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From the Einstein relation, the principal di6usivities in anisotropic crystals are related to the atomic dis-
placements. The effect of correlation is expressed in terms of correlation functions which are analogous to
the correlation factor in isotropic diffusion. These correlation functions are calculated for vacancy self-
diGusion in the primitive tetragonal, body-centered tetragonal, and hexagonal close-packed lattices by a
computer technique. The possible use of correlation to determine mechanisms of anisotropic self-diffusion
ls discussed.

I. INTRODUCTION

INCE Hardeen and Herring' noted that tracer dif-

~

~ ~

~

fusion is not a purely random walk process for
certain mechanisms of diGusion, considerable theo-
retical and experimental progress has been made in
calculating and measuring effects which are a conse-
quence of correlated tracer diGusion. Theoretically, a
number of transport properties should be altered as a
result of correlation, e.g. , deviations from the Einstein-
Nernst relation' in ionic crystals, a reduction in the
isotope effect of diGusion, and deviations from an
Arrhenius temperature dependence4 ' in impurity dif-
fusion. Only the first two of these eGects have thus far
been demonstrated experimentally. ' "The observation
of the third effect will probably require considerable
experimental accuracy in the absolute measurement of
the temperature dependence of the diffusivity, since the
primary effect of correlation is apparently to "shift"
the activation energy, '" while deviations from the
Arrhenius relation appear to be small over the tempera, —

ture range over which tracer diffusion measurements are
typically ma, de.

In all of the theoretical discussions to date dealing
with the problem of impurity diffusion via vacancies, it
has been necessary to set up a model of three or four
frequency factors which are considered to deviate from
the self-diGusion jump frequencies of a vacancy in the
host lattice. These models are highly arbitrary in that
vacancy jumps of diGerent symmetry are equated and
only vacancy jumps which either start or arrive at a
nearest neighbor site relative to an impurity are con-

*Based on work performed under the auspices of the U. S.
Atomic Energy Commission.' J. Bardeen and C. Herring, ImPerfectrorts r'rt IV early Perfect
Crystals (John Wiley R Sons, Inc. , New York, 1952), p. 261.' C. W. McCombie and A. B. Lidiard, Phys. Rev. 101, 1210
(1956).' K. Tharmalingam and A. B.Lidiard, Phil. Mag. 44, 899 (1955).' A. B. Lidiard, Phil. Mag. 46, 1218 (1955).' A. D. Le Claire and A. B. Lidiard, Phil. Mag. 1, 518 (1956).

6 J. R. Manning, Phys. Rev. Letters I, 365 (1958}.
7 W. D. Compton and R. J. Maurer, J. Phys. Chem. Solids 1,

191 (1956).
s R. J. Friauf, Phys. Rev. 105, 843 (1957).' A. S. Miller and R. J. Maurer, J. Phys. Chem. Solids 4, 196

(1958).
'o J. G. Mullen, Phys. Rev. 121, 1649 (1961)."A. H. Schoen, Phys. Rev. Letters 1, 138 (1958).

sidered appreciably diGerent from the self-diGusion

jump frequency. Long-range screening eGects of the
type discussed by Friedel" '4 would appear to indicate
that the number of vacancy jump frequencies which
are significantly aGected by a nearby impurity is con-
siderably greater than the three or four used in im-

purity diGusion models.
Like impurity diffusion, anisotropic self-diGusion

will manifest temperature-dependent correlation effects,
since more than one vacancy jump frequency will
govern diGusion. If each lattice site is a center of sym-
metry, e.g. , zinc or tin, then it is possible to set up a
model for vacancy diGusion which has the advantages
of both being realistic a,nd permitting a theoretical
analysis of the contribution from correlation to diGu-
sion. To date there has been but one attempt to deter-
mine the effect of correlation on anisotropic self-
diGusion. Compaan and Haven'~ have treated a case
with very special symmetry, for seven values of the
relative frequency factors in and out of the basal plane,
for Al sites in the corundum lattice. Their procedure
involves setting up an electrical analog for each set of
frequency factors and determining from appropriate
measurements on the electrical network the various
correlation factors. Because of the size of the networks
involved, it is at best tedious to use this procedure for
any realistic case with a sufIicient number of relative
frequency factors to be useful in analyzing experimental
data.

