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Theory of Direct Exchange in Ferromagnetism
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An extensive investigation is presented on the role of direct
exchange as the mechanism responsible for ferromagnetism. The
direct exchange integral J which arises in Heisenberg's theory of
ferromagnetism and which has been a subject of considerable
speculation and controversy (particularly concerning its sign
behavior as a function of internuclear separation) is considered
for several cases for which (as Lowdin has shown) J is rigorously
defined. (1) A pair of atoms with a single electron per atom (the
hydrogenic case). J is calculated for the unrealistic but historically
interesting case of hydrogen 3d functions and the computationally
more dificult case of the exchange between 3d orbitals for the
iron series elements. The fact that the iron series 3d orbitals are
not eigenfunctions of the free atom (hydrogenic) Hamiltonian is
shown to profoundly acct the results. Calculations for all pairs
of 3d orbitals show that J is sensitive to the angular dependence
of the wave functions (and the precise radial shape as well). (2) A
single hole in otherwise closed shells (such as a pair of iron series

atoms in the 3d' configuration). The effect on J of "clothing" the
atoms with the remaining electrons is discussed first with regard
to the effect of the core electrons on the one-electron potentials
and secondly with respect to the effect of the overlap of the core
electrons. (From an analysis of these terms it is suggested that
the paired "4s" conduction electrons of the metal can play an
important role in "direct exchange, " quite aside from a Zener
type of effect. ) We find that the direct exchange parameter J is
large and negative for the two-electron case Lease (1)g and nega-
tive, but smaller, for the "clothed" Bd' case (case (2)j, whereas
for ferromagnetism it should be positive. From this one may
conclude that either the direct exchange mechanism is not the
dominant source of the ferromagnetism of the transition meta]s
or that the direct exchange model is an inappropriate description
of their magnetic behavior. Finally, a more exact model of direct
exchange is discussed, as are some of the problems inherent in
carrying it out.

I. INTRODUCTION
' 'T was not long after the discovery of the phenomenon
& - of exchange by Heisenberg' and Dirac' as a char-
acteristically quantum effect that Heisenberg' first used
the exchange concept in order to explain the origin of
ferromagnetism. Since then a number of approaches' ' to
a theory of magnetism for the ferromagnetic metals
have been developed, all of which invoke as their
dominant mechanism a particular exchange interaction
from among the various types which are possible. To
date no approach has succeeded in providing satis-
factory qlaetitative ab initio predictions and thus a
detailed understanding of the phenomena. The refine-
ments necessary to make any one theory "realistic"
have made the computation associated with it in-
tractable. Two of these approaches should be men-
tioned here: 6rst, there is the "collective" or "itinerant"
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electron model' ' whose starting point is the energy
band-molecular orbital formalism; secondly, there is
t,he atomic orbital —Heitler-London model originally
proposed by Heisenberg and more recently reined by
Van Vleck' in the minimum polarity model. The
collective electron model emphasizes the "free" nature
of electrons in the solid and includes in the wave
function the periodicity of the lattice, whereas the
Heisenberg model stresses the "bound" or highly
localized nature of the electrons by treating the solid
as a collection of atoms. The relative merits and short-
comings of each model have been discussed often and
at length in earlier papers. 4 The collective model is
currently the more popular approach'' but we must
re-emphasize the difhculties associated with obtaining
quantiative predictions with either scheme.

Central to the Heitler-London approach of Heisen-
berg is the "direct exchange" parameter. Starting from
the model of the solid as a collection of atoms, the
simple Heisenberg approach regards each pair of atoms
as behaving like a hydrogen molecule, i.e., each atom
is thought to have a single 3d electron which interacts
with its neighbor and the dominant interaction for
producing ferromagnetism in the solid is considered to
arise from a superposition of this two-electron inter-
action. Despite the fact that the obvious naivete of
the model precludes a realistic description of the
phenomenon, the Heisenberg approach has had many
adherents and the model is still frequently invoked as
an explanation of ferromagnetism. Until now, accurate
calculations to check the prediction of the theory with

9 C. Herring, J. Appl. Phys. 31, 31S (1960).
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where the plus sign is associated with the singlet state
and the minus sign with the triplet. For two atoms 3
and 8, separated by a distance r b having one-electron
wave functions p, and Pq each with an atomic one-

electron energy e, we denote the interaction potential
in atomic units as

r12 rib r2

and the overlap integral between the one-electron
functions as

then

4 *(1)4' (1)d~ =(a!b)' (3)

C,g= P *(1)gg*(2)V gg, (1)pb(2)dagda„.

