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Accuracy of the Superconductivity Approximation for Pairing Forces in Nuclei*
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The accuracy of the superconductivity approximation for pairing forces in nuclei is studied. To this end
we have exactly diagonalized the pairing force for certain nuclei and compared the results with those ob-
tained from the approximate calculation of Kisslinger and Sorensen. When the energy is computed by use
of the approximate-wave function, which is not an eigenfunction of the number operator, it is found that
the excitation energies of the low-lying states with seniority one and two are correct to within 200 kev,
whereas the ground-state energies are usually not given to better than 500 kev. The wave function obtained
by projecting out and normalizing that part of the variational trial function that corresponds to the correct
number of particles is found to agree closely with the exact energy eigenfunction. Overlap integrals greater
than 98/o are found in all cases considered. The expectation values of the pairing Hamiltonian with respect
to these projected wave functions are therefore in excellent agreement with the exact energy eigenvalues.
The variational aspects of the superconductivity approximation are also discussed briefly.

1. INTRODUCTION

ISSI.I%GER and Sorensen' have recently examined
the effect of pairing forces on the structure of

single-closed-shell nuclei. They use methods of approxi-
mation originally developed in studies' 4 of the super-
conducting state in metals, and since applied to nuclear
physics by a number of authors. ' ~ The state of a system
of interacting fermions, moving in a common potential,
is characterized by the probability amplitudes V, for
occupancy of the various pair states (jm, , j—m) in the
common potential. If the interaction is assumed to be a
pairing force only, the energy of the system is then
minimized as a function of the paran:eter V, . The trial
function used in this variational calculation is not an
eigenstate of the particle-number operator.

In this paper we study the accuracy of Kisslinger and
Sorensen's tr|;atment of the pairing Hamiltonian. To
this end we perform an exact diagonalization of the
pairing Hamiltonian (Sec. 2) and compare the resulting
eigenvalues and eigenfunctions with the approximate
solutions of Kisslinger and Sorensen (Sec. 4). Although
the nuclear ground-state energies are usually not given
to better than 500 kev by the superconductivity ap-
proximation, the energies relative to the ground state
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are generally accurate to within 200 kev. Remarkably
large overlaps with the exact eigenfunctions are obtained

by projecting out (and normalizing) that part of the
Kisslinger-Sorensen wave function that corresponds to
the desired number of particles. Indeed, the projected-
wave functions agree more closely with the results of the
exact calculation than do the energies, in spite of the
fact that the projected-wave function usually con-
stitutes no more than 60% of the original trial function.
This circumstance is a survival from the situation
wherein all single-particle levels are degenerate. En this
special case, for which analytical solutions can be writen
down, (Sec. 3), the exact and projected eigenfunctions
are found to be identical, although there are hnite errors
in the eigenvalues.

We conclude that the best procedure is to adopt the
projected-wave function of the variational calculation
as an approximation to the energy eigenfunction. Matrix
elements of physical quantities should ideally be calcu-
lated with the aid of this projected-wave function rather
than with the full trial-wave function. In particular, ex-

pectation values of the pairing Hamiltonian are found
to be in excellent agreement with the exact energy
eigenvalues.

Kisslinger and Sorensen' Inake a number of additional
approximations in solving the sets of coupled equations
that determine the optimum values of the parameters
Vj We examine these approximations in Sec. 5, con-
cluding that the errors introduced are small.

2. DIAGONALIZATION OF THE PAIRING
HAM:ILTONIAN

We consider the pairing Hamiltonian'

H= Q e,a,„ta,„',G Q (——1)-&—"

Xaj m +I m( 1) —+r' m'& m'~l(1)—
8 Since our interest here is con6ned to the superconductivity
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where the a's are fermion creation and annihilation
operators, the e, are single-particle energies, and G
measures the strength of the pairing interaction. Only
identical nucleons (all neutrons or all protons) are con-
sidered. To diagonalize H we define the "quasi-spin"
operators' "

5~=+5~'= P ( 1) gi tg~ — t, (2a)

5 =(S+)t= P (—1) "g:„g, ,
j,m&o

2 2 {gjm gjm +j mgj—mt)—q

j,m&o

(2b)

(2c)

which have the commutation properties of angular-
momentum operators. Introducing the number operator

g, tg, and the pair degeneracy 0&= (j+-', ) of
level j, we obtain from Eq. (2c)

To diagonalize B we introduce a representation based
on the eigenstates

I xSSs) of the pairing operator

Gs+5-I ~55o) =GI 5(5+1)—5o(5o—1)j I
»5o»

where x symbolizes a set of additional quantum numbers
chosen in some suitable fashion to complete the specifi-
cation of the state.