In the present paper, the problem of correlation in
anisotropic diGusion is first studied for a general lattice.
This results in the introduction of "correlation func-
tions" whose values lie between zero and unity. These
correlation functions are explicitly calculated for the
primitive tetragonal (pt), body-centered tetragonal
(bct), and the hexagonal close-packed (hcp) lattices by
a computer technique. For the bct and hcp lattices, the
mean cosine of the angle between consecutive jumps
does not form a simple power series, and the calculation

"J. Friedel, in Advances in Physics, edited by N. F. Mott
(Taylor and Francis, Ltd. , London, 1954), Vol. 3, . 446."J.Friedel, Suppl. Nuovo cimento 7, 287 (1958 .

'4 J. S. Langer and S. H. Vosko, J. Phys. Chem. Solids 12, 196
(1959).

'~K. Compaan and Y. Haven, Trans. Faraday Soc. 52, 786
(1961).
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of correlation functions for these cases is consequently
more involved, requiring additional approximations
not required in the pt case or the case treated by
Compaan and Haven.

II. EFFECT OF CORRELATION ON
CRYSTALLINE DIFFUSION

It was shown by Einstein" that the diffusivity of a
particle undergoing a sequence of random displacements
is proportional to the mean-square displacement of each
particle after a time r. Ke briefly restate Einstein s
derivation in the three-dimensional case to clarify
notation and to emphasize the applicability of the
derivation to both the correlated and uncorrelated
random walk problems.

We assume the following: (a) Diffusion occurs in a
system where the "marked" or tracer atoms are in a
negligible concentration gradient, and (b) a time r can
be chosen sufficiently large that the probability of a
tracer displacement of X, V, Z, after the interval r or
P(X,Y,Z, r), is symmetric to inversion in X, Y, Z, and
at the same time small enough so that the initial dis-
tribution of tracer atoms c(x,y, s, t) does not change
appreciably in the interval r. From the definition of
P(X,Y,Z, r), which from assumption (a) is independent
of x, y, and s, we can write

The symbols X' X' X' and x' x' x' are used inter-
changeably with X, V, Z, and x, y, s, respectively. Since
the symmetry of P(X,Y,Z, r) is unaltered whether the
diffusion mechanism is correlated or not, Eq. (4) is
applicable to both correlated and uncorrelated diGusion.
Also for those cases where I' is symmetric to reAection
in each of the X', in addition to inversion about the
origin, then all of the Dt =0, for l/m. All of the lattices
considered subsequently will have sufficient symmetry
that such a principal set of axes can be determined by
inspection. Having a principal set of axes the principal
diBusivities are

D„=(X')/2r, D„„=(Y')/2r, D„=(Z')/27, (5)

where the notation ( ) stands for an average defined by
Eq. (4) . For the isotropic case (X')= (Y') = (Z') = 3 (&')
where (R') is the total mean displacement of a tracer
after a time r. Hence, for the isotropic case, D= (1/6r)
&&(R'). This relation which has been used as a basis
for previous calculations of the eGects of correlation on
diffusion is not meaningful in the anisotropic case, and
the theory must be formulated using Eq. (5) as a basis.

The Einstein relation, represented by Eq. (5), can
also be expressed in terms of the individual atomic dis-
placements. If xi represents the projection of the ith
tracer jump along the x axis, then

c(x,y, s, t+r) = c(x+X, y+ Y, s+Z, t)
11 space

1 m

D-=—((2 *')'),
i=1

(6)

&(P(X,Y,Z, r)dXdYdZ. (1)

Expanding the left side in powers of r and the right side
in powers of X, Y, Z, and using assumption (b) to dis-
card higher order terms gives

ac(x,y, z, t)
c(x,y, s,t) +7

1
t

a a a
=c(x,y, s,~)+-

~

X—+Y—+Z—
k ax ay as

Xc(x,y, s, t)P(X, Y,Z, r)dXdYdZ, (2)

where we have made use of the relation 1"PdV= 1, and
P(X,Y,Z, r)=P( X, —Y, —Z, r)—.

