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A quantum mechanical model for parametric interactions is used to evaluate the effect of the measuring
(ampliiyingl process on the statistical properties of radiation. Parametric amplification is shown to be
ideal in the sense that it allows a simultaneous determination of the phase and number of quanta of an
electromagnetic wave with an accuracy which is limited only by the uncertainty principle. Frequency
conversion via parametric processes is shown to be free of zero-point fluctuations.

I. INTRODUCTION
' PARAMETRIC interactions, which were first studied

by Faraday and Lord Rayleigh in the nineteenth
century, are now receiving renewed attention which is
probably due to their successful utilization as microwave
amplifiers.

The classical characterization of parametric processes
is that of singly or multiresonant systems in which an
energy storage parameter is harmonically modulated.
This modulation can cause a periodic energy exchange
between the resonant systems or a continuous transfer of
energy from the modulation source to the resonant
systems.

%hen the resonant systems are electromagnetic
modes the second of the two processes described above
can be used for coherent amplification of radiation, i.e.,
amplification in which both the phase and the amplitude
of the incoming electromagnetic wave are reproduced.
Any amplification process, of necessity, introduces a
certain amount of uncertainty into the determination
of the phase and amplitude thus degrading the amount
of information carried by the wave. In the case of
maser amplifiers, which have been investigated exten-
sively, ' ' it was shown that the uncertainty Ae in the
number of photons in the input wave and the uncer-
tainty Ap in its phase as deduced from an examination
of the amplified output satisfy

which is the minimum amount allowed by the uncer-
tainty principle, provided the average number of quanta
is large compared with 1. This fact qualifies the maser
amplifier as an "ideal" phase sensitive amplifier.

We are able to show that the lossless parametric
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amplifier is also an "ideal" phase sensitive amplifier.
This is done by the use of a quantum mechanical model
for parametric processes which in the classical limit
yields all the known classical features of parametric
amplifiers. This quantum mechanical model is in fact
so simple, especially when compared to that of the
negative-temperature (maser) type of amplification,
that it makes the parametric amplifier an attractive
model for the study of the statistical properties of
phase-coherent amplification and the limiting uncer-
tainties imposed on amplitude and phase measurements

by quantum mechanical fluctuations.
The formalism of field quantization is used to obtain

a solution for the time-dependent annihilation operators
ai(t) and as(t) of the resonant modes at oii and ops,

respectively. This is also done for the creation operators
nit(t) and est(1). The operators are then used to calcu-
late the expectation values for the number of photons
(at(t)a(t)) and for the second moment (Lat(t)a(t)$') for
different initial distributions. The first and second
moments are used to get the output variances which
are compared to those at the input in order to show the
effect of the amplifier on the statistical properties of
the radiation.

IL QUANTUM MECHANICAL MODEL OF
PARAMETRIC PROCESSES

We are interested in obtaining a very simple quantum
mechanical model for parametric interactions in order
to evaluate the effect of the measuring (amplifying)
process on the statistical properties of the radiation.
We shall pick a model which is approximately equiva-
lent to the simplest classical model for parametric
interactions, viz. , two lossless resonant circuits coupled

by a time-varying reactance.
Our model consists of a cavity with perfectly con-

ducting walls at O'K which is designed to support an
infinite number of nondegenerate modes. Parametric
coupling among these modes is provided by modulating
the dielectric constant (or permeability). Since, in

general, an infinite number of modes will be coupled,
the cavity, for simplicity, should be designed and the

s H. Suhl, Phys. Rev. 106, 384 (1957).
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dielectric constant variation must be chosen so that
only two modes are coupled. Although this may present
dificult design problems, they can be solved. ' Since all
the important classical results may be obtained when
only two modes are coupled, '' such a simplification
loses no generality for our present purposes.

In order to consider small signal eBects, the cavity
modes are quantized by the familiar technique of field
quantization" and the fields are expressed in terms of
creation and annihilation operators. The pump (dielec-
tric constant) modulation is not quantized since it is
assumed, as in the classical case, that the pump power
is so large compared with the power in the cavity modes
which are coupled that pump quantum Quctuations
will be insignificant.

III. QUANTIZATION OF THE CAVITY MODES

Consider now a cavity with perfectly conducting
walls at O'K. The field may be described classically in
terms of a vector potential A(r, t) where r is the position
vector. The electric and magnetic fields are given by

1 8
E=——,H= curlA.

c Bt

The vector potential may be expanded in a complete
set of cavity modes by

A(r, t) =P( qi(t)u, (r), (3)

where the q~(t) satisfy

d qi/dt +oiPqi= 0,

and the normal modes, u&, satisfy

curl curlui ——(cubi/c)'ui,

subject to the boundary conditions at the cavity walls
that the tangential components of II~ vanish as well as
the normal components of curlu~. We also normalize
these modes so that

and the boundary conditions on the u&'s, the field
Hamiltonian reduces to

where
&o———,

' Pi [PP+~PqP],

dqi/dt= pi.