The ground state of an even-even nucleus with the
Hamiltonian (6) is one in which all nucleons are paired;
the "seniority" is zero and each 5' has its maximum
value of -', O'. The specification of the states

I
xSSp) Inay

be completed by coupling the various 5' to a resultant
S, So. For more than two levels, of course, this may be
done in a variety of ways, the alternative bases then
being connected by simple recoupling transfornsations.
All the relevant features of the general problem rvay be
illustrated by the case of three levels, for which a suit-
able basic set of states of seniority zero is"

S,=Q 5,&'=-'Q (N&' —Di) =-'(N —0).
It follows at once that

I

(5152)512 Ss 55 )—
IJ 18~83

(P1+~2+~3 =S0)

(5'5'wivs
I
5"»+»)

$&&~ Isjl = ', (N& 0&), -— (4)

where So, So& are eigenvalues of S„S,&. Thus the quasi-
spin 5& attains its maximum value of 20' when the j shell
is empty (Ssi= —-', Qi) or full (Ssi=-', 0&).

Repeated application of 5+.' to any state IS'Sp') of j"
raises So& in unit steps but leaves 5& unaltered. Since
5+& is a creation operator for a zero-coupled pair in level

j, states of the same S& differ only in the addition or
removal of a number of zero-coupled pairs. This, how-
ever, is the characteristic feature of the classification of
states in terms of their seniority. "The precise connec-
tion between quasi-spin 5' and seniority" v is, in fact,

v = 0&—25&.

The relevance of a seniority classification to the present
problem becomes clear when it is realized that the pair-
ing operator in Eq. (1) is a direct generalization for more
than one j level of Racah's" seniority operator Q. It is
both convenient and in accordance with the physical
ideas underlying the concept of seniority to proceed
further with this generalization and to refer to the
quantum number P;(0'—2$') as the seniority. In other
words the seniority of a state is simply the number of
unpaired particles it contains.

We now use Eqs. (2) to rewrite the Hamiltonian in
terms of the S operators as

H= —GS+5 +2 Q, e,sg'+Q; e, Q'. (6)
approximation for pairing forces, we omit the long-range quad-
rupole force in Kisslinger and Sorensen's Hamiltonian (reference
1). We also remark on a minor error in Eq. (2) of reference 1,
where the pairing operator differs from the one in our Eq. (1) by
replacement G/4 —& G/2. The numerical results given in reference 1
correspond to the Hamiltonian of Eq. (1) above.

A. K. Kerman, Ann. Phys. (N. Y.) 12, 300 (1961)."P.W. Anderson, Phys. Rev. 112, 1900 (1958).
"The connection between quasi spin and seniority is discussed

in more detail in reference 9."G. Racah, Phys. Rev. 62, 438 (1942).

X (5"5'~;+I s, ~s I
55o)II (5+') "'I o)~ (8)

where vs=ps+-', Qs, Ss=-', Qs, and IO) is the vacuum
state of the system, with 5= —So=~0. The matrix
elements of the Hamiltonian (6) between such states
can be calculated by straightforward Racah algebra.

The lowest states of an odd-A nucleus with the
Hamiltonian (6) are those in which all nucleons but the
last (j'm') are paired. We refer to such states as "states
of seniority one. "The presence of a particle in the state
(j'm') has the effect of "blocking" or preventing the
occupation of the corresponding-pair state. As a result

[by Eq. (4)], 5&'=—5' is reduced by -', . With this modifi-

cation, a basic set of states of seniority one can be intro-
duced as described above for seniority zero. For example,
in the three-level case, Eq. (8) can again be used with
the replacements

5'=-,'Q' —+ —,'(0' —1),
(5 )

s'+-', 0 ~ (5 ) p'+ —', (0'—ri

I» g -'Io).
Construction and diagonalization of the energy n", atrix
now proceeds as before and states of angular molnentum
j' are obtained.

