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they are responsible for a trapping level about 0.25 ev
above the valence band. The behavior in p-type ger-
manium which previously was not explained can be ac-
counted for quite reasonably on the basis that a high
concentration of trapping centers initially present in
the material is effective in the room-temperature range.
DiGerences in the recombination behavior among types
of irradiation can be explained on the basis that particles
which impart higher energy to the germanium atom pro-
duce larger numbers of isolated vacancies as compared
with the number of vacancy-interstitial pairs. There is

apparently a small shift in the position of the energy
level for the free vacancy in the case of neutron irradia-
tion. This is probably due to the heavy, localized dam-

age produced by neutron irradiation.
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An approximate method of computing the energy of a localized excitation in a solid described by the
Heitler-London scheme is presented. The overlap of the excited electron with wave functions centered on

neighboring atoms is explicitly taken into account through terms of second order. The use of a Schmidt
orthogonalization process avoids questions of convergence of the overlap series expansions found in other
methods. Some further simplifying assumptions which are of possible use in ionic crystals are subsequently
introduced. The formalism is applied to the system Ne: Ar. In this case it is found that the electrostatic
excitation energy predicted for the 3P''S —3P'4s'P transition using the approximation identical to the
symmetric orthogonalization method is appreciably smaller than that given by an "exact" application of
the present theory. Questions concerning the reliability of some previous calculations are thus raised.

I. INTRODUCTION

'HOUGH rather exhaustive investigations of the
ground state and band structure of various

specific crystals have been made in the past, interest in
detailed, a5 initio, calculations for nonconducting
excited states of solid systems (e.g. , excitons, impurity
states) has flourished only recently. ' 4

The systems considered in the work just cited are
either rare-gas or alkali-halide crystals, and the cal-
culations proceed to make use of the tight-binding
(Heitler-London) scheme, which is known to be a good
description of the ground states. The problem of the
nonorthogonality of heterocentric atomic wave func-
tions, which arises even in calculation of the ground-
state energy of the systems, becomes much more
formidable when spatially diffuse atomic functions are
introduced in the description of an excited state.

Thus far, all of the computations have adopted the
method of symmetric orthogonalization (introduced by
Lowdin in the calculation of alkali-halide cohesive

* Research partially supported by the Office of Naval Research.
' R. S. Knox, J. Phys. Chem. Solids 9, 238, 265 (1959).
2N. N. Kristoffel, Optika i Spektroskopiya 7, 45 (1959) and

references to earlier papers, therein.' N. D, Potekhina, Optika i Spectroskopiya 8, 437 (1960).
4 A. Gold, J. Phys. Chem. Solids 18, 218 (1961).

P. O. Lowdin, Advances in Physics, edited by N. F. Mott
(Taylor and Francis, Ltd. , London, 1956), VoL 5, p. 1.

energies) to account for the overlapping of atomic
functions in both the ground and excited states. The
resulting expressions for the energy are then expanded
in a power series which is terminated at terms of the
second order in the overlap integrals. This procedure is

known to be very useful for the ground state, ' but in

excitation energy calculations very serious questions of
the convergence of the expansion arise. ' '

However, in practice it is found that the only overlaps
which contribute appreciably to the energy of the
optical excitations are those involving the spatially
diffuse excited electron. Thus, it seems natural to
develop a formalism for such states using a Schmidt
orthogonalization procedure, neglecting all other over-

laps from the outset. ' The convergence difficulties of
the symmetric orthogonalization scheme are thereby
avoided completely.

We shall, for simplicity, consider only transitions
which may be described in terms of a single excited
atomic state, neglecting "configuration interactions. "
We shall generally use the word "atom" to describe
the constituent units of the crystal, whether they be
ions or neutral atoms.

The Schmidt procedure has been used previously in a limited,
approximate treatment of the I' center in ionic crystals. See the
review by B. S. Gourary and F. J. Adrian, in Solid State Physics,
edited by F. Seitz and D. Turnbull (Academic Press, New York,
1960), Vol. 10.
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II. WAVE FUNCTIONS AND ENERGY

Henceforth we shall assume that the Born-Oppen-
heimer approximation has been made and that we are
discussing a lattice which is static with its atoms lying
in their positions of equilibrium for the initial state of
interest (which will in general depend on whether we
wish to compute an absorption or emission energy).
Only electrostatic interactions will be discussed, al-
though spin-orbit terms may, of course, be treated in
the same manner. Vfe shall consider only localized
excitations appropriate, say, to an impurity center, but
excitations may be built from these in the manner of
reference 1.

