3IIio(B8i/BH)

2P,JpMo M4 (BI'/BH)—
+ (F2)

Mio Mio (B8,/BII)

and from (E8),

al —P,g&dij~ —'
lim = . (F4)

BH s. 1 2P.J—oMo+2P.JpM 'M —'

Inserting these results in Eq. (F2) we obtain

1—2P,Jp3IIo —(2P,Jo)o 3IIp

lim = lim . (F5)M' ' 4Mjl7 M

We now examine

In the calculation of the susceptibility, Eq. (192), we
saw that P, corresponds to 2P,JpMo ——x '. The quantity
Z diverges as F'(x) or (x—1) &. Using the divergence
of 5 at T, we find, from Kq. (E7),

BSi) P.gppMp
lim

I

= (F3)
BH i' p, 1 2P,JoM—o+2P,JpMooMo '

In addition to these total derivatives the derivatives
of various higher order semi-invariants are of interest.
Thus, for example,

Mo (B37p/BH)
llm = ]jm~~ (B3IIi/BH)

APPENDIX F. BEHAVIOR OF THE SOLUTION AT
THE CURIE TEMPERATURE P.gi oM4

lim
I

= lim
Mip s, a~o BSi/BIn this Appendix the behavior of the solution at the

Curie temperature is examined and the results of Sec.
1i for the specific heat are validated. We examine the
limits as the Curie temperature is approached from
above and below as follows: To determine the behavior
as T, is approached from below, we take the limit

P —+ P, for nonzero H (and hence also nonzero 8), and
we then take the limit H —+0. To determine the
behavior as T, is approached from above, the limits
are not so delicate, and we can first take H (and all
odd semi-invariants including S) to be zero, and then
we allow P to approach P,.

We evaluate several auxiliary quantities in order to
obtain the limiting values of ci at P, as approached
from both low- and high-temperature sides. One such
quantity is

BI' /B8
+2P J'pM4+Mo

~ (F7)
BH (BH

the other terms vanishing as a consequence of Eqs.
(F3) and (F4). Thus Eq. (F5) becomes

1—2P,J~, —(2P.J,)'
lim = (2P,JpM4 '

Mi4 437oM4
3f4'=—-'(2P.Jo)', (F8)
3fg'

i.e., 1—2P,JoM, goes to zero as Mi4=Si', while
~(x—1) l diverges as Mi ', or M'Z Mooh=const
at the Curie temperature.

Using these results we can evaluate Drom (E10)72P,J~, —2P,J, (a37,/aH)
lim — =lim, (F1)&~ 437,o (aM, /aH) BI' 2P.JpMoMi

lim P
where the last form of (F1) follows by the use of ~ ' BP p, —2P,JoM, ' (F9)

2P,JpM4

BMo/BP=LMo+2PJpMoaS/BP+3IIoaI'/BP. (E11)
again by use of L'Hospital's rule. This becomes, on
differentiation,
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and from (E9)

88) 2p,J(pI2'Mi MiM 3

lim p
~

= — =0.
Bp I p, 2p.JOM32/M4 2p,JOM32

(F10) 1 2pJoM M
—cy = (Mi+M, l')
k M32/M4

The specific heat is given by Eq. (202), with H= 0,

T& T, can be obtained from the approximate forms of
c& slightly above and below T,. For T& T,

cy 1 BEg 88i—= ——p' =2pJO(Mi+M31')p
E Bp Bp

r M,— M2
—2M2I' (F14)

M36 M3 M4

BF
+ (Mg+M4I') p + (2pJOMiM3 —M2) I',

8

1 &cy I'(BZ/BP)L(M, +M, l"))
Ilm(F11)» p &p M,g'

Since, near x= 1,
and using the limiting values of P88i/BP and PBI'/BP
from (F9) and (F10) respectively, we obtain

1
(F15)

E' Bp

c 1
lim —= (M2+M4I') — —M2I'

T~Tc 2p,JOM4
while

cjE/Bp- 1/(x —1)'*-1/M, ',

Z2-1/(* —1)-1/M, 4,

(F16)

(»7)
M'

—2M21'. (F12)
M4

it follows that Bcy/BP diverges as Mi '. Similarly, for
T&T„

(1/k) cy~ —MP/M4 —2M21'; (F18)
Since all terms depending on odd semi-invariants vanish
in the limit T —& T, and are identically zero (P=O)
above T„ it is clear the limit T —+ T, will give the
same value as T~ T, , i.e., the specific heat is con-
tinuous at T,. Thus

carrying out all di6erentiations and taking the limit
T~ T,+, we find that

Bc@
lim

r~rc+ gpMg'cy cy
lim —= lim —=—

r~rc—
p r~&c+ p

—2MgF. F13
is finite. Thus the slope of the specific heat versus
temperature curve is finite if T T, and is infinite if

The slopes of the specific heat curve for T&T, and T&T,.