[ai(t),a„t(t)]=bi„,

[ai(t),a„(t)7= [ai (t),a„(t)7=0.

In terms of the a' s, the Hamiltonian (7) becomes

Ilo ——Qi ~&[ai'ai+ o 7—=Qi %.

(10)

The operators aP(t) and ai(t) are the time-dependent
Heisenberg creation and annihilation operators, respec-
tively, for photons at co&. An eigenstate of a& a& at 3=0
may be specified by

C~p C~p R~p = /Z~p SEp,

where e&p is the number of quanta at co& in the fjLeld and
~vip) is the wave function describing this state. This
representation makes Hp diagonal. Also

ago ~eip)= (zip+1) ~nip+1),

aio ( Nio) = («o) I
( ~io—1),

which show that u' and a are creation and annihilation
operators.

The operators a&, u&~, and Hp are in the Heisenberg
representation. The Heisenberg equations of motion are

We now quantize by regarding the pi and qi as
Hermitian operators satisfying the commutation rela-
tions

[Pi,P-]= [qi,q-7=0 R«,P-]=i»i- (8)

The operators pi and q& may be expressed in terms
of non-Hermitian operators a&~ and a& by means of

qi(t) = V/2 i)'[a'(t)+a (t)7,

pi(t) = i(~i/2) 'L«'(t) —«(t)],
where u&~ is the Hermitian conjugate of a&. The a's obey
the commutation relations

avity

U~. Iliad U= ac'8~m. (6)
ihdai/dt = [ai,+o]= ~opiai,

'LAdait/dt= [ait,H p]= —Aoiiait
(13)

The total energy of the field is

Hp (E'+H—'—)d—V.
avI~y

Now substituting for E and H in terms of A, Eq. (3),
using Eqs. (5), (6) as well as the vector identity

(curlu)'= div(u&(curlu)+u curl curlu,

' K. M. Poole and P. K. Tien, Proc. Inst. Radio Kngrs. 46,
1387 (1958).' P. K. Tien, J. Appl. Phys. 29, 1347 (1958)."L. I. Schi8, Quantum Mechanics (McGraw-Hill Book Com-
pany, Inc. , New York, 1949), First ed. , Chapter XIV.

where the commutation relations (10) were used. The
solutions are easily seen to be a&(t) = aip exp( —ioi&t) and
aP(t)=a&ot exp(io&&t). Thus, if initially the system is
characterized by a state in which there are e& quanta
at co~, the state will not change with time.

IV. INTERACTION

In order to provide coupling among the various
cavity modes, we assume that the dielectric constant
varies as

o(r, t) = I+o'(r t) —= I+Do cos(oA+ p)f(r), (14)

where f(r) is a function to be specified later. The weak
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coupling approximation assumes that Ae«1. q is an
arbitrary pump phase.

The Hamiltonian for the system is now given by

H = —Le (r,t)E'+H']d V
cavity

87i cavity

1
$E'+H'$d V+—,'(r, t) E'd V.

cavity

where Eq. (14) was used and the coupling coeKcients
are

tI:rm=I~:~i= &«m '
16' c' avity

f(r)ui u„dV (16).

The Heisenberg equations of motion for the creation
operators are given by Eq. (13) with Ho replaced by
Ho+H' which, on using the commutation relations

(10), become

da;t/dt= i(e,a;t+z[e""'+&)
+e—'("'+i')$ Pi « i(ai ai) (1—7)

together with the Hermitian conjugate of these equa-
tions for a;. Now in order that any modes be coupled,
it is necessary to choose f(r) so that the «;)W0. In
general, a given choice of f(r) will leave an infinite
number of modes coupled. As already noted, classical
models for parametric interactions'" consider only a
small number of interacting modes, usually only two,
so that at first sight it would seem that our quantum
model is not consistent with the classical one. By the
use of a perturbation theory argument we can show

that by the proper choice of the pump frequency co we

may limit the number of interacting modes to two.
In the absence of interaction (r(r)

——0) the mode
amplitudes are given by

at=a o~e'""; a =a e '""
s sO 7 8 80

so that to first order in the coupling coeKcients, the
contribution of H'(t) to art is given by

(da, t'r) —
z pe

~((a i+ y) +e
—i(ro i+y)j

) dt ill
XP r(;)[a&ate'"" ai pe '""] (—18)

l

Considering an arbitrary term 1=k on the right side of

The first term is the unperturbed Hamiltonian of the
previous section while the second term gives the
coupling. If we express E and H in terms of the unper-
turbed cavity modes of the previous section, we can
write the Hamiltonian as