A double subscript notation will be used throughout.
Thus, Jj refers to the electron which is described by
quantum numbers j and is centered on nucleus J. The
indices Au are reserved for the electron which makes
the transition under consideration.

The ground- and excited-state wave functions for
the system are given, respectively, by

equations for atom I in its ground state, and pA, is a
solution for the appropriate excited state of atom A.
The overlap integral is given by

SAa, li= 4Aaglidr ~AI~ai (3)

All other overlaps are assumed to vanish. Given these
assumptions, the function, Eqs. (1a), (1b), are properly
normalized.

The total energy of the system (in any state) may
be written in the form

+ Z LIilIII»]+2 2 2 (L»Iglgl»Jj]
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In Eq. (4), EN„, is the energy of the nuclei having
charges Zze at sites Rl,
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The second term is the kinetic energy of the electrons
plus their potential energy due to the presence of the
nuclei:
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O'A a 4 A ay

4'Aa (QAa Pli SAa, lig'li) (1 Pri (SAa, li) )

= (4Aa —Qi'SAa, riitzr')& '

(2a)

(2b)

(2c)

Here the gz s are the solutions of the Hartree-Foci'.

6, is the usual antisymmetrization operator acting on
all electronic coordinates, rJ, and eJ;, which are,
respectively, the space and spin coordinates of electron
Ij, and the f's are a set of localized wave functions
assumed to form an orthonormal set for each state.
Based on the experience of previous calculation, ' '
we shall assume that we may make the following
approximations to the P's:

where

(Ii l IIl Ii]= pz, *(r,iz)II/I, (r,iz)dr,
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The integral over d7- is always taken to include summa-
tion over spin coordinates. Substituting the functions of
Eqs. (2) into (4), we obtain the energy of the excited
state:

II= —(I'I2/2m) v2 —p I zze'/
l
Rz —r

l (7)

The last two terms of Eq. (4) are the Coulomb and
exchange interactions of the electrons, and the notation
should be read

1
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Here the matrix elements with the parentheses are to be
evaluated using atomic wave functions. The bars remind
us to use the excited state function for electron Aa.
The notation Ii/ Jj on a summation instructs us to

omit the term for which I=J and i= j.Terms of third
and fourth order in overlap have been dropped; this
is to say that no term containing more than two
products of heterocentric or orthogonal wave functions



1742 ALBERT GOL D

has been retained. [ Orthogonal functions centered on
the same atom are included in this definition of O(s')
not because each of the O(S') terms which contains
them is expected to be small, but because all such
terms occur in a manner giving no contribution to the
calculated energy, For example, sums over terms of the
form SAa, r)(IiIj [g[IjAa), i', are omitted from both
Eqs. (9) and (10a). As is easily seen, their inclusion
would leave Eqs. (13) unaltered. Other rather compli-
cated looking combinations of terms which are 0(s')
in the present sense are also omitted from Eq. (9).These
combinations vanish identically in consequence of the
fact that the wave functions involved are the (ortho-
gonal) solutions of the Hartree-Fock equations for
the atoms in question. $ In the foregoing sense an
exchange integral is said to be of second order in
overlap.

From the fact that all of the wave functions appearing
in Eq. (9) are solutions of the Hartree-Fock equations
of the free atoms it follows that Lto O(S')j

1
Ex ———g P —(AaIi[ g[IiAa)

rWA '
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The new notations introduced in Eqs. (13) are defined
as follows. EA and EA, are, respectively, the excited
and ground state atomic Hartree-Fock energies for
electron Au. CJ is the classical electrostatic potential
due to atom J:
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In Eqs. (10),Ez; is the eigenvalue of the atomic Hartree-
Fock equation for electron Ii and

IIr= ( I'i'/2)N) V' —Z—re'/ [ Rr —r [. (11)

Combining Eqs. (9) and (10) with the ground-state
energy of the system given by
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The contributions to AE are seen to have simple
"physical" interpretations. E,t, is the atomic excitation
energy for the transition plus corrections due to overlap
which have the somewhat surprising feature of involving
the atomic energies of the unexcited electrons. Eq is
in the form of a "Coulomb overlap" energy. E~ is a
contribution due to the interatomic exchange. E~ is
formally a "three-center" term of the sort common to
computations taking overlap explicity into account.

