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Instabilities of a Cylindrical Electron-Hole Plasma in a Magnetic Field
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The stability of an electron-hole plasma carrying current in a parallel magnetic field is investigated. The
theory employed is a generalization of the treatment Kadomtsev and Nedospasov applied to gas discharges.
In its generalized form it is applicable to plasmas produced either by injection or by impact ionization and
no restrictions are placed upon the magnitude of the magnetic field, provided the classical, linearized treat-
ment is appropriate. The possibility of finite plasma densities at the surface of the crystal is included in an
approximate manner. Instabilities are predicted, and the calculated values of the electric field, magnetic
field, and lowest oscillation frequency which occur at the onset of instability are compared with available
observations, including those of the "Oscillistor. " Agreement is reasonably satisfactory.

INTRODUCTION the two types of sources of interest: injection of elec-
trons and holes from end contacts, and impact ioni-
zation in the bulk.

A plasma of this distribution, carrying an axial
current, will be stable in form at low currents where
the self-magnetic field of the current applies a force
much smaller than the diffusion force which maintains
the steady state. Any perturbations will be opposed
by diffusion, and, since no large driving force is avai]able,
they will be damped. If an external magnetic field in
the axial direction (H,) is applied, however, instabilities
may occur. Consider a helical perturbation in density
which causes a helical distortion in the current with
azimuthal component 6j@.This current will now cause
a driving force of magnitude hj~H, c, in a direction
either towards or away from the surface, depending
on the sense of the helical perturbation with respect
to the direction of H, . The strength of this driving force
will depend on j and H, and we may expect that at
suKciently large values of the product jH, this force
will be larger than the diffusion force and the pertur-
bations will grow. We shall investigate the conditions
for the growth of perturbations of helical form and show
that instabilities set in at values of j and H, above
thresholds which are interdependent.

We use cgs units throughout. The plasma may be
described by the following set of equations, where e
and p are the electron and hole densities, respectively:

'HERE have been a number of observations' '
recently of spontaneous osci]lations of the current

passing through semiconductor plasmas made up of
electrons and holes, placed in a magnetic field. It has
been suggested' that these oscillations are the result of
inherent instabilities in such plasmas, similar to those
suggested as the cause of the rapid diffusion across a
magnetic field observed in gaseous plasmas. ' In this
paper we develop a theory for the time-dependent
behavior of electron-hole plasmas in semiconductors,
carrying current in an external, longitudinal magnetic
field, and compare the predicted instabilities with the
available experimental evidence. The results presented
here amplify an earlier discussion, ' and include a
treatment of the problem with one of the assumptions
made earlier removed, It will be seen that the conditions
predicted for the onset of instabilities are in good
agreement with experimental observations.

THEORY

We deal with a plasma made up of electrons and
holes, free to move about inside a semiconductor
cylinder of radius a. The cylinder is assumed sufficiently
long to make end effects negligible so that we may
simplify the s variation of the properties of interest,
i.e., the plasma density and carrier velocities. In the
steady state the plasma will occupy the available
volume with a distribution in density which depends
on the sources and sinks for the plasma. The sink for
the plasma will be assumed to be primarily at the
surface, with some volume recombination also allow-
able, so that the plasma density will have a maximum
at the center of the cylinder and fall off to some smaller
value at the surface. The treatment will be applied to
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9 The subscripts e and h denote electrons and holes,
respectively; v is the velocity, T the temperature, m*
the effective mass, and v the scattering time of the
carriers. V and H are the electric potential and mag-
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Equations (11) and (12) are to be solved for n and V
as functions of r, s, p, and t. We need not treat diBer-
ently the two cases of impact ionization in the bulk, and
injection, (p positive and 0, respectively) since we shall
see that, with quite reasonable assumptions, the two
cases yield similar results.

netic field, respectively, and ~ is the dielectric constant
of the semiconductor.

Equations (1) and (2) are written in a form which
includes both volume recombination and bulk plasma
generation in the terms containing y, which mould be,
respectively, negative and positive. Since we assume
that the recombination is dominantly at the surface, y
will be positive in the case of bulk plasma generation.
In the case of an injected plasma with dominant
recombination at the surface, p will be approximately
0. Recombination at the surface appears in the boundary
conditions. In Eqs. (1)—(4) we will set n= p, since n —p
will always be much smaller than e in the cases of
interest.