H=Hp+H',

where Ho is given by Eq. (11) and H' is

H'(t) = —iz cos((et+ad) P «i (a)t a))(a„t—a), —(15)

(18), it is seen to contain frequency components at
+co+col, . For a continuous interaction between modes

j and tz, we must fulfill the conditions or, =+(d&~r,
when co)coI, or co, =orl, ~or when coI,&co, so that the
interaction gives rise to components varying as exp (i(0;t)
which are synchronous with a,t (t). A mode r for which
the frequency conditions are not satisfied will give rise
to components at frequencies ~co&&o„~ W~;. The re-
sultant beating at all the difkrence frequencies involved
averages out to zero over time intervals long compared
to the longest beating period.

As is well known from time-dependent perturbation
theory, " transitions which do not "conserve" energy
must occur rapidly so that the energy deficiency A5 and
the transition period d t obey the uncertainty relation
AEht&A. Consistent with this point of view it is clear
that the neglect of the rapidly fluctuating nonsynchro-
nous terms is identical to stating that they arise from
the nonsecular terms of the Hamiltonian. This becomes
clear on examination of Eq. (15) and considering final
and initial states connected by the various terms and
their total energy.

Barring accidental degeneracies, we therefore assume
that only two nondegenerate modes are coupled by the
pump field at co and denotes them as the signal mode

(1) and the idler mode (2). For (0=~&+~z, Eq. (15)
reduces to

H,~~'= —&z«t aitazte "~'+")+aiaze'("'+&)$, (19a)

and Eqs. (17) reduce to

daz'/d t= uozaz zr(e'(" ~—&)ai,

dart/dt = z~iait —z«e'(~'+"'az,

plus their Hermitian conjugates. These terms arise
from (19a) for which an equal number of signal and
idler photons are created (or annihilated) simultane-

ously at the expense of the annihilation (or creation)
of an equal number of pump photons. This situation
gives rise, as will be shown in the next section, to
amplification.

For a pump field satisfying ~=cur —
&oz, Eq. (15)

reduces to

H«»'=+A t r(aei'a(z"'+")+ taai(z"e'+")$, (19b)

and Eqs. (17) reduce to

dai/dt = i(v iai i «e '("'+&)az, — — —

daz/dt= i~za2 i«e""'+"'a—i,

and their Hermitian conjugates. These terms arise from

(19b) which correspond to transfer of energy between
the signal and idler fields, i.e., frequency conversion,
as will be shown later. %e may add here that in order
to show that the terms retained in (19a) and (19b) are
secular, we must consider initial and final states which
include the quantized pump field (excited to a high
level).

"See reference j.1, Chapter 8.
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V. AMPLIFIER EQUATIONS OF MOTION

The equations of motion for the creation and annihi-
lation operators at cot and 002 are Drom Eq. (20)$

dar/dt= so—orat+see '&"'+r 'ast,
(22)

da2 /dt = zcosu2" zK—e""'+"'ar,

together with the Hermitian conjugates of these
equations.

These equations will be immediately recognized as
identical with the classical parametric amplifier equa-
tions" if the creation and annihilation operators are
identified with the classical mode alnplitudes and their
complex conjugates, respectively. (A has disappeared
from the operator equations so this result is not too
surprising. )

The Manley-Rowe relations" follow directly from
Eqs. (22) just as in the classical case since

One now sees from these equations how the operators
differ from the classical mode amplitudes. The non-
commutivity of a& and a&~ as well as a2 and u&~ lead to
an extra 1 in the second term of Eqs. (26) and (27).
If a~0 a20=e20 are the initial number of photons at the
idler and a~0 a~a ——m~0 the initial number at the signal,
then even if m~0= e20=0, after a time t there will be
photons at or~ and co2 which can be viewed as arising
from the zero-point fluctuations of the signal and idler
helds or equivalently as due to our inability to specify
the initial number of photons more accurately.

For future reference the displacement coordinates
and momenta LEq. (9)j are given:

Pt(t) =2(hoot/2)*'fcoshzt(arete'"" —atpe '"")
2 s—inhtct (aspe't" &'+~&+aspte '&»'+&&) $ (2g)

qt (I) —(tt/2cot) 'LCO Shat (at st e'""+atpe
—'» ')

ssi—nod(aspe'&"&'+rl —aspte
—t& ~'+~&)) (29)

~l ~1 ~2 ~2y
dt dt

which is equivalent to the commutator relations

fat'at, B)= gas'a2, Hj.

