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We investigate the dependence of the pressure of a homogeneous
system, at a given density p and temperature T, on the number
of particles Ã. The particles of the system are assumed to interact
via forces of finite range a and are confined to a periodic cube of
volume L', p= N/L' —We find. that there are generally two types
of X dependencies in the pressure and other intensive properties
of the system. There is a simple dependence which goes essentially
as a power series in (1/N) and may be computed explicitly in
terms of the grand-ensemble averages of these properties where it
is absent. The other, more complex, dependence comes from the
volume dependence of those cluster integrals which are large

enough to wind at least once around the periodic torus. These
do not appear in a virial expansion for terms k& (N/pa')t. They
play however a dominant role in the Ã dependence observed by
Alder and Wainwright in their machine computations on a hard-
sphere gas. While the explicit calculation of these terms is very
difFicult and has been carried through only in a few special cases,
they may be related, approximately at least, to the radial distribu-
tion function in an infinite system. We also And an expression for
the correlation between the particles of an ideal gas represented
by a microcanonical ensemble.

l. INTRODUCTION

HE purpose of this paper is to consider some
properties of systems with a small number of

particles. More specifically, we are interested in the
dependence of the pressure on the number of particles
1V in a periodic box of volume I.'=X/p for a given
density p. For a system of macroscopic size, the depend-
ence on X of the intensive variables and distribution
functions is of interest only in very special cases which
we have investigated previously. ' The recent machine
calculations of Alder and Wainwright and Wood' of
the pressure of a collection of hard spheres, at various
densities, varying in number between 4 and 500 do
however supply "experimental" results for a system of
small E. The results do not seem to yield any simple
pattern for the dependence of the pressure on 3l and
seem to be unrelated to the E dependence of the 6rst
two virial coefficients given explicitly by Mazur and
Oppenheim. '

Our interest in this problem arose from the fact that
we had recently derived a simple expression for the
coeKcient of the 1/E term of the low-order distribution
functions in the asymptotic region (large separation
between groups of particles). One method of proof we
used indicated that for a system with periodic boundary
conditions our result should give the X dependence of
the whole radial distribution function and of the
thermodynamic quantities whenever the virial expan-
sion converges. The expression we obtained for the
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dependence of the pressure on E was indeed in agree-
ment, when expanded in powers of the density, with
that of Mazur and Oppenheim, but in complete dis-
agreement with the published results of Alder and
Wainwright, for the medium to high density region.
This led us to investigate the problem more carefully.

We discovered that the discrepancy arises from the
existence of two types of E dependence, one of which
does not appear at all in the virial expansion at large X,
but is important in the range considered by Alder and
Wainwright. The explicit calculations necessary for
comparison with their result, which would also indicate
the general reliability of their method, turned out to
be too complicated however and were carried through
only in the relatively low-density region. We found
further that there is a relationship between the cluster
integrals involved in these volume corrections and the
coefficients of the density expansion in the radial
distribution function g(r) in an infinite system.

The general formulation of the problem is given in
Sec. 2, where we express the pressure P(X,V) =p(N, q,
{b')) as the ratio of two polynomials in p, of order E.
The coefKicients of p~ are given explicitly as polynomials
in S with coefficients which are themselves functions of
the cluster integrals bi', i &4+1.For a periodic rectan-
gular box, b~' will have an implicit dependence on V for
l) 1./a, a being the range of the intermolecular forces.
and I. the length of the smallest side. For a given V
this is largest for a cube 1.'= V, which is the only shape
we shall consider explicitly since the extension to
other shapes is obvious. Alder and Wainwright use
rectangular boxes for 8 and 16 molecules, and thus the
volume dependence of the b&' begins at the same density
for these X as for X=4.