Equation (2) is equivalent to Fick's phenomenological
diffusion equation,

82C

Dlm )
8$ Bx

provided we make the identification

1
Di = XiX~P(Xi X Xa,r—)dX'dX~dX3 (4)

a11 space

' See, for example, A. Einstein, Theory of Browrsiae &otiose
(Dover Publishers, New York, 1956), p. 12.

with similar expressions obtaining for D» and D„.The
average in Eq. (6) is obtained by taking the weighted
mean of all of the possible (Px,)' in the interval r.
When diffusion is correlated, the cross terms, (x,x;), iW j,
in Eq. (6) do not vanish. In vacancy diffusion the cross
terms do not average to zero because of the asymmetry
in the vacancy distribution about a tracer following an
initial vacancy-tracer exchange. The mean square dis-
placement along the principal axes can be rewritten as

(X')=P (x;2)+2(xix2+xixa+ x,x„)
i=1

+2(x2x3+ x2x„)+ . 2(x„,x„). (7)

In evaluating the cross terms for vacancy diBusion
it will be assumed that a tracer which exchanges with a
vacancy will not make any exchanges with a diGerent
vacancy until the initial vacancy is far from the tracer.
Because there is a significant probability that a vacancy
will exchange with a tracer even after 20 or more
vacancy jumps following an initial vacancy-tracer ex-
change, correlation factors derived using this assump-
tion could be significantly in error for systems where
vacancy concentrations are large. (In cases where this
assumption is not valid, correlation factors will be tem-
perature dependent even for isotropic self-diffusion. )
Also, we will assume that (x,x,+;) is negligibly small for
large j, and that e is sufficiently large that each of the
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e—1 sets of cross terms shown in Eq. (7) can be con-
sidered to have an in6nite number of terms, i.e., we
replace

by

For diffusion in single crystals, many of the e—1 sets
of cross terms will be equivalent, i.e. , even for aniso-
tropic materials many of the tracer displacements are
equivalent in the sense that

)Ii Y

IO

11 7 II

8 5 8 12

6 $ 6 9 12

4 2 4 6 8 Il

2 I 2 3 5 7 10

4 6 8 11

P (x,x;+;)
j=1

is the same number for a large fraction of the n —1
values of i. If there are X sets of displacements which are
equivalent, and the nth set occurs e times in the in-
terval 7, then Eq. (7) will take the form

2rD, =P N.x.'f.„
where

&,
'= (x.x.+;)/x.',

with similar expressions for (I") and (Z'), with x re-
placed by y and s, and $ by P and ~, respectively. The
effect of correlation is then accounted for by determin-
ing f„„f „, and f, for all n. This calculation requires a
specification of the lattice and a model of the vacancy
frequency factors in the vicinity of a tracer.

III. SPECIAL CASES

A. Isotropic DiQ'usion

We shall now calculate the effect of correlation on
diffusion in a two-dimensional square lattice. This is
done to illustrate the computer technique used in the
subsequent anisotropic problems, for a case which is
easily visualized and physically simpler than anisotropic
diffusion. The geometry of this lattice is shown in Fig. 1.
AVe consider a tracer initially at the site labeled 1.
After a period of time the tracer will exchange with a
vacancy and move to an adjacent site labeled 2. For
the isotropic lattices there is only one value of n since
only one type of jump contributes to the diffusion along
any principle axis. For the two-dimensional square
lattice, Eq. (8) takes the form D„=(1/2r)(n/2)a'f,
where f=1+2 P~" $,. The subscript n=1 has been
omitted to simplify notation. m is the total number of
tracer jumps after a time ~, of which only half con-
tribute to diffusion along the x axis.

FIG. 1. Two-dimensional square lattice. The heavy border
line shows finite boundary approximation and labeling of lattice
sites.

The isotropic problem consists of essentially two
parts; first, the calculation of $i, or the difference in
the "forward" and "backward" jump probability of a
tracer, given an initial vacancy-tracer exchange, and
second, expressing $, as a simple power of $i through the
relation $, =pi', which permits the exact summation of
the expression for f to be performed.