(23) with similar expressions for ps(t) and qs(t) which can
be obtained from the above expressions with subscripts
1 and 2 interchanged everywhere. We shall use these
expressions later to evaluate the uncertainty in the
number of quanta and the phase of the signal and idler
modes.

Thus, if nt(t) and ns(t) are the expectation values of
ay~cy and ug~a2, the number of photons at o)y and M2 at
time t, it follows from Eq. (23) that the Manley-Rowe
relations are equivalent to

ttt(t) —ttt(0) =tts(t) —222(0),

showing that each time the pump creates a photon at
co~ it must also create one at ~2 which again is a necessary
consequence of energy conservation as already noted. "
Energy conservation therefore dictates the nature of
the coupling mechanism between the creation and
annihilation operators.

The solutions of the equations of motion (22) are
easily found to be

at(t) =e '""{arpcoshlct+ie '"aspt sinhst},
(25)

a2 (t) =e'""(asst cosh~t ie'&at 0 sin—hat},

with their Hermitian conjugates. The subscript zero
refers to initial values. From these equations it follows
that

attar= atptatp cosh'st+ (1+a20 a20) sinh'ttt

+si sinh2tctLatptaspte '"—atoasoe'"$, (26)

astas ——asota20 cosh'Id+ (1+atotato) sinh'Itt

+sti Sinh2stpatotasote '"—axoasoe'"j. (27)

"W. H. Louisell, Coup/ed Mode and Parametric E/ectronics
(John Wiley 8z Sons, Inc. , New York, 1960), 100; 119;104; 96.

'4 It has been pointed out by iVW:. Weiss fgttaltttrn EtectrorItcs
A Symposium, edited by C. H. Townes (Columbia University
Press, New York, 1960), p. 291j, by J. R. Pierce Q'. Appl. Phys.
30, 1341 (1959)j and by others that the P conditions are equivalent
to the conservation of momentum in a dispersive medium while
the conservation of quanta is equivalent to the Manley-Rowe
relations.

(t)=( '(t) (t))
= (tttp 2220

~
atp arp cosh Kt+ (1+asp asp) sinh'Itt

+22 sinh2&t(atp a20 e alpa20e ) (ttlp, tt20)
= stp cosll Kt+ (1+Nsp) slnh Kt, (30)

where we made use of Eq. (12). For large gain we have

nt (t) =E(rttp+2220+1), (30a)

where It=exp(2~t)/4 is the gain. A similar procedure
leads to

rI2(t) —(a2 (t)a2(t)) —Ã20 COSh'~3+ (1+tsrp) Sinh~st. (31)

We may consider the variable t as the time variable

VI. EXPECTATION VALUES AND FLUCTUATIONS

We are now interested in considering the Quctuations
in the output of the parametric amplifier. These Quctu-
ations will determine the accuracy with which we can
measure the number of photons in the input wave by
an examination of the output wave. To study these
Quctuations under large amplification we must obtain
expectation values of the number of quanta at the
output.

We will first focus our attention on the average
number of tot photons, nt(t), and the cps photons, ns(t),
both as a function of time. We assume that at t=0
there are exactly e&0 of the co& photons and F20 photons
at frequency ~2. This is equivalent to taking as our
wave functional at t=0

It (0)= ) 020,2220),

nt(t) is given by
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in a resonant (cavity) type of an amplifier or, equiva-
lently, as the distance along a distributed ampliher so
that cosh'at»1 corresponds to a high gain amplifier.
Equation (30) or (31) is identical, with one exception,
to the classical expression for the power along the
distributed parametric ampli6er. The classical expres-
sion has x~0 in the second term on the right side of
Eq. (30) instead of (1+2220) in our case. The added
term sinh'Ift corresponds to an output whose magnitude
is independent of the input and constitutes the non-
coherent zero-point fluctuation noise. The same remark
applies to Eq. (31). The Manley-Rowe relations are
ful6lled since

211(t) tl10= B2(t) 1120. (32)

Since the number of photons m is related to the power I'
by 22=2/Alp we can rewrite Eq. (32) as

Pi/Qp 1=I 2/M2& (33)

in which form it was originally given by Manley and

Rowe."
For a measure of the output Quctuations we compute

the output variance (hni)' giv, en by

(a221)'= ((221—ni)'),.= (221'), —ni', (34)

Sy 8,&= N10)R20 ~l ~1 +10)+20

= 22102 cosh'Kt+ 2N10 (1+2220) cosh'Kt sinh2Kt

+ (1+2220)2 sinh'Kt

+o sinh22Kt[222102220+2210+2220+ 1] (35)

Using Eq. (30) for ni the variance (Ant)2 takes the form

(6221)'= io sinh2Kt(1+2210+2220+2N10820) (36)