Equations (3) and (4) may be solved for the carrier
velocities, and we do so for H in the s direction. The
collision times should be replaced by appropriate
averages over the carrier distribution functions. For
simplicity we shall neglect the distinction between Hall
and drift mobilities, and write for the mobility p (in
esu) and the diffusion coeKcient D

(a) The Steady State

When an/at=0, the values of density and potential
are described by the functions mp and Vp. Equations
(11) and (12) may then be written in the form:
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where we have introduced the assumption that the
6eld Ep along the length of the cylinder is constant, i.e.,
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and we have also assumed that np and Vp are not
functions of the angular variable P. The term involving

(9) BVp/ar may be eliminated between Eqs. (13) and (14),
with the result
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The continuity equations (1) and (2) are then written:
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where b is the ratio of electron and hole mobilities,
tj e/pa.

Equation (16) has a solution of the form
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with G the separation constant. We need not detail the
function Zp for the rest of our investigation. We wish
it to be a weak function of s to conform with our
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model of a cylindrical plasma of approximately constant
density in the s direction. How weak the variation with
s needs to be will be seen in the next section; here we
can say that it needs to be weak enough to justify our
assumption of a constant Ep.

In order for the plasma density to fall to zero at
the surface, '

Pp should have the value np/u, where ep is
the first root of Jp and is equal to 2.4048. When we set
the left sides of Eqs. (13) and (14) equal to each other
and apply the requirement that Bnp/Br and BVp/Br
must be regular at the origin, we can show that
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n=np+ng, V= Vp+Vy. (19)

We assume that s& and V& are small and may be
expressed in the form

n —f(r z)ei ef+iaz —Rot

V' —F(r)pi~+iaz i~t— (20)

These expressions are substituted into Eqs. (11) and.

(12), and terms of higher order than 1 in the pertur-
bation quantities are dropped. We then have

(b) Instabilities in the Density

We use a perturbation approach to treat the possible
growth of instabilities in the plasma density. s and t("

are assumed expressible in the forms
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m will be integral and equal to 1 or larger; the right-
hand side will have its smallest value at r=a, so that
(23) becomes

BSp y 1.25Ep((
1+y' ka'

In order to remove the explicit dependence on s from
these two equations, we wish to ignore the term
ikIi(Bnp/Bz)F which appears in each of them. This may
be justified if

f(r,z) =f,(r)Z, ( )z. (25)

Terms ignored are of second order. With these condi-
tions, Eqs. (21) and (22) are separable in the r and z

dependence and may be written i n the form

As we shall see when the results are applied to a
practical example, this is a very mild restriction which
is satisfied easily in the experiments referred to earlier. ' '
In keeping with the perturbation approximation, we

also assume that the perturbed density s& has the same
loss rate in the z direction as did np, i.e., in Eqs. (21)
and (22),
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We relax this requirement later, in the discussion of surface effects.
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where
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We look for solutions to Eqs. (26) and (27) which
satisfy our boundary conditions: e& and V& must be
regular at the origin; e goes to zero at the surface; the
Qows of electrons and holes to the surface are equal,
since there can be no net radial current. The last
condition can be satisfied as long as the potential
remains finite at the surface.

We follow the approach of Kadomtsev and
Nedospasov, ' who treated a simpler pair of equations
in an approximate manner by assuming solutions of the
form f~=e'J~(P~r); F= V'J~(P,r), where P~= (n~/a),
and o.& is the 6rst root of the Bessel function J&, equal to
3 8317 W. e sub. stitute for f& and F in Eqs. (26) and (27),
multiply through by J,(P,r)rdr and integrate with
respect to r. In this approach we set m'=1, since we
seek the lowest order instabilities, and the smallest
value of m should define this lowest region.