For the two-dimensional square lattice (Fig. 1), b is
given by

Pi=We —Wi,

where 8'3 is the probability that the tracer jump fol-
lowing the initial jump is to site 3, and 8"1is the proba-
bility that this second jump is to site 1. To calculate
8 3

—Wl we must examine the diffusion of the vacancy
from site 1.If we designate p„(k) as the probability that
the eth lattice site of a crystal is occupied after k jumps
by a vacancy which is considered to start at the lattice
site 1, then the sum of the probabilities that the lattice
site n is visited after an infinite number of jumps is

P =g p.(k).

This sum of probability is simply related to N 3
—8'1, i.e.,

W3—Wi ——A (Pa—Pi),

where 3 is the probability that a vacancy at site 3, or
at site 1, will move to the particular site 2 where the
tracer resides after the initial exchange, and is equal to
4 for the two-dimensional square lattice. The distribu-
tion of probability after k vacancy jumps is related to
the distribution after k —1 jumps by a linear set of
equations

p„(k)=Q„T . p„(k—1),

where 7 „ is the probability of a transition from the
site e to the site e'. The number of equations will, in
general, equal the number of lattice sites in the crystal.
Since the vacancy is considered to start at site 1, the
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FIG. 2. (a) The possible sequences of tracer jumps along the x
axis due to a single vacancy with the appropriate probabilities for
each sequence. (b) Net probabilities for successive "backward"
jumps for k = 1, 2, 3, with the coefficient (—1)~ indicating whether
the sense of the sequence is the same or opposite to the initial jump.

initial probability distribut. ion can be written as a
column matrix

p(0) = (1,0, ,0}.
Expressing the set of linear equations (9) in matrix
notation, the sum of the probabilities at each lattice
site is

0
1

0
0
0
0

1 0
p 1

0
1 p2

0 1

0 1

0 0 0
0 0

p 1 1
4 2

0 0
0 0 0

0 0

As for the second part of the problem, we can show
that P, =$t& by considering the possible sequences of
tracer steps and explicitly calculating the probability
of each of these possibilities. The possible sequences of
steps with the appropriate probability for each is shown
schematically in Fig. 2(a) for k equal to 1, 2, and 3. By
this diagrammatic procedure we are led directly to the
relation $;=,"r'. An even simpler way to arrive at this
result is to regard $& as (—1) times the net probability
of a "backward" jump. The relation P;=Pt' is then
obvious, since the probability of a particular sequence
of events is a product of the individual probabilities.
This solution is diagrammatically depicted in Fig. 2(b).
We may now sum the geometrical series for f in Eq.
(8), with the result

the direct evalua. t.ion of Eq. (11).The way in which Pt
and P~ have been defined requires that transitions to
site 2 be forbidden. This restriction need not be ad-
hered to, however, for cases where each lattice site is a
center of symmetry, as will be the case in all subsequent
examples, since we are only interested in the difference
P'3—P&, which is unaffected by transitions to site 2.
Relaxing this restriction greatly reduces the size of the
matrix T since many of the sites will now be equivalent
by symmetry. For the boundary chosen in Fig. 1, in-
volving 96 lattice sites, only 12 are unique and require
different labels.

For the purpose of illustration we write the matrix T
which would obtain if only the first six sites shown in
Fig. 1 were used as a boundary. Within this approxima-
tion we have

P=Z p(&) =2 (i+T') p(o).
I =0 k=1

(10) f= (1+~ )/(1 —
~ )

Performing the summation on k gives

P= (1—T)—p(0). . (11)

The Bardeen-Herring' approach to the problem of
evaluating P1 and P3 is to set up a matrix diagram, and
by directly following the diGusion of probability to
evaluate the contributions p(0)(1+T+T'+ . . ). This
procedure does not lead to a rapidly converging series,
although Manning'~ has extended this approach to
accurately calculate correlation factors in isotropic
crystals. The approach to the problem used here is to
construct a symmetric, imaginary boundary about the
site 1, and to assume that vacancies which get out of
this boundary can be considered as making a negligible
contribution to the difference Ps—P1. This 6nite
boundary restricts the size of the matrix T, and permits

' J. R. Manning, Phys. Rev. I16, 819 (1959).