In Sec. 3, we expand p(X,p, {b')) as a power series in

p and show that the coefficient of p~ is a polynomial
of order k —1 in 1/IV. The coefFicient of (1/1V)&' is a
function of the b&', l &k, and also depends implicitly on
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N for k& N. Considering only the low virial coefFicients
(i.e., the volume-independent ones) Oppenheim and
Mazur had found a recurrence relation for these
coeKcients ni, ' (as well as for the 1/N terms in the
distribution functions) in terms of ni,' which was shown
to equal the usual volume-independent virial coefficient
of Mayer's theory. As indicated before, this is true only
for k &L/u= (N/pa')', which for small N is very small;
thus for N=S and pu'= —,'it holds only for the first
two virial coefficients. It is however still true that o.I, ,
the value of the N-independent coefficient of p" is the
same as that of p~ in the expansion of p, where p is the
average value of the pressure for a system of average
density p in a volume V represented by a grand canon-
ical ensemble. The values of n~' for k&N are also given.

We then present an alternative, more direct, proof
of the above result and also find explicit expressions for
the 1/N depen. dence of the pressure p(N, p, {b'})in
terms of p(p, {b'}).This yields the corrections to p as a
power series in 1/N, the 6rst term of which is p (Np, {b'})
=p(p, {b})—(p /2N)d ln(dp/dp)/dp. This expansion is
correct for all virial coeKcients up to k=E, while for
k&N there are other corrections due to the essentially
discrete nature of N. The extra correction terms are
of lower order in 1/N, so that the 1/N term should
also hold for dense systems.

We see from the above that the complete N depend-
ence of the pressure consists of two parts: the explicit
terms in 1/N and the implicit volume (N) dependence
of p through the bi'. The explicit 1/N dependence
would always lead to an increase in p with N for a
hard-sphere gas. As indicated earlier, however, the
implicit volume (N) dependence of p enters very early
in the virial expansion when N is small: k) (Npa')'*.

It is the nature and initial form of this dependence
(which appears the dominant one in the Alder-
Wainwright results) which we consider in Secs. 4 and 5.

2. GENERAL EXPRESSION FOR THE
CANONICAL PRESSURE

We consider a system of N particles, interacting via
two-particle forces, in a periodic cube of volume V=L'.
The pressure of this system at a given temperature T
will be obtained from the canonical ensemble. For a
hard-sphere gas, the potential energy over the allowed
configuration space vanishes and the canonical pressure
should conicide (assuming ergodicity in configuration
space) with the virial pressure of a single system of
total energy 3NkT/2. It is the latter pressure which is

computed by Alder and Wainwright.
The partition function of a general system of the

above type may be written as4

N—1

Z, = Q A~p", (p=N/V) (2 2)

P (l—1)mi ——k,
l=2

~l
/~V

connected i( jei, . ~ l
(e »&"'—~' 1)d—ti dt's. (2.4)

P=1/kT enters as a constant parameter throughout,
and we shall henceforth set it equal to unity. Since
ratios of factorials can be expanded in terms of the
Stirling numbers of the first kind, '

8

x(x—1) (x—s+1)= g S,&x&,

j=1
(2.5)

(2.3) may be further developed in a Laurent series in N.
We have

Z.= Q p'N'Ci, {N,{b'}), (2 6)

2k—l
Ci, (N, {b'})=Q Cj{b'}

j=o
(2 7)

(2 g)

where v=k —Q2" mt and the range of {mi} is the same
as that given in Eq. (2.3).

The Ci,&'{b'} of (2.7) are seen to be polynomials in
the connected cluster integrals bi' for i&k+1. In a
periodic system, the bl' will be independent of the
container volume V =L' whenever l &L/a, or

l & (N/pa') ', (2.9)

where a is the range of the interatomic potential,
assumed finite. (The volume-independent cluster in-
tegrals will be denoted by bi. ) Thus, from (2.1) and
(2.6), the pressure P=B lnZ/BV becomes

N—1

P(N, V)=t L1+ 2 N"C~(N ,
—{b'})t"j''

It =I

(bi ) ~&

AI„-= p [N!/(N —k —p m$)!]—g, (2.3)
f mlI l=2 Nlt: l 2 y~l I

where the {m&} satisfy

VN 2 ~ 3N/

z- z.
N! Pk'

(2.1)
N—I

X Q N' '[kCi, (N {b'})—Ci, (N {b'})jp"+' (2.10)