=(a(1)b(2) l V.g~a(1)b(2)) (4)

is the Coulomb energy and

4.*(1)4b*(2)V.~4 b(1)4.(2)d~~d»

=(a(1)b(2)
i
V gib(1)a(2)) (5)

is the exchange energy. Equations (3) to (5) serve also
to de6ne the notation. Since J b produces the electro-
static energy diGerence between the triplet and singlet
states it was considered by Heisenberg to be responsible
for ferromagnetism and is called the Heisenberg direct
exchange integral. It is J,q as defined in Eq. (5) which
has been used in the familiar Dirac-Van Vleck vector
coupling formula for the spin-dependent interaction
energy between two spins associated with the electrons
on the two atoms,

E=Eo—2J.gs. .Sg.

'0 W. Heitler and F. London, Z. Physik 44, 455 (1927).

experiment have not been possible, although it is now
more commonly believed that such investigations would
give negative values for the direct exchange parameter.

In this paper we are reporting results of calculations
of the direct exchange interaction as predicted by the
Heisenberg model starting with its simple form and as
developed in several ways. We find in all these cases that
the Heisenberg exchange integral is negative whereas
for ferromagnetism it should be positive. From this
one may conclude that either the direct exchange
mechanism is not the dominant source of the ferro-
magnetism of the transition metals or that the direct
exchange model is an inappropriate description of their
magnetic behavior.

In the Heitler-I. ondon" picture the energy of the
molecule for the triplet and the singlet can be simply
written as

Cb+J b

Eg 2e+-—
1%5 b'

The generalization of Eq. (6) to many-electron
systems by means of the spin Hamiltonian

a= —2g 1,,S,"S,

has been the basis of numerous discussions of both
ferromagnetism and antiferromagnetism but usually
with the assumption of a constant exchange integral
J between nearest neighbors only. With J treated as
an empirical parameter, a wide variety of experimental
data can be understood,

As is well known, Heisenberg postulated that the
direct exchange integral, J b, was positive for ferro-
magnets, whereas for the hydrogen molecule and indeed
for almost all molecules, J is in fact negative. This
change in sign Heisenberg explained as being a conse-
quence of the use of functions with a high principal
quantum number. It remained for Slater" to improve
upon this rather unsatisfactory interpretation by
stressing the overlap of the 3d functions as a function of
internuclear separation. Slater argued that for small
overlaps J was positive but changed sign as the overlap
increased. Since the overlap depends on the ratio of the
internuclear distance to the radius of the d shell Slater's
simple postulate explained why just a few elements are
observed to be ferromagnetic, i.e., for these the calcu-
lated ratio is such as to make J positive. Bethe"
subsequently amplified Slater's arguments and stressed
the dependence of J on the angular part of the wave
functions.

Since then there has been considerable controversy
regarding the validity of these arguments and dis-
agreement as to the sign and magnitude of the direct
exchange parameter, This has in part been due to an
ambiguity in rigorously defining the term and in part to
difhculties in carrying out accurate computations.
Details of the role it does play in the magnetic proper-
ties of the metals and other magnetic materials should
be understood before going on to more refined treat-
ments. In the light of the above-mentioned controversy,
its behavior is also a matter of some historical interest.

Several quantitative estimates of direct exchange
have been made by Wohlfarth" (J,t, negative) and
Kaplan" (J,b positive) but computational difhculties
limited these investigations to internuclear distances
and/or wave functions of symmetry inappropriate to
the iron series metals. Because of this their results
have been regarded as inconclusive. Recently Stuart.
and Marshall'~ made detailed calculations of J over a
wide range of internuclear distances for a pair of free
atom iron" 3d, orbitals (i.e., m~ ——0 along the inter-

"J.C. Slater, Phys. Rev. 35, 509 (1930); 36, 57 (1930).
~ A. Sommerfeld and H. Bethe, Huedbgch der I'hysik, edited by