The size of the matrix T is, of course, determined by
the accuracy desired in a given calculation. By examin-

ing specific examples, it has been found that a boundary
about twice the distance from the site 1 to the outer-
most site relevant to (r (3 in this case), will yield very
accurate values of f For the exam. ple of a square lat-
tice, if 9 sites are considered in T the resulting f is
0.4679; for 12 sites the result is 0.4674. By an electrical
analog technique, Compaan and Haven" have found
f=0.4669. Hence the error in the calculation is only
0.1%, when a quite manageable T is used with the
above procedure.

The above analysis can be used for all of the iso-
tropic lattices. In cases tried, excellent agreement
exists with the second set of values tabulated by Com-
paan and Haven. For example, using a 34X34 T matrix

' K. Compaan an(I Y. Haven, Trans. Faraday Soc. 54, 1498
(1958).
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for the cubic lattice gave a value of 0.6533 by the present
technique, compared with 0.6531 given by Compaan
and Haven.

It should be emphasized that while the present pro-
cedure can be used for isotropic diffusion, its real
advantage is for the anisotropic cases where one desires
a systematic variation in the various vacancy jump
frequencies.

8; Tetragonal Lattice

The problen1 of correlation in anisotropic lattices
generally has two additional complications not found
in the isotropic case. First, there are generally more
than one frequency factor involved, which means that
the matrix T, which depends on the relative frequency
factors, is not constant. Second, $, , f,, and ~; cannot
generally be expressed as a simple power of $r, f&, and
co~. In the tetragonal lattice, vacancy diffusion is par-
ticularly simple in that only the first difficulty is
encountered. Hence, by the same argument used for the
two-dimensional square lattice, we can show
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o 0-4
O.

0.3
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0 P.2 O.q P.6 P.8 I.P 0.8 0.6 0.4 Oz2 0

VA VB~ ~ VB/VA

FIG. 4. Correlation functions for the primitive tetragonal lattice
as a function of the ratio of frequency factors.

basal plane or along the c axis, then

Ãg= 3Prvgq—2

P,
—$ri and M&

= hl] ~. and
'Na= BPrva~

(13)

The geometry of the tetragonal lattice and the
boundary used to determine the matrix T, with appro-
priate labeling, are shown in Fig. 3. As the figure indi-
cates, v~ is the mean frequency for vacancy jumps in
the basal plane and v& is the mean frequency for va-
cancy jumps out of the basal plane, or along the c axis
of the lattice.

The connection between the principal di6usivities
and the correlation functions can be written from an
inspection of Eq. (8). If we let P be the probability that
a tracer has a vacancy at an adjacent site, either in the

ve

52 55
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29 51

28 29 50

26
R4 27

25 RS 27

22 R5 24 R6

l9

l7 20

IS Ie 2l

VA

I4 Ie

I5 l4

7 II

Ie 20

IS l7 I9

S 8 IR

5 6 9 l2

6 9 II

5 6 7 IO

(a)

Pro. 3. (a) Geometry of the primitive tetragonal lattice.
(b) Finite boundary and labeling used to specify matrix T. Each
triangular region from bottom to top represents subsequent layers
of the tetragonal lattice along the c axis.

since there are twice as many sites adjacent to a tracer
in the basal plane as there are along the c axis. Com-
bining Eq. (13) with Eq. (8) gives

D**=B V~Pa'f~. ,

Dzz= BVap& faz~

(~/~)'D. ./D. .= v~f~./vaja'
Because of the applicability of Eq. (12), fz, and fa,

can be expressed in terms of $i and cur, i.e.,

f~.= (1+$r)/(1 —$r), and fa, = (1+mr)/(1 —cvi). (15)