Y. Hill, Statistical Mechanics (McGraw-Hill Book Company,
Inc. , New York, 1956).

C. Jordan, Calculls of Finite Differences (Chelsea Publishing
Company, New York, 1947), p. 142.



THERMODYNAMIC PROPERTIES OF SMALL SYSTEMS 1675

where
8

Ci, (»,{b'})= V Ci, (»,{b'})
BV

L=O for k & (»/pa')~]. (2.11)

In particular, for»((»/pa')'*, or V) (»a)', the only
dependence of p(», V) on V is in the explicit form of the
ratio of two polynomials in p=»/V. Hence for a given
», there will always be some volume V(») such that for
V& V(»), p(1V, V) is an analytic function of 1/V and
may therefore be expanded in a Taylor series in p for
some range of p. For a two-dimensional system, the
condition is V) (»a), and in one dimension V&»a.
For a hard-sphere system, the condition is always
satisfied in one dimension.

k (» [and thus obtained Eq. (3.1) with nq&'({ b})
which are independent of » and V] that

«+i'({b})=
k 1

(3.5)

where Pi, is the usual irreducible cluster integra, l. This
result is also a consequence of the fact, proven by
Lewis, that in the limit of N and V becoming infinite,

p remaining fixed, the canonical pressure coincides with
that obtained from the grand canonical ensemble for a
system of average density p. The results of Oppenheim
and Mazur may be carried over to the case where the
cluster integrals are volume dependent, to yieM

3. VIRIAL EXPANSION
«+i"({b'})= — 13i'

k+1
(3.5')

Suppose then that V) V(1V), so that bi' ——bi. The The Pi,
' are the volume-dependent irreducible cluster

second term of (2.10) drops out, and we may write integrals related to the bi' by the same algebraic
relation that relates the Pi, to the bi. '

where

p(», V)= Q ni(lU, b)p",
k=1

1
lnZ, =» Q ni, „ip', —

k=l P

V) V(») (3.1)

k—I 1 j
P ~a'(b b~)—
j=0 N

ni, (iV, {b})=
k—1 1
Q n). (»i, b , 2,b ) i'—,k)».

(3 2)

Here nA, '(», {b})is gotten from nzi{b} by setting all bi
equal to zero for /)». The limit j=k —1 in (3.2) stems
from the fact that the coefficient of V " in (2.2) is a
polynomial in N with constant term missing; the
coefficient of V " in p= (BZ/BV)/Z of (3.1) must also
have this property. The limit j=0, as opposed to
j&0, is implied by the requirement that the virial
coefficients remain finite as N ~ ~. This can also be
established directly. We can extend (3.1) and (3.2) to
arbitrary volume V. When V is not necessarily greater
than V(»), we have generally

The Pi,
' take on their volume independent values P~,

when k+1&L/a.
It is recognized from (3.5') that the nq'({b'}) are the

volume-dependent virial coefficients obtained from the
grand canonical ensemble for a system with a volume V.
In order to gain further insight and obtain in a more
transparent form the complete» dependence (explicit
and implicit) of the pressure, let us consider the average
value of p(», V) over a grand ensemble. Denoting this
average pressure by p, we have

p(li, v) =Q p(», V)%7(», l~, v),
N=l

(3.8)

where 'H (»,li, v), the probability of having» particles
in the system, is given by

( Q ')mi

k!Pi,'= —P (k —1+ Q mi)! g (3.6)
m~) 0 l=2 l)2 'fg)r

the summation being restricted as in (2.3), or by its
inverse:

(1P &) ~ma

l'bi' ——P Q —, where P km', ——1—1. (3.7)
~k)0 k 55k t

p(», V) W (»,),,V) =PFZ(», V)/Z, (1~,V), (3.9)

=p+ 2 (» {b'})— (»{b'}) p (33)
k=2 k —1

where

o;k—= V—O,k

BV

nq(», {b'})=«(»,{b}), nq=0 for k&L/a. (3.4)

It was shown by Oppenheim and Mazur, who con-
sidered only the low-order virial coefficients, k&L/a,

Z (X V) =P )FZ(», V) = expLV 2 bi'li'3. (3.10)