S. Flugge {Verlag Julius Springer, Berlin, 1933), Vol. 24, Part II,
p. 595."E. P. Wohlfarth, Nature 163, 57 (1949).

'4 H. Kaplan, Phys. Rev. 85, 1038 (1952}.
"R.Stuart and W. Marshall, Phys. Rev. 120, 353 (1960)."J.H. Wood and G. %. Pratt, Jr., Phys. Rev. 107, 995 (1957).
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nuclear axis). They found that J was always positive
(the correct sign for ferromagnetism) but too small to
account for the experimentally observed exchange
eRects. The magnitude of J found by these authors has
disturbed those who felt that direct exchange was
responsible for ferromagnetism while the sign they
obtained convinced others that the result was
anomalous. '7 We shall show that the problem lies in
the question of definining direct exchange properly.
Lowdin' has shown that if one starts by asking for
the J that appears in the vector coupling model [Eq.
(6)$ there is one case where J' can be uniquely defined;
this is the case of a pair of atoms with one unpaired
electron per atom. As we will show in the next section,
the familiar Heisenberg parameter [Eq. (5)) can be
derived as the direct exchange parameter appropriate
to the two-electron Heitler-London formalism owly if
the orbitals used are hydrogen atom eigenfunctions
and if S b' in Eq. (1) is neglected. Otherwise Eq. (5)
should be "extended" to include additional terms.
Since Stuart and Marshall" considered some, but not
all of these terms, their results were not obtained from
an appropriate definition of J and so are not conclusive.
One purpose of the present work is to consider the form
and effect of these additional terms and also to consider
direct exchange for pairs of 3d (m~= 1) and 3ds (es~

——2)
orbitals, cases not previously considered, but which

must play an important role in a more exact treatment
of the problem.

We shall follow Lowdin's" approach for those cases
for which J is rigorously de6ned. Examples of these are
a, pair of atoms with a single electron per atom (the
hydrogenic case), with a single electron outside of
closed shells (e.g. , a pair of alkali atoms) and with a
single hole in otherwise closed shells (such as a pair of
iron series atoms in the 3d' configuration). The principal
objectives of this investigation are to resolve some of
the earlier controversies concerning the Heisenberg
parameter and to further our understanding by a study
of concrete examples of the role actually played by
direct exchange.

In Sec. II we consider the form of direct exchange
for the case of a two-electron two-atom system. We
first derive the formula for J and after carrying out.

calculations for the unrealistic but historically inter-
esting case of hydrogen 3d functions we discuss the
case of exchange between 3d orbitals for the iron series
elements. We then consider, in Sec. III, J for a pair of
iron series atoms in the 3d' configuration which permits

"See W. J. Carr, Jr. (to be published) for a discussion of direct
exchange based on some calculations similar to those we are
reporting here.' P. O. Lowdin, International SymPosium on Magnetism and
Transition Metals, Oxford University, September, 1959;Technical
Note No. 46, Quantum Chemistry Group, Uppsala University,
Uppsala, Sweden. (unpublished); and P. O. Lowdin, Revs. Modern
Phys. (to be published).

us to retain the uniqueness in the de6nition of J while
discussing a more realistic case than a simple two-
electron system. This involves a "clothing" of the two
atoms with the remaining electrons, thus abandoning
the point charge model of Sec. II. The discussion is
presented in two parts, considering Grst the effect of
the "core" electrons on the one-electron potentials and
then the eRect of the overlap of the "core" electrons on
the determination of J. Section IV discusses a more
exact model of direct exchange and some of the prob-
lems inherent in carrying out calculations with it.
Finally, Sec. V states some conclusions.

II. TWO-ELECTRON DIRECT EXCHANGE

A. Derivation and De6nition of J
In a recent discussion, Lowdin" has shown that if

one considers a two-electron system (or a two-electron-
like system such as a pa, ir of 3d' atoms) and defines J by

J=-,'pE —sE),

where 'E and 'E are the singlet and triplet state ener-

gies, that the familiar vector-model equation, Eq. (6),
follows immediately in an almost trivial way. E&'o of
Eq. (6) has a simple definition; it is the weighted
average energy of all possible spin states. Equation (8)
is a particularly convenient starting point for obtaining

J; it also gives an exact form of the vector-model
formula which, as Lowdin points out, is independent of
any assumptions about correlation, nonorthogonality,
polar states, relativistic eRects, and the like.

Consider for the two-atom system a two-electron
Hamiltonian consisting of kinetic energy and Coulomb

energy terms, i.e.,

Z Zb Z„ Zb

~le ~lb ~ &a ~2b

where subscripts 1 and 2 denote electron coordinates
and Z, and Zb (which are taken to be equal) are
eRective nuclear charges on centers 3 and 8, respec-
tively. Using the notation introduced in Sec. I, the
Heitler-London ground configuration energies are then

"8=(1+5 s') '[(a(1)b(2)
I HI a(1)b(2))

+(a(1)b(2) I H I b(1)a(2))j,
(10E= (1—S a ) [(a(1)b(2) I HI a(1)b(2))

—(a(1)b(2) IHIb(1)a(2))3.