Z (1+010+2220+222102220), (36a)

and for E»1 is given by

P= (1+2210+2220+222102220)/ (1+2210+n20)' (37).
For single frequency input we may set F20=0 and

P becomes

where the approximate equality stands, as will be the
case in the remainder of this paper, for the high-gain

case: E))1.
It should be noted that although the input variance

is zero, if we have to deduce the input variance from

an examination of the output we will get a finite result
in accordance with Eq. (36a). This represents the

uncertainty introduced by the amplifying mechanism

itself.
The fractional variance P is defined by

knowledge of the number of input photons m~0 and e20,
is not always satisfactory. It entails, in accordance with
the uncertainty principle, a complete abandonment of
any phase information about the incoming waves.
This model does not reflect the fact that the very
process which causes our signal to be weak introduces
a fluctuation in the number of photons. The most
common cause for the signal weakness is the distance
between the signal source and the amplifier (the
receiver) which, because of the small probability that
a given emitted photon will arrive at the receiver,
leads to a Poisson distribution at the input. If the
signal weakness is due to lossy attenuation the resulting
distribution at the input to the amplifier is again
Poisson' and is due to the random nature of the ab-
sorption.

Both the phase information and the Poisson nature
of the distribution are included if the wave functionals

~1P(0)) are taken as a Poisson distribution over the
states of the uncoupled system at t=0, before amplifi-
cation begins. '0 (See Appendix I.)

exP (—22,0)8;0"'0

(22;0) !
(i= 1, 2), (40)

where n;0 is the average number of photons at ~; at
t=0 That Eq.. (39) does actually correspond to a
definite phase can be illustrated by calculating the
expectation value for the electric or magnetic field.

A few expectation values which are needed in the
calculation of the first and second moments of the
output are

(81 81)= 221 (t) = iiip cosll Kt+ (1j212p) s11111 Kt

—sinh2Kt((22102220), ~)' sin(pp, + 022
—02), (41)

(a2 a2) = rl2(t) = n20 cosh id+ (1+nip) sinh'Kt

—sinh2Kt((22, 0N20). )1 sin (qp, + op2
—

9 ), (42)

((&1 &1) )=('+1 (t))~v=(sip )@~ cosll Kt

+ (1+2n20+(2220').,) Sinh'Kt

+[1+32110+2220+4(22102220)aw

—2(2210N20) cos2 (pot+ &p2
—02)) sinh'Kt

XCOS11 Kt 4((22102220),~)* sin(ppi+ 022
—02)

X[(1+n~p) sinhKt cosh'Kt+ (1+n20)

Xsinh'Kt coshKt ——,
' sinhKt coshKtf.

14 (0))= 2 I p(2210)p(2220)]'e """"'+""'"
~

2210,2220). (39)
7LJQ tLQ0

Here y~ and y2 are the phases of the signal and idler
waves, and the P(22;0) are the Poisson probability
distribution functions

62= 1/(1+22gp), (38)

which is identical with the result obtained by Shimoda

et al. ' for the ideal maser amplifier.
The preceding treatment, which assumed an exact

A typical calculation used to derive Eq. (43) will be
shown in Appendix II. For the large gain case, E&)1,

'0 I. R. Senitzky, Phys. Rev. 95, 904 (1954).
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we may use

ni(t) =[1+nip+n2p
2((2210n20)a-)' »n(q i+ q'2 'p)7K (44)

by the amplifier. Since the available power from a
termination at temperature T between ~ and oi+dpo is
given by

(ni'(t)), ={(nio') +(n20') +3(nio+n20)+2
+ 4(n, on 20). —2(nipn20), cos2 (q i+ p2 —

q )
—4((nipn20) ) l sin(qadi+ q22

—q')

X[nip+ n20+27}K2 (45)

The output variance is then given by

E- dM)
~I't o) /k T

we get by equating Eq. (51) to Eq. (50)

bc'
7,=— ln2.

k
(52)

(Ani)2 = (ni2), ni—2

=K'{1+2(nip+ n2o)
—4((ni«20). )' »n(qi+ q 2

—q) }
For a single frequency input, n20=0, we get

(46)

VII. NOISE IN PARAMETRIC AMPLIFIERS

The output noise power at an amplifier is usually
defined as the average output noise power measured in
the absence of any input. Since the number of photons
n& and the average power P& are related by

Pg= nghvgdv,

for an amplifier with an effective bandwidth dv, the
output power for the case of a Poisson distributed
input is

Pi =[1+nip+ npo

—2((ni02220). )& sin(q i+q2 —qp)7KI2vidv. (49)

The noise power is that part of P~ which does not
contain either n&0 or n20 and is given by

PN j =Ehvydv.