Using the definition of p(», V) in (3.8) readily yields

7-(x, v) = lnz, (x,v) =P(x, v)+Pp, , v), (3.11)
8V

8
P(X,V) = V PP., U), —

BV

' M. B. Levris, Phys. Rev. 105, 348 (1957).
7 J.Mayer, Hamdbuch der Physi& (Springer-Verlag, Berlin, 1958),

Vol. 12.
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where
1 k

P(X,V) =—lnZg(X, V) =p
—Q !3„'p'+'

V k+1

where KV=E—
¹ In deriving the last equality, we

have made use of the fact that

is the usual grand canonical pressure, with
((bIV)') =X N—=N(BP/Bp) '= pxN

BP
(3.19)

E
p(X,{b'})=N/U= Q —'VP (N, X, V) =Q lb''X'. (3.13)

V

In order to evaluate the second term on the right
side of (3.11), we rewrite (3.12) in the form

P(~, U) =pL1 —Z O'P"3+2 O''P'+'
k

=PL1—ln(p/~i)3+2 P'p"+' . (3 14)
k 1

p being the isothermal compressibility.
Equation (3.18) may now be inverted to get the

N dependence of P(N, V). A somewhat more condensed
form of Eq. (3.18), containing an explicit expression
for the ((bN)"), may be obtained as follows. We consider
the average value of the quantity exp(abN), where a
is an arbitrary constant,

(e '")=Q exp'~(N —N) hli~Z(N, V)/2 X~Z(N, V)
= exp (—aN) Z, (Xe', V)/Z, (X,V). (3.20)

But from (3.13),
The second equality follows from inverting the series
(3.13). We then have

1
&9 V)=Z 0'p"+'

k 1

- OQ

p(X, U) =7i(p, {b'})=p —Q (kp,
' p, ')p"+'—

i=i k+]

hence

Z, (l, ,V)=»»p( Ed» ~,
»—=!»t;

(e'~) = exp

(3.21)

=p+ 2 "({b'})— ."({b'})p'
k=2 k —1

(3.16)

= expfU Q (a"/k!)8"—'p/»" —'j. (3.22)
Ic=2

We may equate coefficients of a in (3.22) to obtain

The average pressure p(p, {b'})thus coincides with the
N-independent terms in P(N, V)=P(N, p, {b'}) for all
virial terms k&N, and p=p. The form P(N, p, {b'})
separates the explicit N-dependence of P from that
contained implicitly in the volume dependence of the
O'. It then follows, keeping the b' 6xed, that

(
—'

a!) n, ! V""~ (3.23)

I'mP(N p {b})=p(p {b }).
where +2 klan l Observ——ing . that (F(blV))=F(8/Ba)

(3.17) &&(expabN) at @=0, we have more generally

The explicit N dependence of P (IV,p, {b'})may now be
obtained by expanding P(N, V) in (3.8) about N(X, V).
This method is not limited to the pressure but may be
used to obtain the S dependence of any thermodynamic
quantity as well as that of the low-order distribution
functions. It was used by us previously' to study the
asymptotic behavior of the Ursell functions, and we

give an entirely diferent application of it in the
appendix. Going back then to the definition (3.8), we
write

f(N+bcV)=K expt Q (V' "/k!)
&=2

&&(~" 'p/»' ')(~/~ )'jf( ) (3 24)

where K indicates a normal order in which all 8/Bp go
to the right before evaluation.

According to (3.18) and (3.24),

7 (p, {b})=& expL 2 (U' "/k ~) (~' p/»" ')
k=2

~(~/~p) "jP(p V {b'}) (3 25)
p(X, V) = Q P(N(X)+@V, V)% (N, X, U)

Ã-0
One further sees from (3.19) that

1
=P(NO, V),V)+E —(»)" P(N", V)

k! BX' t9—=p'(x) —,
Bs Bp

(3.26)
p2 Q2

=p(N ,V)+ (p&) 7-(N,p, {''
2X Bp2 Inserting (3.26) into (3.25) and inverting the resulting

+0(1/N), (3.18) series to find the explicit V dependence of P(N, V),
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which we have written as a function of p, U, and {b'),