For an even-even nucleus, the low-lying (noncollec-
tive) excited states of the Hamiltonian (6) are those in
which there are two unpaired nucleons. If these nucleons
occupy different single-particle levels, the corresponding
quasi spins are reduced by —,'; if they are in the same
orbit the quasi-spin is reduced by 1. The total angular
momentum of a state of seniority two is in general
different from zero, various possibilities arising from the

"For notation, see A. R. Edmonds, Angular Momemtu~s ie
Quotum Mechanics (Princeton University Press, Princeton, New
Jersey, 1957), in particular Eqs. (3.5.2) and (6.1.1).
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coupling of the spins of the unpaired nucleons. The
eigenvalues of the pairing Hamiltonian are, however,
independent of the total angular momentum.

Algebraic expressions can now be derived for the
matrix elements of the pairing Hamiltonian between
states of seniority zero, one, and two. Numerical calcu-
lation of the matrix elements and diagonalization of the
matrices were carried out by machine. The results are
presented in Sec. 4.

3. THE DEGENERATE MODEL

First let us discuss the degenerate model, wherein
all single-particle energies are equal, since it can be
solved exactly and is quite instructive. It is then easy
to show that the difference between the exact and varia-
tional energies for states of seniority zero is'"

( Eq
an)

are due entirely to the presence in the trial wave func-
tion of components with the wrong number of particles.

4. COMPARISON OF EXACT AND
APPROXIMATE SOLUTIONS

We now compare the exact solutions of the pairing
Hamiltonian with the results of an approximate calcu-
lation' which seeks to replace the original interacting
particles by noninteracting "quasi-particles. " These
quasi-particles (normal modes of the system) are intro-
duced by a canonical transformation whose parameters
are determined, in principle, by minimizing the energy. "
The seniority-zero ground state of an even-even nucleus
is then identified with the quasi-particle vacuum ~&0)
whose wave function and energy are

EVEN NICKEL
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With the same approximation, the energy error for
states of seniority two is given by Eq. (11).In Table I,
the difference AEd, g between the exact and variational
energies of even-even ground states is tabulated.

On the other hand, the component in the trial-wave
function of the degenerate model corresponding to the
correct number of particles, is identical (after normaliza-
tion) to the exact wave function. Thus the errors AEq.,

TABLE I. Difference between the exact energy and variational
energy for the lowest seniority-zero state. 1V is the number of
particles, AL&d, ~ is the error when the single-particle levels are all
degenerate, and G=0.331 Mev for nickel, 0.187 Mev for tin, and
0.111 Mev for lead. AB represents the error, for the same values
of G, when the states are not degenerate. For nickel the energies
of the single-particle levels are taken to be e(p3/2) =0, c(f5/2) =0.78
Mev, ~(p1/&) = 1.56 Mev, and ~(g&/2) =4.52 Mev; for tin e(d5/2) =0,
~(g7/2) =0.22 Mev, ~(s1/2) = 1.90 Mev, e(d3/2) =2.20 Mev, and
e(lzII/2) =2.80 Mev; and for lead the energies of the hole states are
&(Pu~) =0, ~(fniu) =0.57 Mev, c(bai~) =0.90 Mev, e(irai2) =1.634
Mev, and e(f7/2) =2.35 Mev.
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the probability amplitudes V, being given by

(15)

FIG. 1.Low-lying excited states in the even-even nickel isotopes.
The notation (—',,$), etc. denotes the single-particle levels occupied
by the unpaired particles, while 0*labels the first excited seniority-
zero state. The columns labeled "exact" are those obtained from
diagonalizing the energy matrices. The entries above K. S. are
those determined from the calculations of Kisslinger and Sorensen.
The coupling constant G was taken to be 0.331 Mev and the
positions of the single-particle levels were chosen as E(p3/Q) 0,
~(fgm) =0.78 Mev, e(Pu2) = 1 56 Mev, and e(g~i2) =4.52 Mev.
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The seniority-one states, which lie lowest in odd-A
nuclei, are described in the approximate calculation by

The Lagrange multiplier A. and the "gap" parameter 6
are obtained from the equations

'4 B. F. Bayman, Nuclear Phys. 15, 33 (1960).
'I'The variational aspects of the approximate calculation of

Kisslinger and Sorensen (reference 1) are discussed in Sec. 5.
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exciting a single quasi-particle. If the unpaired nucleon
is in level j, the energy of such a state is

&i = &o+&;,

where E;, the excitation energy of a quasi-particle, is
given by

(19)

Kisslinger and Sorensen again obtain ) and 6 from
Eqs. (16) and (17), with the appropriate (odd) value in
Eq. (16) for e, the number of particles in the levels
under consideration. (See Sec. 5.)