We then have two algebraic equations whose coeK-
cients are functions of the parameters describing the
plasma and the wave parameters co and k only.

integrals of Bessel functions. If
a
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These expressions have the numerical values

(37)

5=0.08114a' L =0.7478 Q = 1.4888
R =0.6656, F=0.80305, ¹/¹=0.5879. (38)

We obtain the dispersion relation for a&(k) by setting
the determinant of Eqs. (30) and (31) equal to zero.
Since we seek instabilities, i.e., growth in time in this
case, k is a real quantity, and we must investigate the
behavior of co, a complex quantity. We assume that
the electrons and holes are in thermal equilibrium with
each other, i.e., T,=T~, and go over to a simpliled,
dimensionless notation:
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X—=ka, 8=voa/D, —
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¹

are expressed as
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The equation for 0 may then be written
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and for stability (ImQ negative) we then require that

Xrxs+Xsx4+l7, 8X'+X4
—&mhX.
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The X; are coefFicients containing only b and y. Since
the left-hand side of the inequality (44) is a positive
quantity, the plasma will be stable for m = —1, but may
be unstable for m=1. This agrees with our physical
picture for the source of the instability; helical waves
with the m= —1 variation have a 6j~II force which is
in the direction to aid restoration of the steady state,
rather than to oppose it.

The threshold for the onset of instability will occur
when (44) becomes an equality, and 0 is then reaL The
parameters of the system are of course the magnetic
and electric 6elds applied to the plasma, which are
proportional, respectively, to y and 8. For any 6xed
value of X, which is proportional to the wave number
of the disturbance, there will be a corresponding curve
of y(8), which will represent the onset of growing
oscillations of that wave number.

In most of the experiments performed, the wave-
lengths were not necessarily fixed by the arrangement
used. In this case we should consider X as free, and

The imaginary part of 0 may be expressed in the form

Z,xs+X,X +X8X2+X4—8mXP„+X4X')
(43)

»+l4sx'+'AsX4
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FIG. 1. The dimensionless magnetic field as a function of the
dimensionless electric leld necessary for onset of oscillation. p,,
is the electron mobility (in emn), 210 the electron drift velocity in
the direction of the electron Geld, u the radius of the plasma cyl-
inder, and D, the electron diffusion coe%cient. b is the ratio of
electron to hole mobilities.

seek the smallest values of y and b which represent the
onset of instabilities. These will occur when the curve
representing the right-hand side of (44) touches the
curve representing the left-hand side, for the first time
as 8 is increased from zero. At this 6rst point of contact,
the slopes of the two curves with respect to X will also
be equal. In searching for this intersection and the
corresponding values of y and 8, we must then look
for the smallest slope for which the slopes and the
values of the two sides are equal.

For given values of b and y, we may solve the equa-
tions derived from (44) for the point X which gives
the smallest value of 8 for which instabilities may occur.
We may in this way plot a curve of y(8) which repre-
sents the threshoM dividing the stable and unstable
regions of operation of the plasma. Such curves are
shown in Fig. 1, for values of b of 0.5, 2.2, 10, and 50.
The general behavior is as expected from the physical
model, with larger magnetic fields required to cause
instabilities when lower electric fields are applied. For
large b we note that the curves approach one another.

For a given system, i.e., some value of b, the magnetic
field and electric field enter only through the terms y
and 8. In the case where the electron drift velocity may
be expressed in terms of the same mobility that appears
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FIG. 2. The dimensionless wave number as a function of the
dimensionless threshold magnetic Geld.

in the Einstein relation,

D,=p,kT,/e,

8 may be rewritten in the form

= QeEp/kT .

(45)

(46)
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FIG. 3. The dimensionless frequency as a function of the
dimensionless threshold magnetic Geld.

Thus for a given value of b, the critical magnetic field
for a given electric field is inversely proportional to the
electron mobility, and the critical electric field, for a
given p,H, is proportional to kT/a.

The values of X for which the thresholds of instability
occur are plotted as a function of the threshold mag-
netic field, yth, in Fig. 2, for values of b of 0.5, 2.2, 10,
and 50. We see that X varies little as y&& is increased to
about 0.5, and falls rapidly with y&I, above 1. These
values of X are the lowest for which instability will

develop, provided the geometry of the plasma will

allow waves of the calculated wavelength. When this is
not the case, i.e., (L is the length of the plasma column)

L/a(rr/X,

the instabilities will develop only for larger values of X,
and correspondingly larger values of y and h, than those
given in Fig. 1. We would then calculate these by
solving the inequality (44) for a specified value or
set of values for X: X=2m-as/L, where s is an integer
or half-integer, depending on the end boundary condi-
tions. We would then expect that the conditions for
onset of the instability would depend on the length of
the specimen until the inequality (47) is reversed to
(L/a))) (s-/X) .

At threshold, 0 is a real quantity. We may derive
two expressions for the value of the frequency at the
threshoM, 0th, by requiring that the real and imaginary
parts of Eq. (41) be separately satisfied. One of the
expressions is

TABLE I. Values of coefficients in Eq. (51) for
different surface conditions.