82 1
P(p, U, {b'))= 1— p'x — p'x

2V Bp2 6V'

for terms i 44 the wiriat exparisior4 with k &L/a When the
last equation is expanded in p, defining

P(p) =p+&p'+Cp'+
and thus

a l a' 1 a4
(p'x)'

Bp )Bp' 8U' BP4 we obtain

X=PI:s ' 2&—+(4&' 3C—)p+ (4 2)

1
+ P x P x + 7i(p {b'}) (3 27)

4V' Bp2 Bp2

In terms of S, we thus have

P(»p {b'))

1 8' 1 1 4l ) 8'
px px pxl

2tV ap' Ã' 6 ap )ap'

()4 1 82

+ p'x -p'x———+ r&(p, {b')) (3 28)
8 Bp4 4 Bp' Bp2

Equation (3.28) will result in a virial expansion of the
form

P(i~', p, {b'))

co k—i
aj{b') — ei(,'{b'} —

~

p", (3.29)
&=1 j=p k —1 cV1

i.e., we do not get the correct E dependence of Eq. (3.2)
for the oI,& when k)E, which is not surprising in view
of the fact that we have treated X as a continuous
variable. Actually, p (p, U, {b') ) is a discontinuous
function of p, the position and size of the discontinuities
depending on V, which cannot be included in a power
series. This can be taken care of by using an Euler-
MacLaurin rather than a Taylor series expansion, or
more simply by setting all bI,

' ——0 for k)S in the
explicit expansion.

4. ANOMALOUS VOLUME DEPENDENCE

For virial expansion terms with k&L/a, there is no
volume dependence in the n4&' of (3.29), so that these
terms in the expansion of 7i(p, {b'})and P(p, {b'})are
the same. Since BP/OP=1/px, (3.28) then becomes

1) 1
p(»p, {b'})=p+~ 1——~BP2+ C+ (—282 3—C)

xJ
2

(C—a') p'+ . (4.3)
g2

This E dependence of the virial coefficients has pre-
viously been obtained by means of a recurrence relation
by Oppenheim and Mazur. As we have seen, however,
it is only valid through the 4th virial coefficient, where
k=I/a= (A/pa')'. In particular, for a hard-sphere
gas, with maximum density p, =v2/ ',athe above
relations for the X dependence of the pressure hold for

k & (p,/p) l($/K2)* (and k &iV) . (4.4)

Thus for X=8, they will not be valid even for the
third virial coefficient unless p/p, &8/(27%2) 4, and
hence are not relevant at the densities considered by
Alder and Wainwright.

When (4.4) is violated for virial coefficients which are
not negligible for the equation of state in the region of
interest, the volume dependence of the pressure at given
density may be strongly affected by the volume depend-
ence of the b~'. A little thought shows that in a period-
ically bounded system, this volume dependence arises
only from those terms in a cluster which would vanish
if V is increased sufficiently. This means that the
cluster must be at least doubly connected, and in fact
must have at least one loop which touches diametrically
opposite boundaries, i.e., it winds at least once around
the "periodic" doughnut. If we think of this doughnut
as made out of rubber which can be inQated, then the
volume dependent clusters are those which would burst
as the doughnut gets larger. The first contribution will
come from the ring clusters, and they can be evaluated
explicitly. For example, in a four-particle system, the
first volume dependence will appear when a four-
particle ring can touch opposite walls, that is, when

p(»p, {b)) pip. &4/( 2&&4'); (4.5)

8 1 18'
=P(.)+-"—l-(.x)—"x—

2 Bp iV 8 (9p'

5 O' 4t 1 t'8
+— »px—lnpx+ —

I

—lnpx
24 Bp' Bp 24(BP

1 l9 1 8 1
+——lnpx +p'x — lnpx +", (4.1)