In terms of the labeling shown in Fig. 3 we have g,
= (Ea—Er)A and o&i= (F22—Er)B, where A and B are
the probabilities that a vacancy will make an A- and
8-type jurnp, respectively. In terms of the jump fre-
quencies v~ and va, we have A=V~/(4v~+2va) and
B=va/(4v~+2va). The matrix elements I'i, Pa, and
P» were calculated from Eq. (11) by the same pro-
cedure used in the two-dimensional square lattice. For
this case T is a 34&&34 matrix whose elements vary as
the relative frequency factors are varied. It is because
of this systematic variation in T that the computer
approach is so convenient. f~, and fa, were calculated,
using 20 values of A/B ranging from 0 to 1 and 20
values of B/A in the sa,me interval. The results of this
calculation" are shown in Fig. 4. In the isotropic limits
A/B ~ 0, 1, ~, we find f~,= 1.0000, 0.6533, 0.4674, and
fa,——0, 0.6533, 1.0000 in excellent agreement with the
Compaan and Haven values corresponding to these
limits. These values of f~, and fa, were used to calcu-

'9 Tables of the functions shown in Figs. 4, 5, 7, and 8 can be
obtained from the author on request.
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Fra. 5. Diffusion anisotropy for the primitive tetragonal lattice.
The solid line obtains for vacancy diffusion, and the dashed line
for uncorrelated diffusion with the same set of basis jump vectors.

late (c/a)sD„/D„, from Eq. (14), as a function of
v~/v~. The result of this calculation is shown in Fig. S.
By comparing experimental values of (c/a)'D„/D„
with the function graphed in Fig. 5 we can determine
v~/v~ with the effect of correlation included. From
vz/vz the correlation functions f&, and fz, are readily
determined from the calculated values of these func-
tions shown in Fig. 4.

To calculate the correlation functions for the hcp and
bct cases requires an alteration in the analysis previously
used for the tetragonal case, since expressions analogous
to Eq. (12) do not obtain for $,. For these cases the
procedure used to express f;(j)1) in terms of Pt is as
follows: We partition $, into two parts, a major part
which can be expressed in a form similar to Eq. (12),
and a lesser part which we will calculate explicitly by
considering the contribution from the remaining pos-
sible tracer jumps following an initial tracer-vacancy
exchange. We proceed by calculating $t" and $s" ex-
plicitly, where the superscript A indicates that we refer
only to the case where the initial vacancy-tracer ex-
change is of the A type, i.e., where o.=A. Following the
initial exchange, the next tracer jump can be either of
the A or 8 type, or symbolically the possible sequences
can be written (AA) or (AB). Thus we can write

fr" $t (AA——)+Pt (AB))

where (t(AA) is the contribution to fr~ from (AA)
jumps and pt(AB) is that from (AB) jumps. Consider-
ing two jumps following the initial exchange, we have
for the possible sequences (AAA), (AAB), (ABB),
and (ABA), so that

$s gs(AAA)+Ps(AAB)+Ps(ABB)+Ps(ABA).

By the same type of argument used to arrive at the
relation $,=fr' for the two-dimensional square lattice
we can show that gs(AAA) =gt(AA)pt(AA), b(AAB)
=(t(AA)gr(AB), etc. Thus

$s"= $r (AA) $r (A A)+ tr (AA) Pr (AB)

+6(AB)tr(BB)+6(AB)6(BA) (1g)

C. Body-Centered Tetragonal and
Hexagonal Close-Packed Lattices

For the bct and hcp lattices, we shall carry out an
analysis similar to that found in the previous section.
The geometry of these lattices is shown schematically
in Figs. 6(a) and 6(b), with v~ representing the mean
frequency that a vacancy jumps in the basal plane and
v& the frequency of jumps out of the basal plane. The
connection between the principal diGusivities and the
correlation functions follows directly from Eq. (g).
Using arguments completely analogous to the tetragonal
case, it can be shown that

Dgz= ,',pa'(v~fg. +van,—)) (bct)

Des= ] sp& vBfBc (bet) (16)

(c/a)sD»/D»= (1/f~, )(v~fg~/v~+f~, ), (bct)

and

7
5 8
3 6 9
2 4 6 8
I 2 3 5

5 8 9 8 5

16

7l
SOuo

14 15 16) 0
(c)

(b)

V'~
20 24

FIG. 6. (a) and (b) Schematic representation of the lattice
geometry of the bct and hcp lattices, respectively, as viewed along
the c axis. (c) and (d) Finite boundary and labeling used to specify
matrix T for bct and hcp lattices, respectively. Successive units
represent laycgs g,k)ng the c axis.