Relative
density
at the

surface 8

5.783
14.682
8.610
4.325

11.790
3.849

0.2 0.5

4.169 2.317
10.583 5.833
6.208 3.457
2.946 1.417
9.012 5.914
2.737 1.393

0.8

0.844
2.142
1.264
0.453
2.432
0.4523

0.95

0.2022
0.5134
0.3043
0.1044
0.6063
0.1039

0.98

0.0819
0.2079
0.1230
0.0414
0.2478
0.0412

stable. 0th is plotted as a function of yth in Fig. 3, for
the values b=0.5, 2.2, 10, and 50. For b=1, the equa-
tions yield a minimum frequency of 0, although all of
the other curves show proper intermediate behavior
between the cases b=0.5 and 2.2. For b&1, the values
of the frequency are negative, which indicates a change
in direction of the propagating waves, as is expected
since the current is now dominated by the hole rather
than the electron conduction. For small values of y~h,
the frequency varies linearly with y. We note also that
the frequency appears in a combination such that for
fixed conditions of b and y&h, cv should be proportional
to D./u'.

(c) In6uence of the Surface

In the foregoing calculations we have assumed that
the plasma density in the steady state is zero at the
surface. For many of the semiconductors to which the
theory will be applied, this approximation is in-

appropriate, since the density at the surface may be
quite large. The calculations can be generalized in

n,h
—— ( bX Im(B—C/b) —2X4/b —Xs Re(A/b

Im(B+C)

+B+C/b+W)+Re(AB) —Re(CW) ), (48)

and it may be used to calculate the lowest frequencies
which should appear when the plasma becomes un-
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terms of the parameter

8= No(u)/eo(0),

5,0—
I

2.0-

I

ba 2.2

by redefining the values of Po and the various integrals
in Eqs. (32)—(37). The modiled values, Po', are simple
to calculate, since they come from the new condition

Jo(Po'u) =~

I,O

0.2—

O

x

N 'i'

8 = o.5

For the rest, however, we must choose some treatment
for the perturbed density which is not too arbitrary.
We assume that the function Ji(Pi'r) in er falls to zero
at the same point in space (r) u) as does Jo, there is
then a 6nite perturbed density at the surface. We
rewrite Eqs. (42) in terms of the new coeKcients, which

O. I I

.Ol .02 .05 O. l

I I

0.2 0.5
~th =P.q H1h

FrG. 5. The dimensionless wave number as a function of the
dimensionless threshold magnetic Geld, for a plasma with electron-
to-hole mobility ratio 2.2.
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FIG. 4. The dimensionless magnetic field as a function of the
dimensionless electric Geld necessary for oscillation, calculated
for a plasma with electron-to-hole mobility ratio 2.2. 5 is the ratio
of plasma density at the surface to the plasma density on the
axis of the cylinder.

show the effects for the one value b=2.2, which corre-
sponds most closely to the case of the germanium
"Oscillistor" which has been studied in detail in recent
experiments. ' '

We note that as the surface concentration is in-
creased, the threshold for instability decreases to
smaller values of 8 and y. This seems reasonable, since
with higher surface concentrations the di6usion force
is reduced, and it is this force which must be overcome
by the j~H, forces to cause the growth of oscillations.
How much the magnitude of the effect calculated is
in6uenced by our choice of boundary conditions for
e& is not clear. The general form chosen should be
correct, although the most appropriate value for e~ at
the surface may not be the one which was used. How-
ever, we do not expect that the plasma will become
unstable at vanishing values of the fields for 8=1. Our
assumed form for e& is clearly not appropriate in this

are labeled with primes.

1"= 'u)'
b(1+y')+ b'+y'

1+y' 1+y' 1+y2

(Pi'u)'I"b (Po'u)'R'imy
gl

b2+y2 b2+y2

(Pi'u)'P' (Po'u)'imR'y

(Pi'u)' (Po'u)'Q'U (Po'u)'L'my Ua'= —r'+ $$

(51)

10.00

5.00

2.00

1.00

0.50

0.02

0.10

I I

t) = 2.2

1+y2 +y2 0.05

(pi'u)'b (Po'u)'Q'b U (po'u)oL'my Uw'= —I"+ +
b2+y2 b2+yo be+

The values of the coefficients which appear in the
Eqs. (51) are presented in Table I, for parameters 8
in the range 0 to 0.98. Solutions for Eq. (44) with the
modified coefficients have been obtained, and some of
these are plotted in the series of Figs. (4)—(6), which

0.02

0.01 I I

0.01 0.02 0,05 0.1 0,2 0.5
~th-j e "th

IO

FIG. 6. The dimensionless frequency as a function of the dimen-
sionless threshold magnetic field, for a plasma with electron-to-
hole mobility ratio 2.2.