It should be noted that no question of convergence
of an expansion enters into the derivation of Eqs. (13).
They may be expected to hold with reasonable validity
so long as the overlap corrections of third and fourth
order are small compared to the excitation energy.

III. COMPARISON TO PREVIOUS FORMALISMS
AND SOME SIMPLIFICATIONS

To facilitate comparison with previous results, we
expand S ' in a power series and, once more retaining
only terms of O(S'), obtain

gives the excitation energy as
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Of course, this expansion is possible only if

Qr; (S~.z;)'&1

TABLE I. Contributions to the 3P' '5—3P'4s 'P electrostatic
excitation energy in Ne:Ar. The column headed "Exact" is the
result of using Eqs. (13). The values headed "Expanded" are
from Eqs. (15).All energies are in ev.

where

&&'=&.e'+Ec+&x+I'-'r',

~8 t EAa ~Aa)

(16a)

(16b)

For the present case of only one nonvanishing
overlap, we may write the excitation energy calculated
by a symmetric orthogonalization process and sub-
sequent power series expansion as'

Contribution

jv t
~c
&X
Er

Shift from atomic value
(&&—@~.+&~.l

"Exact"

22.16—3.36—4.63
2.72

16.89

4.47

"Expanded"

20.53—3.27—3.90
2.27

15.63

3.27

In Eq. (16a), Eg and Ex are to be taken in the approxi-
mate form, Eqs. (15b,d), not from Eqs. (13). It should
be noted that the expansion required to obtain Eqs.
(16) are convergent if Pz, IS~, r;I &1 and divergent
if gr; SAa„,z )1. To 0(S') the atomic Hartree-Fock
equations tell us that

2 LS~.,r'(Is I
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This leaves only terms really involving three centers
in E& and may be a reasonable approximation to make
even in systems of neutral atoms.

Similarly, the remaining term of E& may be thought
of as the Coulomb interaction of a charge distribution
gA pz; and the lattice with atoms A and I removed.
Thus, we may write

gg.C 'ftrz, dr= —e'Q (Zz &'r)S~—.,r'
Jgz
QA'

X I RA+(MAa, r /SAa, r )RJ'I ' ('21)

Combining this result with Eq. (10a) shows that

~.f+~r =&.f'+~r'

Equation (21) is likely to be of value only in ionic
crystals. The interaction has been found to be quite

(18) different from zero in simple molecular crystals. '4

Thus, under appropriate conditions, the two methods
yield identical results. However, Eqs. (13) remain
useful even in the event that the expanded symmetric
orthogonalization procedure is divergent.

On the basis of our assumptions concerning the
negligible overlapping of core functions, we can make
some further simpli6cations in Ey of particular useful-
ness in ionic systems where the large Coulomb interac-
tions are likely to outweigh small corrections due to
small deviations from zero "core" overlaps.

If pz; (j&a) and pz; are nonoverlapping, the region
where &~,gz;WO does not overlap P~; and

O'A CA 4r dr= —e'(ZA +A+1)SA,rA ff (19)

where ZA and XA are, respectively, the nuclear charge
and number of electrons on atom A, and R,q~ is the
distance from the "center of gravity" of the overlap
charge distribution, ft ~,f1 z;, from nucleus A. Hence,

MA, z 4A Qz '(r RA)d'r'. (20b)

4 ~~C~'flfrrdr

= —e'(Z„—X„+1)(S„,z,)' I M„,z; I

—', (20a)
where

IV. APPLICATION TO Ne:Ar AND DISCUSSION

The method of the last section has been applied to
the calculation of the electrostatic energy of the 3p' 'S
—3p'4s 'I' transition of the argon impurity in a solid
neon lattice. The computation has been made using
both the "exact" form, Eqs. (13), and the "expanded"
form of Eqs. (15), recalling that the latter is equivalent
to the symmetric orthogonalization results. The atomic
energies appearing are taken from the appropriate wave
function calculations. ' ' Terms in Ez not really involv-
ing three centers were computed using the approxima-
tion of Eq. (20). All other numbers are taken from the
computations of reference 4. A comparison of the
results in the two cases is given in Table I.