D» ——(1/24) pa'(3vgf~, +vnfI1, ), (hcp)

gg tape vBfBg& (hcp) (17)

(/ ) D../D. .=(2/f-. )("f../"+ .f..). ("p)-
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TABLE I. Dependence of (1 and w1 on elements of matrix p. 5.0

bct

gg(AA) A (P3—P&)
$1 (A B) 28 (P11—P10)
$1 (BB) B(P4+P17 P1 P14)
g, (m ) 2Z (P„—P„)
~1 (BB) B(P14+2P15+P17—P1—2P2 —P4)

hcp

A(P +P —P —P)
B(P„—P„)
B(P2+P19—P1—P18)

(P„—P„)
B(Pls+ 2P19 Pl 2P2)

4.6

4.2

3.8

3.4

)C N
X Ho o 3 0

A s™~rexpression can be written for $,~. We find
that in general vfa 2.6

P,~= P, (AA) &'+cross terms,

$,s= $,( BB)i+cross terms.
(19)

2.2

I.8

Physically, it would be expected that the cross terms
make a small contribution to the correlation functions
in Eqs. (16) and (17), since (AB) and (BA) jump se-
quences require a minimum of two jumps of a vacancy
to one of the tracer. We can show this explicitly by
calculating gi(AB) and (i(BA) by the matrix tech-
nique previously discussed. The $'s a,nd r0's are obtained
from inspection of the lattice diagram shown in Figs.
6(c) and 6(d). Their dependence on the matrix elements
is shown in Table I for the bct and hcp lattices. Like
the pt case, A and 8 are the probabilities of vacancy
jumps in and out of the basal plane, respectively. Their
relation to the jump frequencies is A = vA/(4vA+svB)
and B=v~/(4v~+svir) for the bct lattice, and A = vz/
(6vzi+6vir) and B=vir/(6vz+6vir) for the hcp lattice.
The elements of the matrix P shown in 'Sable I were
determined from Eq. (11), as before, with T specified
by the boundaries and notation shown in Figs. 6(c) and
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Fro. 8. Diffusion anisotropy for the bct and hcp lattices. The
solid lines obtain for vacancy diffusion and the dashed lines for
uncorrelated diffusion with the same set of basis jump vectors.

6(d), for the bct and hcp cases, respectively. As a result
of a numerical calculation, it was found that for the
hcp case the largest value of fi(AB) was 0.048 which
occurred in the limit A/B ~ 0, and the largest value
of )i(BA) was 0.038 in the limit A/B —+ 1.43. Since the
cross terms contribute less than 10% to the correlation
functions in first order, it will be sufhcient to account
for these terms to second order with a resulting error
considerably less than 1% over the entire range of vzi

and vg. The contribution from the cross terms is of a
similar magnitude for the bct case.

Summing the contributions to the correlation func-
tions which form a geometrical series exactly, and the
cross terms to second order, gives
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FIG. 7. Correlation functions for the bet lattice; (a) fg (v~/ve),
(b) fe (vz/ve), and (c) fez(vz/ve). Correlation iunctionsfor the
hcp lattice& (d) fziz(vzi/va), (e) fez(vz/ve), and (f) fBz(vA/vB).

This relation applies to both the bct and hcp lattices,
provided the appropriate $'s and ~'s shown in Table I
are used. The results of the numerical calculations of
f~„ f~„and fIiz over the entire range of vzi/vii, with
the same intervals as for the pt case, are shown in Fig. 7.
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The diffusion anisotropy as calculated from Eqs. (16)
and (17) is shown in Fig. 8.

Since the accuracy of the present calculation depends
on the size of the matrix T, i.e., the size of the region
chosen in the finite boundary approximation, the corre-
lation functions calculated for hcp and bct lattices are
somewhat in error. This error is estimated to be of the
order of 1% or less over the entire range of v~/v~. For
the bct lattice, f» and f&, differ by about 1% in the
limit vz/vz —+ 0, which is probably because the matrix
element I'~q used in fg, is so near the edge of the chosen
boundary. Because of present-day experimental limita-
tions and the increase in computer time required for a
larger T matrix, a more accurate calculation was not
believed to be warranted.