' R. D. Larrabee (private communication).
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Fxo. 7. The dimensionless magnetic field as a function of the
dimensionless electric field necessary for onset of oscillation cal-
culated under the assumption that the hole temperature is much
less than the electron temperature.

(d) EfFect of Hole Diffusion

The theory presented has treated both carriers in the
plasma on an equivalent basis, and assumed that the
electron and hole temperatures were equal. The
equations have also been investigated when this is not
the case, i.e., when some of the terms involving the hole
diQ'usion may be neglected. This may be justified only
when T,»TI„a case which is expected to be rare in
semiconductor plasmas, but is included here for
completeness, and because it corresponds to the case
treated by Kadomtsev and Nedospasov, ' with their
assumption that p, ,II»1 removed.

We use Eq. (11) but replace Eq. (12) by

case, since it yields zero perturbation. For a finite
perturbation there will still be a diffusion force —DVe~,
and no other forces if the fields are zero; the plasma
will thus be stable.

The decrease in the values of ka and &va'/D, is even
greater than the change in the threshold fields. We thus
expect that changes in the surface should have a
considerable effect on threshold fields, and a stronger
effect on the observed frequencies, provided that the
observations involve the lowest possible modes of
oscillation.

conductor plasmas, the data available for comparison
with the theory proposed are only semiquantitative.
Within the limitations of these data, fruitful comparison
may be made to investigate the validity of the proposed
basic mechanism of oscillation.

The instabilities we have discussed occur in the
presence of a magnetic field in the direction of current
Qow, and must be compared with experiments which
also involve a magnetic field. This was the case for the
work of Ivanov and Ryvkin' and of the other authors
referred to' 4' although other factors did appear to
inQuence the character and properties of the oscillations.
In all cases it is quite probable that the semiconductor
contained an electron-hole plasma, produced either by
injection or by across-the-gap ionization. In the most
detailed investigations, namely references 1, 2, and 8
dealing with germanium, it was clear that there was a
threshold current (or electric field) and a corresponding
threshold longitudinal magnetic field which had to be
exceeded to induce the oscillations. The surfaces of the
samples were important in affecting the properties of
the oscillating plasma, although no quantitative study
is yet available relating the surface density to the
threshold fields and observed frequencies.

All of these qualitative features are just what we

expect if the oscillations observed were of the class of
hydromagnetic instabilities calculated in this paper.
The amplitude of oscillation observed in the experi-
ments was very large, and for this reason, we might
expect that our perturbation approach should provide
good quantitative agreement only very near the
thresholds. The properties of the particular semi-

conductor plasmas which have been investigated are
summarized in Table II. The threshold electric and
magnetic fields, and the lowest frequencies which should

appear have been calculated and are listed in Table III,
together with an estimate of the values which have
been observed. Although there is a paucity of data,
what is available is in good agreement in most cases. In
spite of the fact that all observations were made for
relatively large amplitude of oscillation, there is no

indication of a violent disagreement between the spread

TABLE II. Properties of electron hole plasmas.

The treatment is the same; the resulting values for the
thresholds for oscillation are plotted in Fig. 7. For
small y, the threshold fields are independent of b; at
large y, the threshold fields increase with decreasing b.
For large 5 and large y, the curve approaches the curve
shown in Fig. 1 for b=50.

COMPARISON WITH EXPERIMENT

Material

Germanium
Germanium
Silicon
Indium

antimonide
Indium

antimonide

Electron
difFusion

coefficient
(cm' jsec)

300
77
77

3.6X10 ' 2.2
2—4X10 4 1—1.5

1—1.5X10 4 =2

93
130-260
66-100

77

220'

2-7X10 ' 20-70 1300-4650

2.8X10 ' =30 5230

Electron
mobility

Tempera- (cm'/v-sec) Mobility
ture ('K) (emu) ratio b

Although there have been a number of observations
of "spontaneous" oscillations which occur in semi- a Lattice at 77'IZ, plasma at 220'K.
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TAsLz III. Oscillation thresholds.