These equations can be specialized to yield Eq. (1) by
assuming Z,=Z& ——1 Provided that @,and d & are hydro-
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gen atom eigenfunctions. Using E . ~8~q. ~ ~ one finds

J=(1—S.,') ' (a(1)b(2) ——b 1 a 2 )212 22 rib
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E'rG. 1. Co++ 3d w3d wave function compared with the
hydrogen atom 3d wave function.Z

+(a —
—,'7' ——a . (11)

r

2 Z Zb
b(1)a(2))

r12 r2 rib

Z~ Zb
a(1)b(2)

r12 r2 rib

B. Evaluation of Integrals

~0 R. E. %atson, Phys. Rev. 118, 1036 (1960).
' A. S. Coolidge, Phys. Rev. 42, 189 (1932);P. 0. Lowdin and

S. O. Lundqvist, Arkiv Fysik 3, 147 (1951 .
SC A C,„l„„Ph,.l T„n

i, P B,„,tt,„d
n, i . rans. Roy. Soc. (London) A243, 221 (1951).

R t, Solid-St t d Mol l Th o GI-.-e.f T-h-.l.g O. b 15 19y, c o er, 59 (unpublished), p. 70.
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pansions break down for very small internuclear
distances and therefore J was not calculated and hence
will not be reported for such distances. This is not too
serious since the Heitler-l. ondon approach to direct
exchange is inappropriate at these distances anyway.
For large internuclear distances there are also some
difFiculties in obtaining accurate "Coulomb" integrals. "
This problem could be remedied with finer integration
meshes —meshes beyond the scope, however, of corn-
puter and program size. This has not been a serious
problem for the evaluation of the J's of Eqs. (11) and
(14) but it can produce difficulties when we "clothe"
the iron series atoms, a matter to be discussed later
(see Sec. III). Integral accuracy can be a serious
problem when evaluating a quantity like J which
involves terms of differing sign. We have endeavored
to have terms accurate to the digits reported in this
paper and while we believe that we have been generally
successful in this, it is not impossible that errors have
crept in which affect some of the details, but not the
substance, of the results to be reported here.

C. Direct Exchange integral for Hydrogen
3d Wave Functions

We have previously noted that Eq. (14) was the
appropriate expression for J for the case of a two-
electron system if aid oddly if the expression was

I zG. 3. Angular dependence of the 3d wave functions. The 2'

(internuclear) axis is included in the plane of the drawings; dashed
lines denote regions 180' out of phase with solid-line regions.

evaluated with hydrogenic orbitals. Otherwise Eq. (11)
was the appropriate definition of J. Before discussing
the case of exchange between 3d orbitals for the iron
series elements it is instructive to calculate J for the
unrealistic but historic case of exchange between
hydrogen atom 3d wave functions. This is done to end
speculation a)out the sign of J for this simple case
and to fix ideas for what follows.

The J of Eq. (14) (with Z.=Z&=1) was calculated
as a function of the internuclear separation for pairs of
hydrogen 3d orbitals of like m~ value. We have not
considered J for pairs of differing m~ for which both
Eqs. (14) and (5) reduce to the simple exchange integral

Jtg= (u(1)b(2) j 1/r]9~ b(1)a(2)), (15)

S

7—

'l

I
I
l.5—

3—

-5—

because the overlap integral S b is zero. As is well
known the exchange integral J~2 is always positive.

When viewing the results of this section it should be
borne in mind that the hydrogen 3d radial function is
very diffuse with a maximum at r = 9 a.u. (atomic units).
(See Fig. 1.) If one scaled this function to bring it into
rough agreement with the iron series orbitals one would
find that an internuclear distance, 40 to 50 a.u.
corresponds to observed internuclear distances in the
Fe, Co, and Ni metals.

Before considering J let us inspect the important
overlap integrals (S,t,'s); these have been graphed as a
function of internuclear distance r, b in Fig. 2. Their
behavior is easily understood if one considers the
angular dependence of the wave functions. The reader
may remind himself of this dependence'4 by inspecting
Fig. 3. Note that the s (internuclear) axis is included
in the plane of the drawings and that dashed lines
denote regions 180' out of phase with solid line regions.
The phase of one atom with respect to the other as

1

IO

I

20
to)au)

I

30
I

40 50

I'&G. 2. Overlap integrals, S z, for the hydrogenic 3d wave func-
tions as a function of internuclear distance, r q (in au).

"Two-center integrals of the form (or 1/rq r o) and (o(1)b(2}r 1/
r, ;la(1}b(2}).