Seniority-two excited states of even-even nuclei are
approximated by exciting two quasi-particles. If the
unpaired nucleons are in levels j& and j&, the energy
of such a state is

&s=&o+&it+»s)

with the values of X and 6 determined for the ground-
state configuration.
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FIG. 3. Low-lying excited states in the even-even lead isotopes.
The columns labeled "exact" are the excitation energies obtained
from this calculation, while those marked K. S. are the results of
the Kisslinger-Sorensen theory. The coupling contsant G was
taken to be 0.111 Mev and the energies of the hole states are
e(Pug) =0, e(foir) =0.57 Mev, e(Pm~s) =0.90 Mev,

e(cargo)

=1.634
Mev, and e(fris) =2.35 Mev.
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FIG. 2. Low-lying excited states in the even-even tin isotopes
deduced from Kisslinger and Sorensen's calculation (K. S.) and
the exact calculation. The coupling constant G is 0.187 Mev and
the energies of the single-particle levels were taken as e(d5f2) =0,
e(g7q2)=0. 22 Mev, e(s1f2)=1.90 Mev, e(daf2)=2. 20 Mev, and
e(h11f2) =2.80 Mev.

The exact and approximate solutions for many of the
isotopes of Ni, Sn, and Pb have been compared. We
now discuss this comparison, starting with the even-
even nuclei.

In Table I we have listed the errors AE in the energy
of the even-even ground states. It will be seen that these
differ very little from the energy errors AE&,g of the
degenerate model. Figures 1—3 show the exact and
approximate excitation energies of states of seniority
two, the corresponding absolute energies" involving
errors no more than 200 kev larger than those given in
Table I. It is clear that Kisslinger and Sorensen's
calculation provides a fairly close approximation to the

"For some of the more highly excited states the approximate
energy is actually less than the exact energy. This merely rejects
the fact that for states of two- (and one-) quasi particles, the
calculation of Kisslinger and Sorensen is only approximately
variational.

order and to the excitation energies of low-lying states
of seniority two.

Figures 1—3 also show the position of the lowest-
excited state of seniority zero, concerning which the
approximate calculation can say nothing. Such states
might lie sufficiently low to destroy the gap in the
spectrum of intrinsic excitations, whose prediction has
been the chief physical argument in favor of the pairing
Hamiltonian. ' Figures 1—3 show that no such attribution
of the energy gap occurs. Although the lowest-excited
state of seniority zero is sometimes below all states of
seniority two, "a gap is clearly in evidence in each of the
exact excitation spectra and, furthermore the magnitude
of this gap is quite close to 2A.

For the energies of seniority-one states in odd-A
nuclei, agreement is again satisfactory (Figs. 4—6). In
particular, the approximate calculation gives the correct
ordering of the levels, except in a few cases (for example,
inNi" Ni" Pb'", and Pb"') in which it inverts pairs of
states that are nearly degenerate in the exact calculation.

In the typical cases, only about 40%%uq of the trial-wave
function of Eq. (13) (or its appropriate modification for
states of seniority one or two) describes a system with
the desired number of particles. To compare the exact
and approximate eigenfunctions, we therefore project
out that part of the trial wave function that corresponds
to the correct number of particles and normalize to
unity. The resulting wave functions for the seniority-one
states of Ni" are given in Table II. The similarity
between the exact and approximate eigenfunctions is
striking, with overlap integrals greater than 0.99 in each

"The 6rst excited seniority-zero state is particularly low when
a subshell is ulled. To understand this, consider two levels j1 and
j2, with ez&&ez'2. We simulate the relationship between the two
lowest states of seniority zero by considering j&"&j2"& and
j1"& 'j2"&~. The separation of these states and also the interaction
matrix element between them is smallest when A&2 =0 and
n&=2j&+1 so that there is a subshell eGect of the kind under
consideration.
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ODD NICKEL

2.0-
ODD LEAD

3
X

C9
K
ILI
K
hj

z
O
I-
I-
O
UJ
X

9

92
2

9
2 9

2

I

2
I

2
s s
2 2

I

52~ ~5
2 2
exact K.S.