It will be noted that AE (exact) 2E (expanded)—
=1.26 ev. The source of the difFerence is apparent. For
the system in question X=0.834. Comparing Eqs. (13)
and (15), we see that the latter althogether neglects
the deviation of X ' from unity in E& and approximates
it with appreciable error in E,t. These two are the
positive terms which are decisive in determining the
excitation energy. The predicted shifts from the free
atomic absorption differ by 30/o.

7 For excited argon: R. S. Knox, Phys. Rev. 110, 375 (1958).
For argon in the ground state: D. R. Hartree and W. Hartree,

Proc. Roy. Soc. (London) A166, 45 (1938).
For neon: B. H. Worsley, Can. J. Phys. 36, 289 (1958).
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It should be noted that the results of reference 4 and
the expanded results do not fulfill the condition E,t+E'g
=E,t'+Em'. Using E~4, E~—s~ as the atomic excitation
energy in both for consistency, still leaves the present
calculation 2.36 ev above the other. The discrepancy
probably arises from the computation of Ez' in the
older work. The complicated integrals appearing there
must be approximated in the summing of poorly
convergent expansions which are used in their evalua-
tion. In the present form most of the difhculty is
"transformed away" into the simple form of E,&.

Thus, the present results are probably more reliable.
It should be pointed out that the use of E~,—E~, as
the atomic energy difference in this computation
neglects some intra-atomic effects which lower the
energy about 1 ev. However, these corrections are
omitted for simplicity's sake alone and can be taken
into account in a straightforward way. They have
little effect on the predicted blue shift, which should be
taken as the most significant number.

The most important insight gained from the present
application is the realization of the errors encountered
in the calculations using the symmetric orthogonaliza-
tion procedure. The elaborate framework of that
formalism has hidden a severe normalization error
which arises in practical calculations of excited states.
This becomes apparent in the simple Schmidt scheme.

There are two further, speci6c points of particular
interest. Knox's predictions' for the lowest exciton
states in solid argon are in severe disagreement with
the experimental results of Schnepp and Dressier. "
Whereas the symmetric orthogonalization theory pre-
dicts a red shift of about 2 ev, the experiments seem to
indicate that the absorption lies very close to its atomic
position. We conjecture that the large positive contribu-
tions to Ez and E,& neglected in the theory may
account for the difference. Potekhina's recent calcula-
tion' Gnds good agreement between the observed

'0 O. Schnepp and K. Dressier, J. Chem. Phys. 33, 49 (1960).

absorption in NaC1:Ag and the predicted energy of the
Ag ion's 4d"—4d'5P transition. However, Martienssen"
has presented strong experimental evidence that the
band is due to the 4d"—4d'5s transition. The spurious
coincidence of the calculated level with the observed
absorption may be another manifestation of the
normalization error in the symmetric orthogonalization
scheme.

The present work presents a method for avoiding
the question of series convergence in performing
practical calculations of excitation energies explicity
involving overlap. It is based on the results of earlier
work which shows that the excited electron's overlap
makes the dominant contribution to the predicted
energy difference. It remains valid when the usual
expanded symmetric orthogonalization results are not.
The results point out the possibility of making large
normalization errors in symmetric orthogonalization
calculations thereby engendering errors in the predicted
excitation energies. Some further simplifications are
suggested in the computation of the three-center
contribution. If one makes additional simpli6cations
such as representing an ionic crystal as a set of point
ions surrounding the excited atom and estimating the
exchange energy, then a crystal excitation energy

may be quickly estimated from atomic wave functions
by the comparatively simple computation of overlap
and two-center-dipole matrix elements. However, more
accurate computations still require the extremely
lengthy task of evaluating the more complicated
integrals which appear.
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