An equal amount of output power results when the
input rate of photons is one photon per (dv) ' seconds.
So that the limiting detecting sensitivity of the para-
metric amplifier is one photon per resolution time of
the receiving system. The same results obtains for the
ideal maser amplifier when most of the "spins" are in
the excited level.

The "noisiness" of amplifiers is often described in
terms of an "effective source temperature'"' T„which
is the temperature of a matched input termination
yielding an output noise power equal to that generated

' J. P. Gordon and I.. D. White, Proc. Inst. Radio Kngrs. 46,
1588 (1958).

(~n, )2= K2(1+2n„), (47)

which is to be compared to the value

(an, )2=K2(1yn, o),

obtained for the case when the number of input photons
wa, s perfectly well defined [Eq. (36a)7 for n20

——0. The
eRect of the parametric amplification in both cases is
to increase the variance of the output (divided by K')
over that of the input by (1+22ip).

It shouM be noted that Eq. (52) or (50) give the
contribution to the noise temperature which is basic
to the parametric process. This is a limit which can
only be approached by minimizing the noise contrib-
uting losses and by cooling temperatures comparable
to Aoi/k.

pl= —(2Aoii)'{ (nip) * sin(oiit+ (pi)
—(n20) ' COS(oiit+ qp

—p2) }K'I,

gi = (2A/oui) *{(nip) * cos(oiit+ qti)

+ (n20) ' Sin (oiit+ qp
—(p2) }K&,

(53)

p2 and g2 are found by replacing subscript 1 by 2
and 2 by 1 in the above.

Also the mean squares are

(pi'), = (Aoii/2) {[1+4nip sin2(oiit+ q i)7
+[1+4n20 COS'(oiit+ q

—
q 2) 7

g ((22102220),) ' »n (polt+ q'1)

Xcos (oiit+ qr
—qr2) }K,

(54)
(qi'),»= (A/2oii) {[1+4nlocos (oiit+ q 2) 7

+[1+4n2o Sin'(oiit+ qp
—

q 2)7
+8 ((Nlonpo) sv) ' COS (op it+ q21)

Xsin(oiit+ qp
—

q 2)}K.

while again (p2'),„ is obtained from (pi'), by inter-
changing 1 and 2 everywhere and (F22), is obtained in
the same manner from (qi'), .

The second moments at the output are given by

(Api)'= (pi'). —pi'= A002K,

(~V)'=(V')-—~'=(A/ )K,
(55)

(Dpp)2= Aoi2K,

(Dq2)2= (A/oi2)K,

VIII. COMPLEMENTARY

It is next of interest to consider how well the number
of photons in an incoming wave as well as the phase
can be determined, simultaneously, by an examination
of the output.

Under the assumption that the signal satisfies a
Poisson distribution, we may calculate the expectation
values of the canonically conjugate coordinates and
momenta as given by Eqs. (28) and (29). These are
found to be (for large gain)
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and the phases of the signal, idler, and pump have
disappeared. Thus the initial uncertainties in measuring
the amplitudes of the fields are

Aplphqlp ——A, Appphqpp ——A) (56)

where &pI=KAp», Aql=E&qlp, etc.
Note that the uncertainty product hplphqlp is twice

the minimum value. This can be traced to the two
"1's" in Eq. (54), showing that the total fluctuation in
either channel is due to equal contributions from both
channels and that even when e2p=0, the zero-point.
vibrations of the idler channel introduce noise (fluctu-
ations) into the signal channel.

Consider the case in which npp ——0. Then by Eq. (53),

pl ———(2A00111») )co'spl sinpplt+ sin pl cospllt]E'
—=LP10 cosMlt —Mlqlp sln671t]l~* (57)

ql = (2Anl0/101) Leos &pl cospllt sin ppl
—slnpllt]K~

= pqlp cospllt+ (Plp/Pl 1) slnpplt]E'. (58)

Thus it follows that the phase p~ is

Serber' for the maser case except for a factor of 2
discussed in connection with Eq. (56).

dal/dt zpl lal zKe app

da2/dt= i&02—a2 IKe""'+&'al
(67)

with the Hermitian conjugate of these equations in
which only creation operators are coupled. These will

again be recognized as the classical frequency converter
equations" where the a's are the mode amplitudes.