'4 We shall be discussing the calculation of J for 3d orbitals in
the m& (spherical harmonic) representation. Equivalently, one
can consider J's dered for the cubic e, (3s'—r' and x' —y') and
4~ (xy, ys and xs) orbitals. The two representations are related
by a simple transformation; for convenience we have chosen to
work in the m& representation. The results are not very different
for the two representations, the center of gravity for the sum of all
the J's being shifted by very small additional integrals.
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shown in Fig. 3 is that also used in the calculations.
egative 5..s occur when one atom' 1 fs oop o one

phase has its principle overlap with the loop of opposite
phase on the other atom. Although the angular de-
pendence of the orbitals dominates, the behavior of the
5's is also a function of the shape of the radial functions,
a feature not indicated in Fig. 2. The 5: 's obtained for
iron series 3d orbitals by Stuart and Marshall" and by
ourselves (to be reported later) do not go negative.
This difference in shape can be seen in Fig. 4 where
several 3d functions, for Co and Co++, are plotted
a ong with a hydrogenic (single exponential) 3d orbital
which would yield approximately the same multiplet
structure as the neutral Co function.

2 5 4 5
f fau)

FIG. 4. Several 3d functions, for Co++ {3d') C
y g

'
(single exponential) 3d orbital which would yield

approximately the same multiplet structure as the neutral Co

e us now consider the Heisenberg direct exchange

(&~) The latter is included (as
' g ~) because it has been a common (but

~ „„])
p ctice to neglect all overlaps in the definition of the
exchange parameter. Our calculated values for J are

'no r~, t einter-p otted in Fig. 6 also as a function of r th
nuc ear istance (note the differences in scale of the
two 6gures). We see that only J„resembles the simple

i2 integral. This is in large part due to the small
ma nitude of
gated internuclear distance. Of greater interest is the

found to be strongly dependent on the angular behavior
o t e orbitas.

small

b'ta s. , is positive over the re ion t d dinsu ie

( a er mternuclear distances were not studied for
t e reasons given earlier), J, is positive for smaller

ecomes negative or arger
distances and J» is everywhere negative. Although the
Heitler-London a rpproach is completely inappropriate
for small r~g, the behavior of J is a matt fma er o curiosity
for such distances. A study of the individual integrals
(not tabulated here) which contribute to Ja» very ikely reverses itself and becomes positive
at some very small distance and also that it is not
impossible that an" reverse their behavior,
becoming smaller in magnitude and perhaps even
negative at some extremely small internuclear distance

.061

.02—
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I
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, o q. g aFIG. 5. The simple exchange integral J& of E {15)

separation.
gen wave unctions as a function of internuclea r

—.01
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r
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FiG. 6. The eeisenberg direct exchange parameter, J, of E .

t
(14) calculated for hydrogen 3d wave f t' fwave unctions as a function of

he internuclear separation. Note that the 1 d ff
that in Fig. 5.

e sea e i ers rom



TH EOR Y OF D I RECT EXCHANGE I N F ERROM AGN ETI SM

It should be noted that for the internuclear distances
of 40 to 50 a.u. , which bear some corresponding relation
to the iron series metals, J„is small and positive and
J and J~~ are smaller in magnitude and negative.

The results of Fig. 6 contrast with the two schools
of argument concerning the behavior of J, one of which
said that J is always negative and the other which said
that J is negative for small internuclear distances,
becomes positive, goes through a maximum and decays
to zero. The computed J's are strongly dependent on
the angular behavior of the orbitals and as a result are
in general disagreement with either of the above points
of view.

D. Direct Exchange Integral for Iron
Series 3d Functions

The simple but totally unrealistic case of hydrogen
3d functions provided us with a case for which Eq. (14)
was an exact de6nition of J. We shall now consider the
more realistic and computationally more dificult case
of direct exchange between iron series 3d wave functions.
First we discuss our choice of the iron series element and
the speci6c orbitals to be used and then present the
numerical results.

Choice of Irorl, Series 3d Furlcli ops

The choice of the element is simpli6ed by our in-
tention to evaluate J for "clothed" ions in Sec. III as a
less naive model of the interaction between the two
atoms. Experimental neutron form factor data'~ and
energy band calculations" can assist us in our choice
of orbitals.

For the "clothed" atom, we will consider the case
of a hole in an otherwise closed shell neutral atom.
Co 3d' falls in this category and will be our choice.
The metal, of course, is better described as being in
the 3d'4s configuration.