I
5

exact K.S. exact K.S. exact K.S.
Ni

9 NI6 Ni 3

9
2

9
2

3

3
2

5
2 5

2

I
2 2
exact K.S.

N;67

77
2 2

7
2 7

2l.5-
z
2 7

2 7

2
2

C9

Laj&IO- IS IS2 2
IS

IS
2O

I-
k-
O
~X0.5-

s
2 I

2 2—
I 2 I

0 5 I2 5
2 2 2 2

exact K.S. exact K.S.
p b205 p b

20S

IS
IS

IS

IS
I

2
I

2 I

2
5 5
2
s——s
2 2
exact K.S.

p b l99

~ss
2 5 2

2
exact K.S.

p b201

FIG. 6. The sen-
iority-one states in
the odd lead isotopes.
The columns labeled
"exact" list the states
obtained from this
calculation, while
those marked K. S.
are the results of the
Kisslinger-So rensen
theory. The coupling
constant G and the
hole energies are the
same as used in con-
structing Fig. 3.

case. Similar excellent agreement is obtained for the
ground states of even-even nuclei and also for the excited
states of seniority two. For example, the two quasi-
particle excited states of Ni" with the largest and
smallest energy errors are, respectively, the (5/2, 3/2)
and the (9/2, 1/2) states. For the former, the overlap
integral between exact and approximate wave functions
is 0.982, for the la,tter it is 0.999.

3-
ODD Tl N

FIG. 4. The seniority-one states in the odd nickel isotopes, The
notation 5/2, etc. , represents the spin of the state. The columns
labeled "exact" are those obtained from diagonalizing the energy
matrices, and the entries above K. S. are the states determined
from Kisslinger and Sorensen's calculation. The coupling constant
G and the single-particle energies are the same as used in con-
structing Fig. 1.

Since the projected-wave functions are almost identi-
cal to the true energy eigenfunctions, it is clear that if
we use them to evaluate expectation values of the
Hamiltonian, the resulting approximation to the energies
will be very much better than that provided by the
original trial-wave function. As an illustration we have
done this calculation for Ni '. The results are given in
Table III, where it is seen that the exact- and quasi-
particle energies are almost identical. Thus, to calculate
matrix elements of physical quantities, we should use
the wave functions obtained by projecting out and
normalizing the parts of the original trial-wave functions
corresponding to the correct number of particles. This
procedure has already been suggested by Bayman, "and
is in accordance with the general theorem that a trial-
wave function can always be improved by projecting
from it the parts containing known good quantum
numbers.

&2-
II

II

2

Il 2
O

CJ
Ã
lal

2af20
2 2

exact K.S.
S„I09

5
2
7 2

Z
2

I

2 —
I

3 2
2 II 2

22
exact K.S.

S„I25

5
2
7
2 7

2

5
2 5
7 2
2 7

2

5
2 5
Z 2
2 7

2

I

2 2w
I

2 2
3

2

3
2 2

I

2 I

3 2

2 2
II II
2 2

II
2 2

II

2 2

exact K.S. exact K.S. exact K.S.
$/125 $/I27 Sp l29

8
(Pp( II—X.V(gp)=0.

BU;
(22)

5. VARIATIONAL ASPECTS OF THE SUPER-
CONDUCTIVITY APPROXI&ATION

As is well known, the superconductivity approxima-
tion for states of seniority zero consists in selecting the
wave function gp) of Eq. (13) as a trial function and
minimizing (Qp H~gp) as a function of the parameters
U, , subject to the constraint

(21)

By introducing a I agrange multiplier P, the solution of
this variational problem is obtained from Eq. (21) and
the set of equations

FIG. 5. The seniority-one states in the odd tin isotopes deduced
from Kisslinger and Sorensen's calculation (K. S.) and the exact
calculation. The coupling constant G and the single-particle
energies are the same as used in constructing Fig. 2.

This leads directly to Eqs. (15) and (16).'s

Strictly c; —+ c;—Gt/P in Eqs. (15)—(17), and (19).Although
the additional term —GVP has an appreciable effect on X and 6,
its influence on energies and wave functions is negligible.
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TABLE II, The amplitudes of the various components in the
seniority-one wave functions in Ni". The last column is the overlap
integral between the quasi-particle and exact wave functions. In
the notation used, the exact wave function of, for example, the
3//2 state is 0.812 (p3/2') 3/2+0. 526(f6/2') pp3/2+0 187 (pi/2 ) op3/2

+0.»0(ge/22) op3/~.