6 Bp 38p2 Ã2

this will be the only contribution to volume dependence
until a 3-particle ring can do the same,

p/p. =4/(v2 X3'), (4.6)

at approximately double the above density.
Let us compare the usual residual E dependence of

the pressure with the "anomalous" dependence engen-
dered by the variation of cluster coefticients with
volume. According to (4.1), the leading term in the
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former is given by
1

p —1 (1/PX) (4.1')Pr,p, (b)) =P(+'P)
2Ã ()P

be given. Were detajled result ydiameter ~
have

more accura y~ forfor repulsive for (
l!/ increases at so th«~2-/gp2) 0), necessar) f '

'f the volume depen -
= (—1))(3i/4zrzlL) (2zrz

~ P . '
0 t}e other hand . „rtition

xed density
Z to the coor ina eadds a term AZ, to

()lZ,) compared to() ()V) ln(Z,
1Z H t fi top+(8/()V) n ..an uncorrected p=p

p'= p+
8 AZ, Xexp[is((l —2j)a—L)] ds.

p
z '

—l))1V' '

e three possible ways ofIt is clear that, counting t e
a unitwall to wa, astretching from

the s direction,vectol ln

f( )f(r )f(r ) . .
(l!V)

~ ~ ~ ~ ~ ~

X (rl 2, l ))f(&L— «——i)dr' '

be expected to b ge overnedwhose ~V depe endence may e
y„e t g

the largest relevant c usSuppose that t e a
iven system att density p

shows an anom-
for a giv

b butnot l ~ s m-system the coefFicient l, s m-
nce when Ealous vo lume dependenc

ld" behavior of Z,According to 23, te
is then

(4 g)

l ((la L) s/(3i —')) !X(1—ias e'

'—2zr ' ' (la—L)"-'=(—)'—(

l3)—2 8

0

'—2zr ' ' (la—L)" '=(—)'—( )
/I.

or

8l—2

l e(la—L) /alle —u

(la I)/a= — —&du

the origin, if la) L) (—l 2)a-,r assingbelowt eorig', '
For a contour p'=0 term contri uonly the g=

2)—2

' 'f(«)~(Z rl Ls)dr' (l L) 2l—2l

lL (2l—2 .

4.11)Xa'lt-—l, 2l —1 l L/a), ( . —
f( ) f( )

er eometric funciton &F&.is the confluent hypergeome
B, 11* o hand 8, sma x,For large A an B a xXexp[is (P r, — z

(f,) ' exp( —iLs,)ds
8~31

Hence
3z

= (3/2zr''lL) (f,) ' sin(sL) sds.

2A A B Ax-
ln(b(A, B;x) =—x

(B—A)(B—2A) x'

B'(B+1)(B+2)3
Abz=

4m211.
(f,)'e "Lsds,

( ) —
( — d = (r)e"'dsfr= e( )= ( 4'(")—1), and f,= r e*' '

(4.9)

1)' 3a/I. E!
l (2l—2)! (I)/ —l)!W '

e frome x&1, an d hence we haveIn eth present case,
(4.8), (4.11), and (4. ),

(—
67,~

tial (r) is negativea re ulsive potentia, e
it t integral expressi

n, are

fo h d h of(—1)'. In particular, orhas the sign — . n

—l L
exp
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Since the b&+& ring contribution to AZ, is roughly
—(2~p+') L(&+1—L/a) "/(l —L/a)" '$41' times that due
to b&, the large l asymptotic b& contribution of the rings
in fact going as

hZ. ( 1)'—(6Na/L) exp( —3L/2a) (-,'~e'pa')' '/l&,

For hard spheres, the virial coeKcients are

8=—
7I a3 )

582
8

8=0.28698', E=0.11584, ~ ~ ~,

the irreducible cluster coeKcients

(4.15)

1 l I)
p 11+——

Z, i N 2/ 13u)—
AZ,

the expression (4.13) is dominant among clusters l and
higher only for quite small p, say pa'& —,'0, or for the
threshold /' little smaller than E. Let us investigate
numerically the situation for a somewhat higher
density, pa'=4. We will be interested in the pressure
deviation, which according to (4.2) and (4.13) is given

by

yielding connected cluster coe%cients

b2
———.',Pg —— B—

b3= ',Pp+ ',P-= (2-7/16)B'

b4=3PP+Pip~+4P3=3 554B'
(4 17)