Neutron form-factor measurements'"' and energy
band calculations" (for Fe) tell us that the unpaired
3d-band electrons have a radial distribution which is
contracted relative to the average behavior for the
band. The energy band results suggest that the neutral
free atom Co 3d' Hartree-Fock 3d functions' provide
a reasonable description of the average radial behavior
of the band. Such a choice would be advantageous
because it would allow a cancellation of terms similar
to that used on going from Eq. (11) to Eq. (14). On
the other hand we are interested in the exchange
coupling of the unpaired 3d band electrons. Comparison
of experimental" and computed ~ neutron form factors
suggests that the Hartree-Fock Co++ 3d' orbitals better

'5 R. J. Weiss and A. J. Freeman, J. Phys. Chem. Solids 10,
147 (1959);R. Nathans, C. G. Shull, A. Andreson, and G. Shirane,
ibid. 10, 138 (1959); R. Nathans and A. Paoletti, Phys. Rev.
Letters 2, 254 (1959l.

'6 J. H. Wood, Phys. Rev. 117, 714 (1960}and further work (to
be published); F. Stern, ibid. 116, 1399 (1959}."R.K. Watson and A, J. Freeman, Acta Cryst. 14, 27 (1961}.

approximate the unpaired d-band radial behavior. The
choice of the 3d orbital from the 3d7 con6guration
calculation would be analogous to that of Stuart and
Marshall. "They used an Fe 3d orbital obtained in a
neutral Fe 3d'4s' calculation" and due to the fact that
4s electrons have little or no efI'ect on the 3d orbitals
their choice is equivalent to a divalent ion solution.
Calculations with Co++ 3d' orbitals would provide a
more meaningful comparison with the Stuart and
Marshall results.

The one-electron charge densities for the two Co
orbitals appear in Fig, 4 along with that of the hydro-
genic (single exponential) 3d orbital previously de-
scribed. It is clear that there is an important di6erence
in shape between the latter function and the Hartree-
Fock Co orbitals.

Below, we report J values for both the Co and Co++
orbitals; this will also give some indication of the
important question of the sensitivity of J to orbital
choice. Equations (11) and (14) are evaluated with
Z =Zq=1, i.e., a model in which the rest of the atom
is replaced by a point charge. A more realistic treatment
is given in Sec. III.

Nurnerica/ Results for Co

The observed internuclear distance for fcc Co is
approximately 4.75 a.u. and so we have evs, luated J
with the Co and Co++ 3d orbitals at this distance using
Eqs. (11) and (14) (with Z, =Zq=1). J's have also
been evaluated with the Co++ orbitals for a number of
other distances and we will report the results for a
distance of 2.25 a.u. This gives some idea of the variation
of J with r, ~ over a reasonable range of internuclear
separation.

Before inspecting values for J, let us consider the
5 overlap which behaved so strikingly as a function
of r & for the hydrogen 3d orbital. 5„'s, evaluated for
the Co++ and Co 3d orbitals, are plotted in Fig. 7. The

.I 0—

.05—

2
t~(QU)

Flu. 7. The overlap integral between 3d, functions, 5 „for Co++
and Co as a function of internuclear separation.
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TAnLE I. Integrals necessary for the evaluation of Eqs. (11) and (14) for pairs of 3d orbitals of like mg value. These were obtained for
Co++ 3d orbitals at 4.75 and 2.25 au and for Co 3d orbitals at a 4.75-au separation. Energies are in au (2 au=27. 07 ev).

3d of Co++ at 4.75 au
0.02128
0.01132
0.00169

0.2504
0.2134
0.2049

0.1471
0.2121
0.2078

0.00972
0.00453
0.00061

0.0004297
0.0000671
0.0000011

1.3264
1.3264
1.3264

8.3470
8.3470
8.3470

0.00503—0.00063—0.00044

3d of Co++ at 2.25 au
0.09054
0.17538
0.07797

0.4983
0.4510
0.3959

0.4809
0.4491
0.4160

0.09682
0.12975
0.04572

0.03604
0.02960
0.00340

1.3264
1.3264
1.3264

8.3470
8.3470
8.3470

0.3548
0.3118
0.0713

3d of Co at 4.75 au
0.04640
0.05563
0.01672

0.2701
0.2168
0.2017

0.1649
0.2151
0.2064

0.02250
0.02078
0.00523

0.00314
0.00144
0,000085

1.1647
1.1647
].2647

6.7779
6.7779
6.7779

0.0307
0.0192
0.0028

P =(c(1)b(2) j1/r12ja(i)b(2)); g =(aj1/rf ja); T =(a(1)b(2) j1/r12jb(1)C(2)); R =(aj|/rbjb); U =(aj1/r, ja); V =(aj —gg2ja); W =(aj —$g'2jb).

Co++ case shows a trough, as did the hydrogen orbital
5„,but it nowhere goes negative. The Co 5„shows no
trough but a slight fiattening out in the region of 2.5
to 3 a.u. The difference in 5 behavior is, as noted
earlier, due to the important difference in shape of the
radial orbitals.