As can be seen from Fig. 7, f» and f&, are very
nearly the same over the entire range of v&/vz. Since
the calculated differences between f~, and f~, are of
the same order as the accuracy of the calculation, these
differences must not be considered quantitative. The
fact that fg, and f~, are the same to a good approxima-
tion, however, shows that the effect of correlation for
the hcp and bct lattices can be considered as primarily
resulting in a scaling down of A- and 8-type jumps with
scaling factors f~ and f~ It can .also be seen from Fig. 7

that the magnitude of the correlation functions changes
rapidly in the limits 2/8 ~ 0 and 8/A ~ 0. This in-
dicates that even for highly anisotropic crystals where
one frequency factor is much larger than the other, the
correlation functions may be considerably different
from those expected using a one-frequency model. For
example, if 73 jumps occur only 5% as frequently as A

jumps in an hcp lattice, then f~, is altered from 0.560
to 0.605, or about 8%, from the value obtained neglect-
ing 8 jumps.

IV. DISCUSSION

Recent data on anisotropic self-diffusion are not
extensive. Shim, Wajda, and Huntington' have shown
that considerable information can be inferred about
diffusion mechanjsms in anisotropic materials from
measurements of the temperature dependence of the
diffusion anisotropy. Their method of analysis, how-

ever, does not permit one to distinguish between
mechanisms which have the same set of basis jump
vectors such as the vacancy and exchange mechanisms,
or more generally the ring mechanism. In principle,
these mechanisms could be differentiated by sufficiently
precise data, for the anisotropic lattices previously dis-
cussed. For ionic crystals, departures from the Einstein-
Nernst relations could be used to distinguish between
certain diffusion mechanisms. The distinction between

2 G. A. Shim, E. S. Wajda, and H. B. Huntington, Acta Met.
1, 513 {1953).

correlated and uncorrelated mechanisms could be es-
tablished by determining the ratio of the principal
diffusivities to the principal conductivities, since this
ratio is a constant for the uncorrelated mechanism but
not for the correlated mechanism. For metals it should
be possible to determine mechanisms of diffusion by
accurate measurements of deviations from a Boltzmann
temperature dependence for such quantities as D„. A
quantitative measurement of this effect which is in
accord with that predicted in the preceding analysis
would constitute strong evidence for the vacancy
mechanism of diffusion.

Of the metallic systems for which the temperature
dependence of the principal diffusivities have so far
been measured, either the temperature dependence of
the anisotropy has been small or the data too imprecise
to use the above criteria to determine mechanisms of
self-diffusion. In this regard it should be noted that
highly anisotropic materials might be the most favor-
able for observing these effects. For example, in cases
where D„))D„, i.e., vz))vz, then fz, will be very
sensitive to small changes in v~ and the deviations from
exponential in D„could be appreciable.

In cases where the vacancy mechanism is responsible
for diffusion, it should be noted that both the magni-
tude and temperature dependence of the frequency
factors inferred from anisotropic diffusion data can be
appreciably in error when the effect of correlation is
neglected. As an example of the error which can result
from neglecting correlation, we have used the data of
Shim et a/. "for zinc to calculate v~/v~ as a function of
temperature, both neglecting and including the effect
of correlation. From the data of Shim et a/. we take
D,/D„=0.75 at 1000/T=1.5('K) ' and D„/D„
=0.441 at 1000/T=2.0('K) '. Assuming an exponen-
tial temperature dependence for the frequency factors
as predicted by reaction rate theory, "we find

neglecting correlation:

v~/v~ ——10.9 exp( —3.22 kcal/RT),

including correlation:

vA/vB 17.0 exp( —3.83 kcal/RT)

It should be noted that in addition to the large error
in pre-exponential factors, the calculated difference in
energy of motion of A- and 8-type jumps is 16% in
error when correlation is neglected. This effect coul.d
be much larger in crystals showing a large temperature
dependence to the diffusion anisotropy.
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