Pi —— 2B,—p2= ——,'C, p3= ,D,—~—, (4.16)

The coordinate partition function for a system of N

3l 2+ (21 2) p (4 14) particles may be written out explicitly from Eqs. (2.2),
1V l—(L/a) (2.3) as

Z, = 1+(1V—1)b2'p+
(N —1)(N —2) (N —3) (N 1)(N —2—)

(b ')'+ b'
2X

(N —1) (1V—2) (N —3) (1V—4) (N —5) (N 1) (1V—2)—(N—3) (N —4)
(b2')'+ b2'b3'
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At pa'=x4, we find from (4.15) the N= ~ limit

p/p=1. 75. The expansion, Eq. (4.3), in powers of 1/N
goes as

1
~(p/p) =—(3~c'p)+—'6 (3~~'p)'

S N

Neglecting the difference between b' and b, and
inserting Eq. (4.17), we obtain the "free boundary"
partition function

3 r—2
Zg= 1 Bp+ B p

16 S

TABLE I. Explicit E dependence of the pressure.

p jl Eq (4 2 tl

1.45
1.56
1.61
1.68
1.75

P/p Eq. (4.&8l

1.55
1.55
1.64

~ ~ ~

1.75

The lowest size anomalous cluster which exists for a
volume V=L'=N/p=Na'/pa' is in general given by
1V&l)L/a= (N/pu')&. The anomalous corrections to
Z, and p, as computed from Eqs. (4.13), (4.14), are
given in Table II in which the X=8 result may be a
considerable overestimate, since all contributions for
l&4 have been neglected.

TABLE II. Contribution of anomalous ring clusters.
1

4(3~c'p)'+ (4 21)
E2

2

This may be compared with the results obtained from
Eq. (4.18) when b' is set equal to b but the 1V dependence
is kept exact, and is tabulated in Table I.

0.260
0.135
0.0316

3
3, 4

~ ~ ~
7

AZ,

—0.0035—0.0024) +0.0034
1.42X10 4

0.000
0.040—0.053—0 077
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S. RELATION BETWEEN ANOMALOUS VOLUME
DEPENDENCE AND 2-BODY DISTRIBUTION

The above computation involves a configuration
space integral with endpoints separated by a Axed
distance L, and hence suggests a relation to the two-
body distribution function. Thus for example the
/-particle anomalous ring cluster considered in the
previous section is clearly equivalent, except for a
volume factor, to a cluster of 1+1 particles connected
in series, the two end particles being kept fixed at a
separation L. The value of this cluster integral therefore
corresponds to the value of the coe%cient of p

' in the
virial expansion of the radial distribution function g(r)
at r= L in an infinite system, providing that (t—1)a &L
(Iu, and except for a combinatorial factor.

A more general approximate relation of this type, not
restricted to the ring clusters, may also be derived.
Ke have

Hence
p 6 &pl+i

6 lnZ, =N Q
t=i k+1 k+2 bf(L)

pk gp
dN

o i k+2bf(L)
N 1

[n—,(L) p' j—dN
0 P

(5.4)

As a check, suppose that L& 2a; then in the Nijboer-Van
Hove s notation, ns (L)=p'[1+p'gs(L)+ p'gs (L)+
6 1nZ, =2N[—',p'gs(L)+cp'gs(L)+ .j. In the special
case of hard spheres with pet'=~~, N=3, L/ tt=2. 29,

so that 5 lnZ, =—,', (—0.114)= —0.021, which coincides
with the result of Table II if (Z,)"~ is given its infinite-
particle limiting value.

lim
lnZ, (N,p, (b'}) P'p

pk

k+1
(5.1)
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where the Pi, ', delned in Eqs. (3.6), (3.'7), are (because
of the translation invariance of the periodic box) the
irreducible volume-dependent cluster integrals. Looking
now at the two-particle distribution function n&(xi —xs),
it was shown in reference 1 that

8 lnZ, ~ pt, 8pt,
'

', Ve«*)-n, (x)=N g (5 2)
bf(x) i=i k+1 8f(x)

We observe that any cluster in P&' which winds once
around the periodic doughnut, and which as the
result of a single cut is no longer anomalous emanates