The integrals necessary for evaluating Eqs. (11) and
(14) appear in Table I. When viewing these, comparison
should be made with the experimental exchange
parameters of 0.0006 au from spin-wave dispersion
measurements" and 0.0009 au from low temperature
magnetization data. "The J's for pairs of orbitals of
diGering m~ values appear in Table II; these are the
simple exchange integrals, Jrs LEq. (15)), in the two-
electron Heisenberg approximation to J. They are
small but not negligible. Table III shows J's evaluated
for orbit. als of common mr using both Eqs. (11) and
(14). It is clear that Eqs. (11) and (14) yield very
diferent J's for orbitals of like vs& value. Equation
(14) was evaluated by Stuart and Marshall for J„
but with Fe 3d functions; our values for this case are
in substantial agreement with theirs. The Eq. (14)
values are similar to what has been seen for the hydro-

gen orbitals, i.e., J„is positive and J and Jqq are
smaller in magnitude and negative. Equation (11),
which is, however, the appropriate definition of J,
yields J's which are large and megative. As one might
suspect, and indeed is found, J is sensitive to orbital
choice. There is a large increase in the magnitude of
the J's on going from the Co++ to the Co 3d orbitals.
One also sees that J„(and S, ) can be smaller than

(and S ), a fact that runs counter to prevailing
estimates.

For comparison with experiment one wishes an
average J. This in turn requires an assumption con-
cerning the probability that a pair of "unpaired"
orbitals have any one assignment of m& values. Let us
assume (as did Stuart and Marshall) that any one of
the twenty-Ave possible assignments is equally
possible. 's For r, s ——4.75, one obtains average J's of
—0.00041. au for the Co++ orbitals and —0.00380 for

TAnLE III. J (in au) evaluated using Eqs. (11) and (14) (and
the integrals of Table I), the effective nuclear charge (Z) such
that the last two lines of Eq. (14) cancel and the value, J(Z),
obtained by inserting that Z into Eq. (11) or (14). Values are
reported for the Co++ 3d orbitals at internuclear distances of 2.25
and at 4.75 au and for the Co 3d orbitals at 4.75 au,

Centel 3

J for Co++ J for Co++
orbitals at orbitals at

Center 8 4.75 au 2.25 au

0.0000371 0.00815
0.0000040 0.00266

7i- 0.0000072 0.00399
0.0000027 0.00393
0.0000007 0.00098
0.00000004 0.00()14

J for Co
orbitals at

4.7D au

0.00056i
0.000160
0.000169
0.000127
0.000028
0.000003

TAsrF. II. Direct exchange Pi.e., Eq. (15)j for pairs of 3d
orbitals of unlike m~ value obtained for Co++ 3d orbitals at
internuclear separations of 4.75 and 2.25 a.u. and for Co 3d
orbitals at 4.75 a.u. Energy units are in a.u. (1 au=27. 07 ev).

+0.00140—0.00021—0.000032

9.01
8.14
7.78

J of Eq. (24) J of Eq. (22) Z

3d of Co++ at 4.75 au
+0.000081 —0.00648 9.33
—0.000008 —0.00192 9.07—0.0000004 —0.000044 g.9 I

3d of Co++ at 2.25 au
+0.0223 —0.0461 17.21
-0.0022 -0.3702 12.20
—0.0011 —0.0824 10.04

3d of Co at 4.75 au
—0.0220—0.0351
—0.0033

—0.00225—0.00040—0.000007

—0.134
—0.185
—0.0198

—0.0097—0.0072—0.00043

'8 R. N. Sinclair and B. N. Bro khouse, Phys. Rev. 120, 1638
I,'2960).

~ P. gneiss and M. Forrer, Ann. phys. 12„359 (2929) discussed
in ref. 28.

"Stuart and Marshall's averaging only included their calculated
value for J„whereas we use all twenty-6ve contributions from
Tables II and III.



THEORY OF DI RECT EXCHANGE I N FERROMAGNETISM

Co as compared with the observed" spin-wave exchange
parameter of +0.0006 to +0.0009 au. The calculated
value of J may be changed by a more refined assump-
tion regarding orbital occupancy but this will in no
case change the sign. Thus, if one assumes that the
two-atom two-electron Heisenberg exchange parameter
is relevant to the "direct exchange" of the metal one
concludes that, because of its sign, direct exchange is
not the source of the metal's ferromagnetism but that
it is a large effect and cannot be neglected in a more
sophisticated treatment of the problem.