These equations can be solved to yield

IX. FREQUENCY CONVERTER

The frequency converter can be treated by the same
methods using Eq. (19b) as the interaction Hamil-
tonian. From the nature of this coupling which is
determined from energy conservation between the
pump, signal, and idler, viz. , Ace=A~~ —A~~, it follows
that only annihilation operators are coupled to annihi-
lation operators at the two frequencies. The equations
of motion are given by Eq. (21):

p~= tan —' 1p

(59)
al al alp alp COS Kt+a20 a90 Sill Kt

+-2i(appta»e'& —alptappe '1') sin2Kt, (68)
Glygyp

or, by differentiation, the uncertainty in phase is

Pllq 10+Plp P100lll-lq 10

(Plp +Pal qlp )
(60)

if the uncertainties, Aplp and Dqlp, are suitably small.
If the fluctuations in Ap» and hqlp are uncorrelated,
we have

Ppl qlp (+Pip) +011Pl 0 ~q10
(~v»)'=

(Plp +001 qlp )
(61)

We have therefore been able to relate the uncertainty
in the phase of the signal to uncertainties in the field

amplitudes.
We have shown in Eq. (55)

so that
+Pip Ppl+qlpy

PPI (+qlp) &I (~q10)
9 ~)'=

pip +011 qlp 2Apllnlp

(62)

(63)

Since by (57) and (58), pip'+ plPqlp'= 2Apllnlp.

By Eq. (55)
(Aqlp)'= A/Idl.

Equation (63) becomes

(~~I)=1/(»») '.

(64)

(65)
By Eq. (47),

Anl/E= An»'= (1+2nlp)&,
so that

hpplhn»' ——L(2nlp+1)/2nlp] . (66)

This result is identical with that found by Townes and

a a2 a20 a20 COS Kt+ alp alp Sill Kt

——',i (apota»e'" —alptappe '") sin2Kt. (69)

If at 1=0, there are exactly m&p photons at ~& and
e2p photons at A&2 the solutions for the expectation
values nl(t) and n2(t) are

nl(t) = (al (t)al(t)) =nip cos'Kt+n, p sin'Kt, (70)

n2 (t) = (a2 (t)a2(t)) = n2p cos Kt+nl p sin Kt. (71)

In a typical frequency conversion we have n2p=0,
for which case Eqs. (70) and (71) become

Ill(t) =nip CQS Kt,

n2(t) =nip sin'Kt,

(72)

(73)

so that at t=(pr/2K)(2n2+1), the input which was
launched at frequency or& can be taken off at co2. An
interesting feature of the frequency converter is that,
unlike the amplifier, it has no zero-point fluctuations
in its output since, according to Eqs. (70) and (71),
with m~p=e2p ——0 there is no output.

The difference between the parametric amplifier and
the frequency converter as regards their zero-point
Quctuations can be traced to the basic quantum
mechanical model. In the parametric amplifier a
simultaneous generation of a signal (pll) photon and
an idler (pl2) photon corresponds to a transition

j n, ,n,) ~ ~
n,+1, n, +1)whose strength is proportional

to (nl+1)(n2+1) and which can, therefore, take place
even when m&

——e2 ——0. In the case at the frequency
converter the mechanism of transfer of energy from
co2 to pll is described by a ~nl, n2) ~ ~nl+1, n2 —1)
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process whose strength is proportional to (n&+1)(n2) eigenstates weighted with a Poisson distribution, viz. ,
so that it cannot take place when the input, e2, is zero.

X. SUMMARY

Four aspects of the parametric interactions have
been investigated. First we establish the correspondence
between the classical limit of our quantum mechanical
model and the familiar, wholly classical, model.
Secondly we showed the existence of zero-point Quctu-
ations in the output of the parametric amplifier. We
next showed that the phase and the number of quanta
of an incoming electromagnetic wave can be measured
with an accuracy limited only by the uncertainty
principle. A brief treatment of the frequency converter
shows the absence of zero-point Quctuations from its
output.
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APPENDIX I

t' n " n' (2X)&
y(p, t) =

I exp ——p—
2 n

cos (a&t+ &p)

It will be shown here that a Poisson distribution over
the energy eigenstates of the quantized field in a cavity
oscillating at frequency co lead to a minimum uncer-
tainty wave packet. The electric and magnetic fields
can then be specified to an ultimate precision limited
by the uncertainty relations and the expectation values
of the fields for the "Poisson-state" lead to the classical
results. This is an example of Ehrenfest's theorem.