Material
(temperature)

Threshold
magnetic

Gelds

$=JgeH

Threshold electric
zelda aE (volts)

Calculated
5=0 &=0.95 Observed

Frequencies
a'f (cm'/sec)
Calculated

5=0 ~=0.95 Observed

Germanium (300'K)

Germanium (77'K)

Silicon (77'K)

Indium antimonide
(77'K)

Indium antimonide
(carriers at 220'K)

0.1
0.36
0.1
1.0
0.1
1.0

0.02
0.1
1.0

0.03

9.3
2.47

=0.15
=2.3
=0.19

15.9
3.25
0.25

32

3.0
0.8

=0.65
=0.05
=0.75
=0.06

5.2
1.1
0.08

10

2a
07a04b

16.3
53.5

12-19
55-85

=12.5
60-70

330-400

50

1.27
4.0

1—1,5
5—6.5

0.9
5

30

3.5

5+ 56b

a R. D. Larrabee, references 2 and 8.
b Ivanov and Ryvkin, reference 1.
e Glicksman and Poilus, reference 4.

of observations by a number of workers (with unknown
conditions of the surface) and the theory presented.

In our treatment we neglected a term involving the
rate of decrease of the density along the plasma cylinder
axis LEq. (24)). In the germanium experiments the
right-hand side of this inequality is about equal to
Eo cm ', essentially independent of the value of 5. The
inequality is therefore satisfied as long as the plasma
injected at one end reaches the other end only slightly
decreased in density: Our error will be about 10% in the
term retained if the density falls off 10% as it passes
down the semiconductor. The experiments which
showed oscillations had plasma of high density through-
out; in cases where the density fell off rapidly, oscil-
lations were not observed. '

Our thresholds are valid and independent of the
specimen length as long as the condition discussed
above, i.e., (I./a)))(s. /X) is satisfied. In most of the
experiments, 1./a was of the order of 10—30, while X is
calculated to be of the order of 0.4 to 2, depending on
the surface conditions. We see that some length
dependence might be expected when I./u is only about
10 and the surfaces are "good," since in the latter case
X at threshold has its lowest values.

We note that the conditions for onset of oscillation
do not depend explicitly on the plasma density. The
use of external light radiation to change the plasma
density' ' would be expected to affect the observations
when the light was necessary to produce the plasma,
or when the light affected the ratio of surface to interior
density of plasma.

The oscillations calculated are in the form of helical
waves which travel down the plasma at a phase velocity
cs/k. As such they would not produce a measurable ac
current or voltage modulation unless the conditions at
the ends of the specimen provide effective reQection
which can result in a standing pattern of these waves.

This must be the case; oscillations were observed to
last for very long times' at apparently stable conditions.
We must then expect that some regular relation of the
kind discussed with respect to the specimen length and
the oscillation wavelength will exist, and for the wave-
lengths calculated we expect that the number of such
wavelengths present is small, of the order of 10 or less,
in the experiments performed.

The theory presented predicts a variety of
dependences of the threshold fields and frequencies
on the geometry and the surface conditions, in addition
to the normally expected dependence on the transport
properties of the plasma particles. The strong inverse-
square dependence of the frequency on the transverse
dimension a, and the inverse dependence of the threshold
electric Geld on a should be capable of experimental
verification. However, it is necessary to have precise
knowledge of the sample conditions, such as the relative
concentrations at the center and surfaces, in order to
provide a proper test of the calculations.

CONCLUSIONS

We have investigated the conditions affecting the
growth of hydromagnetic instabilities in electron-hole
plasmas. The conditions predicted for the onset of
these instabilities coincide reasonably well with the
observed critical conditions necessary to induce oscil-
lations in such plasmas carrying a current in a longi-
tudinal magnetic field. We therefore believe that these
instabilities provide the basic mechanism for current
oscillations in a plasma operating under these conditions
(e.g. , the "Oscillistor'"). The theory predicts that the
threshold electric field for oscillation should vary
inversely as the plasma radius a, and that the lowest
frequency of oscillation should vary inversely as the
square of a, provided that in both cases, the other
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properties of the plasma are maintained constant. We
have discussed the conditions of applicability of the
theory as presented and have shown that experiments
performed to date should be describable within the
approximations employed.
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This paper considers the statistical mechanics of hard rigid dimers distributed on a lattice (each dimer
occupying two nearest neighbor lattice sites). The problem is solved in exact closed form for a finite vi&(e
plane square lattice with edges which is completely filled with —,vga dimers (close-packed limit). In terms
of the activities x and y of horizontal and vertical dimers, the con6gurational partition function Z „(x,y)
is given in the limit of a large lattice by

z/y
lim (raN) 'InZ (x,y) =sr lny+(1/x) (1/v) tan 'v dv.