(in three different ways) from a similar cluster in P&+i

with two particles separated by L. Conversely, if one

performs the operation o/lt f(L) on (k+1)!VPt~i, two

types of terms result: those in which the pair separated

by L has two connections to another particle, and
these vanish for L&2u; the remainder, which become
legitimate anomalous elements of k!VPq when the
pair is identified as a single particle. Dividing by
(k+1)(k+2)/2 is equivalent to differentiating with

respect to a single specified link and hence to considering
those diagrams in which a specified particle say 1

appears with its periodic image. Ring clusters are
counted correctly by this procedure but all others are
underestimated. With this proviso, we have

APPENDIX I. CORRELATIONS IN A
MICROCANONICAL ENSEMBLE

We present here, mainly for the purpose of illustration
of our method, a simple derivation of a formula derived
rigorously, and incidentally quite laboriously, by
Khinchin. ' Consider a system of E independent
particles represented by a microcanonical ensemble of
fixed energy E. This Axing of the total energy is the
source, the only one, of correlations between the
particles. It is the form of the correlations, which are
intuitively of order 1/N, which we seek. To apply our
method, we compare the value of a function in a
system with energy E (i.e. average over a micro-
canonical ensemble) with its average value over a
canonical ensemble of temperature T. This temperature
is chosen so that the average energy E is equal to E.

We then have, in complete analogy with Eq. (3.18),
for a function a(E) (with p = 1/k T),

gk

(P, (E))= (E)+ 2 —((~E)') (E), (I 1)
~=2 k f BE~

and keeping only terms to order 1/N, we have as a
consequence

a(e) = a(P(e)) kT'(Cv/N')cPa(P—(e-))/cte') (I.2)

or

A(k!VPi) = 3 (k+1!Vpt~r), (5.3)
(k+1)(4+2) hf(L)

((5E)')= —ctE/ctP = rP lnZ/&P'= kT'Cv. (I.3)

where Cy is the specific heat of the whole system at
constant volume [which is of order O(N)], e=E/N,
and we have used the fact that

~pi = pt:+r, —
k+2 bf(L)

B.R. A. Nijboer and L. van Hove, Phys. Rev. 85, 777 (1952).
(5 3) A. Khinchin, Statistical 3Iechanlcs (Dover Publications, New

York, 1949).
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Here, Z is the classical partition function,

Z(P) = . expL —P P h, (x,)]dxi dxg

@(E),P(E) and (p(xi)P(x2)), we find

1 88 8$8$
(I:4 (»)—4 (~)jL4 (»)—4 (~)j)s=———— (I.8)

IV Bp BC BE
N

= g s.;(P), (I.4) The quantity BP/Bcmay be evaluated directly from
(I.8) by changing f=h2.

in which x, denotes the set of canonical variables of a
single particle and h, (x,) is the Hamiltonian of that
particle.

Let @(xi), P(x2) be some functions of the phase
spaces of particles one and two respectively. Then we
define

0(&)—=Q(*))s

@(x,)SLY h, (x,)—E]dxi dx~

8$ Bp BQ Bp—=——=—(L4 (»)—&xh2(») —h2(~) 3) (I 9)
86 86 Bp BE.

If we neglect terms lower than first order in the coeffi-
cient of 1/X on the right side of (I.8), which is correct
to the order we are working with, we may write

8$ Bp—=—(C~(* )—~( )jP.( )—h ( )j) (I 10)
86 86

Combining Eqs. (I.10), (I.9), and (I.3) finally yields

8[+ h, (x,)—E]dxi dxpc t'8' lnsi '*(8' 1ns~ l 8' lnZ)
~(~,~) =-I

(I 6) E BP' 5 BP' BP'

XR(y)hi)R(f, h2)) (I.11)
with corresponding expressions for f(I;), Q), and for
(@(xi)lP(x2)). This latter quantity has the obvious
property

/{(L&—&(~)l')s(L4' —0'(~))')s} (I 12)

When use is made of Eq. (I.6) for each of the quantities Eq. (I.11) is identical with Eq. (91) of Khinchin.