For simplicity, the electric and magnetic fields of
the cavity are written as

)&exp i —sin2(cvt+y)
2

G0$—np(2X) l sin(cA+ q) —— . (I10)
2

This is in the form of a Gaussian distribution and our
next task is to show that this is a minimum uncertainty
wave function. That is, we must show that

(aP)2(~q)2= A'/4,
where

E(r, t) = —~cp(t)u(r), H(r, t) = q(t) curlu(r), (I1)

were, as usual, q and p satisfy the commutation relations

(~p)'=((P —(P))') =(P')—(P)',

(~q)'=((q —(q))') =(q') —(q)'

Now it is easy to show that

(I12)

Lz,pl=iA Lqiqh= EP,P)=0

The quantized field Hamiltonian is given by

(I2)
(2X)~

(P)= I ~(p t) I'PdP= cos(~t+ ~) (I13)

H = (co2/S2rc2) q'+2m. c2P2 (I3)

where
d22t /dP+I h.„—P)2t„=0,

In the momentum representation, q=iAB/Bp and the
Schrodinger equation becomes

(q) =

(P') = (P)'+ 1/2~',

(q2)
—

(q)2 A2~4((P2) (p)2)+A2~2

(I15)

(I16)

Bp
y*iA dp= An(2X)** sin((et+ q), (I14)

a

g=np;

.(~)=( /2" V' ): -p(-8/2)&-(~),
(E(r,t)) = —(82rVuu)& COS(~t+ p)u(r),

(H(r, t))= (82rXAC2/co): Sin(cA+ q) Curlu(r),where the II„($) are Hermite polynomials.
I„is an energy eigenstate corresponding to e photons

in the radiation field at frequency co.

Now let us consider a linear combination of these
which shows that the expectation values of the fields
for the "Poisson-state" yield the classical fields.

from which (I11) follows directly showing (I10) to be
n2= 42rc2/A~; A.„=2E„/A~ =2n+ 1, (I5) a minimum uncertainty wave packet.

To demonstrate Ehrenfest's theorem, we see by
Eqs. (I1), (I13), and (I14) that
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Furthermore, if we denote the classical field amplitude
by Eo we see that

A&ok =Epp/82r,

which is the classical field energy density which justifies
the interpretation of X as the average number of
photons in the field.

It is not surprising that the Poisson distribution
which leads to the minimum uncertainty product leads
to the classical result since this corresponds to localizing
the photons as much as possible consistent with the
uncertainty relations as well as specifying their mo-
menta. This represents, therefore, the closest approach
to the classical situation in which both position and
momentum can be specified exactly and is a justification
for assuming that the amplifier input has a Poisson
distribution.

say Q(o) laio'appall'(0)&. Using Eq. (115) this becomes

(0 (o) I
a»'app'I 0 (o)&

=e '"'+""(oIexp(w2*aio)a2ot exp(w2a»t) I0&

X(0I exp(w2 aoo)a ot exp(wpa2ot) I0). (II7)

To evaluate we use the following theorem:

Theorem l. If f(a") can be expanded in a Taylor series
and u is a parameter, then

e" f(")I0)=f("+')Io) (»8)

To prove this theorem, we note that since I a,at7=1,
a can be replaced by

a= 8/Bat, (»9)
since a and u~ are conjugate variables.

Now it is well known that a Taylor series expansion
ot f(x) may be written as

APPENDIX II

In order to simplify the evaluation of matrix ele-

ments, we begin by rewriting the Poisson distribution
as an operator on the vacuum state. For one amplifier
channel, the initial state may be written as

8
f(x) =exp (x-xo)—f(xp)

8$
(x—xo)' &'

f(xp), (II10)
l~ Bx'

)e "X"~ & at"
IN(o)&= Z I

n o( N=! ) QN!

and if n =x—xo, we have

( 8
f(u+xp) = expl u f(xo)

k ax
since so that

(II2)IN)=( '"/v' )10)
exp u lf(at)= f(at+u),

aatiwhere IO) is the vacuum state for this channel and we

have used Eq. (12) 22 times. Equation (II1) may be
rewritten as

and the theorem is proved. Thus, the matrix element
becomes((X)le '&at)"

(0))=e-"» P 10 (~(0) I .".I~(0))
= e-&"+"'~(0

I (a»2+we*) exp Lw2 (a»'+w2*) 7 I
0)

)&(0I (appt+w2*) expl w2(a222+w2*)7IO)
=w~~w2*= (X2X2)&e '«'+~",

=e—"» exp(wat)
I 0),

where we have summed the series and (II11)

since
II4

(0I a»' exp(w2a»') I o)

- ( "-t)'
0 azo~ 0 =0, II12

)=p

w=(X)&e '&

Note that ) =n, the average number of photons in the
channel.

%e may generalize this result to two channels and
write the initial wave function as (w2a»t)

(0 I
exp(wiaiot)

I 0)= 0
I 2 I

0 = 1, (II13)
t=p )!I f(0))= e l&~&+"2& exp(w&a»t)

I 0& exp(woappt) I 0), (II5)

where
and

Iwyf
wl 2

—/El 2)*e (II6)
where P ~= n~o and P2 ——n~o, giving the desired matrix

Ke now proceed to evaluate a typical matrix element, element.