vtS ~~oo 0

It follows that the free energy and entropy of the system are smooth continuous functions of the densities
of horizontal and vertical dimers. The number of ways of 6lling the lattice with dimers is calculated exactly
for m =a=5 and is given asymptotically by Lexp (2G/v. ) j& "=(1./91 623) i ".The results are derived with
the aid of operator techniques which reduce the partition function to a Pfaffian and hence to a determinant.
Some results are also presented for the more general case with monomers present.

1. INTRODUCTION

1
~~NE of the simplest models of a system containing

diatomic molecules is that of lattice gas (or
solution) of 1/q rigid divers, each of which fills two
nearest neighbor sites of a space lattice of X sites. The
remaining E—2Nd sites of the lattice may be regarded
as occupied by Xs "holes" (or "monomers"). This
model has been used by many authors to discuss the

thermodynamics of adsorbed 61ms and mixed solu-
tions. '—' It is also interesting in connection with the
theory of the condensation of gases. ' All the thermo-
dynamic properties can be derived from the configu-
rational grand partition function and it is the calcu-
lation of this which constitutes the main theoretical
problem. Since (in the simplest form of the model)
there are no interactions other than "hard core" infinite
repulsive forces between dimers, the problem reduces
to the determination of the number of ways of placing
Eg identical dimers on the lattice so that no two
overlap. This is an unsolved combinatorial problem of

'R. H. Fowler and G. S. Rushbrooke, Trans. Faraday Soc.
BB, 1272 (1937).

'T. S. Chang, Proc. Roy. Soc. (London) AI69, 512 (1939);
Proc. Cambridge Phil. Soc. 35, 265 (1939).

3 J. K. Roberts and A. R. Miller, Proc. Cambridge Phil. Soc.
35, 293 (1939).

4 G. S. Rushbrooke, H. I. Scoins, and A. J. Wake6eld, Discus-
sions Faraday Soc. No. 15, 57 (1953).

~H. S. Green and R. Leipnik, Revs. Modern Phys. 82, 129
(1960); but see reference 11.' C. N. Varig and T. D. Lee, Phys. Rev. 87, 410 (1952).

considerable interest in its own right, 7 and is comparable
to the well-known topological aspects of the Ising
model' erst elucidated by Kac and %ard. ' "

For a one-dimensional lattice (linear chain) the
partition function (or generating function) can be
evaluated quite easily in closed form" (see Sec. 8) but
for two- or three-dimensional lattices no exact results
are available. (The Bethe approximation and low-

density series expansions have been employed in the
main. ' ') This paper considers the problem on the
plane square (or rectangular) lattice and the partition
function is evaluated exactly for the case when the
dimers completely fill the lattice (close-packed or high-

density limit, Ez———',1V). Our results are exact even for
a finite N)(rN rectangular lattice with edges so that
both bulk and boundary terms in the free energy of a
large lattice can be determined.

The partition function is calculated with the aid of
operator techniques and the argument follows the lines
used recently by Hurst and Green" in rederiving
Onsager's solution of the plane square Ising model. s In

7 F. Harary, "Feynman's simplification of the Kac-Ward
treatment of the two-dimensional Ising problem"; (planographed
preprint) University of Michigan, June 12, 1958; to appear as a
chapter in a book on graph theory.

'L. Onsager, Phys. Rev. 65, 117 (1944).' M. Kac and J. C. Ward, Phys. Rev. 88, 1332 (1952).
"S.Sherman, J. Math. Phys. I, 202 (1960).
"M. E. Fisher and H. ¹ V. Temperley, Revs. Modern Phys.

32, 1029 (1960)."C. A, Hurst and H. S. Green, J. Chem. Phys. BB, 1059 (1960).