TABLE III. The energies of the various seniority-one states in
Ni" calculated exactly, by the quasi-particle theory, by a varia-
tional procedure, and by projecting out (and normalizing) that
part of the approximate-wave function that corresponds to the
desired number of particles. The single-particle energies were
taken to be c(p3/. ) =0, e(f5/2) =0.78 Mev, e(pi/2) =1.56 Mev, and
e(g, ~&i =4.52 Mev, and G=0.331 Mev.

Exact 0.812 0.526 0.187
Quasi-particle 0.737 0.614 0.216

Exact 0.885 0.394 0.179
Quasi-particle 0.876 0.421 0.181

Exact 0.858 0.484
Quasi-particle 0.852 0.501

Oi170 0 9930.183

0~ 170 0 9990.153

0.174
149 0 999

State (p3/2)' (f5/2)' (pi/2)' (go/2) Overlap

State

P3/2
fs/
Pl/2
go/2

Exact
energy
(Mev)

—0.93—0.47
0.23
3.10

—0.48—0.14
0.47
3.28

—0.54—0.13
0.56
3.32

Quasi-particle Variational
energy energy
(Mev) (Mev)

Projected
energy
(Mev)

—0.91—0.47
0.24
3.13

Exact 0.837 0.488 0.185 0.161 0 999
Quasi-particle 0.841 0.495 0.174 0.132

where g' indicates a product over all j, m with the ex-
ception of j&m&. Carrying out this variational calcula-
tion, we find that for j&j&, V, is again given by
Eq. (15). For j=ji, we have instead

V~i'= k(1 ('~'i ~)[('~i ~)'+~'] '&~ (24)

with
equi= eg,+2G 2GV i P. — (25)

The parameters X and 6 (we now have different ones for
each level j) are obtained from Eq. (16) and the appro-
priate modification of Eq. (1/) is,

2 Q, O'V'+(1 —2Vgi2)=e. (26)

In the special case ji=-,', the energy is independent of
V~i as is obvious from the fact that the trial function
[Eq. (23)] then does not involve V&'i. We have in fact

E;=2 Q,' 0&'e, V 2—(1/G)d" —G Q, ' Q&V;4, (27)

where the primes indicate that all relevant summations
are to be carried out as if the j=—, level did not exist.

The variational calculation for states of seniority one
is much more laborious than it was for seniority zero,

» This involves, for example, the neglect of additional one-
quasi-particle contributions to the number operator.

In considering states of seniority one, Kisslinger and
Sorensen determine the energies from Eqs. (18) and

(19), obtaining the parameters X and 6 from the same
equations" [Eqs. (16) and (17)] as are used for states
of seniority zero. Strictly, a fresh variation calculation
should be carried out, the appropriate modification of
Eq. (13) being

~Pgimi)= g' [(1—VP)'+VS+' ]ajiYAit~O), (23)

since there is now a different value of X and of 6 for
each level. Table III lists the variational and Kisslinger-
Sorensen energies of seniority-one states in Ni". It is
clear that the differences are too small to be of any
practical importance. The corresponding wave functions
also agree closely. ' We may therefore regard the pro-
cedure of Kisslinger and Sorensen as a numerically
simpler and satisfactorily accurate way of perforn-;ing a,

variational calculation for states of seniority one. It also
seems likely that the simplified procedure provides an
adequate treatment of states of seniority two.

6. CONCLUSIONS

Recent work on the theory of superconductivity has
suggested that pairing forces between identical nucleons
might profitably be studied by a variational procedure,
with a trial-wave function that is not an eigenstate of
the particle-number operator. We have studied the
accuracy of such variational calculations and have
shown that projecting out and normalizing that part of
the trial-wave function that corresponds to the correct
number of particles yields a remarkably close approxi-
mation to the true energy eigenfunction. It is therefore
clear that the projected-wave function should be used
to calculate the matrix elements of operators of physical
interest. In particular, the expectation values of the
pairing Hamiltonian are found to agree closely with the
exact energy eigenvalues.
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"The values of ) and 6, however, vary considerably from level
to level, and dier appreciably from the values obtained by
Kisslinger and Sorensen.