If one is willing to insert Z's of other than +1 into
Eqs. (11) and (14) one can ask what nuclear charge
would cause the last two lines of Eq. (11) to cancel,
making the two equations yield identical results. This
charge is given by

was negative and, therefore, that "direct" exchange
was not responsible for ferromagnetic coupling. One

might argue that this was not a realistic case and that,
since the 3d electrons are part of an atom having many
other electrons, a, more "realistic" calculation of the
direct exchange parameter would result in totally
different results. In order to test this let us consider J
for the case where a pair of iron series atoms is
"clothed" with the remaining electrons and in this way
abandon the point-charge model (with either Z=1 or
effective Z, 's and Zb's) of the previous section. We shall

divide our discussion into two parts considering 6rst
the eGect of the "core" electrons on the one-electron

potentials and then the efI'ect of the overlap of the
"core" electrons on the determination of J.

(16) A. J for "Clothed" Potentials

Calculated values for such Z's are given in Table III
along with the J(Z)'s which are obtained by inserting
these Z's into Eq. (11) or Eq. (14). The Z's for the
Co++ (or Co) 3d orbitals do not have a common
value; their value is dependent on both m~ and the
internuclear separation. This variation is another
indication of the nonhydrogenic behavior of the iron
series orbitals. The J(Z)'s differ with the other J's of
the table but they are substantial and negative, be-
having much like the Eq. (11)values. One should note
that the Z's and J(Z)'s represent an abandonment of
the basis for going to the two-electron Heisenberg
parameter, i.e., abandoning a description of the re-
maining electrons and the nucleus of the iron series
atom by a point charge of +1.

III. DIRECT EXCHANGE FOR A PAIR
OF 3d' ATOMS

The one-electron per atom case discussed in the
previous section showed that for this simple model J

Consider the case of two 3d' ions for which 'E—'E'

argument of the last section holds. The most obvious

eGect of going to the new model is to replace the simple

nuclear attraction terms in the Hamiltonian by the
more realistic multi-electron potential, e.g. ,

where the summation over i is over the twenty-six
"paired" electrons (the P's) on the A atom, Z is the
actual nuclear charge, and P&~ is a permutation operator
(of coordinates 1 and 2) so that exchange interactions
are included along with the Coulomb interactions. We
shall continue to denote the unpaired 3d electrons
involved in the "direct" exchange by P )and by a(1)
or b(1) when brackets are used to denote integrations]
and the other paired electrons by P. With this change,

Eq. (14) (for example) becomes

1 1
d=(1—S,a') ' &a(()b(2) —b(1)a(2) —S,d a(1)b(2) —a(1)b(2))

t ]9 ~12

g Z I

+2Sb&b(1)
——-+,r '( d) d2'(2)da a(—1) ,—2S. -'b(1) ——+Q d', '(2)—d'. (2)da b(1))

&:e f12 L f lb)

—S., P b(b}d;,(2) —d'. (1)a(2) +S.a'Q b(2)d;. (2) — d() 2( b))2. (12)
~12 ~A ~12

Here we have assumed a common radial behavior for @,and @g. Several simplihcations were made in writing Eq.
(18).This equation should of course be symmetrical in summations over i, and i& but we have chosen to write out
only one of the summations and to combine terms. The differing coefficients (2 and 1, respectively) arise from spin
orthogonality and the last two terms were written as a summation over all the other electrons on the A site instead
of as two times (once for each site) a summation over all the other electrons having spins parallel to the "ex-
changing" electrons (i.e., a summation over one-half the other electrons).
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Simila»y, if one uses Eq. (17) for the one-electron nuclear attraction potentials then the last two hnes of Eq.
(11)become

z 1—F12+s. a(S) —-', v, '—+P p;,"O) y;, (&)Z~, b(2))
~2b ~b r ld

z 1—819—s.P ~(&) —l& '—+r. 0' "(2) .—4'. (~)d~ '()))
r la ~12

z 1—F12
b(2) l& ' +r-. 0:—"(—))— 0' (&)d—~ b(2)) O ~)

~2b ~12

These terms together with Eq. (18) form the new
counterpart of Eq. (11) as the definition of J for two
interacting but "clothed" holes (3d' atoms).

It is clear that the possibility of exact cancellations
among these terms in the manner expressed by Eqs.
(12) and (13) is here exlremely desirable since it avoids
taking differences between a large number of terms
(of equal magnitude) and the resulting loss of significant
figures. Before discussing the numerical results obtained
for J for this case let us first consider one feature of this
problem in the light of the conventional Hartree-Pock
formalism.

The one-center Hartree-Pock equations have the
form

(—s ~t'+ Vi.)4'(r~) = e'4'(r~), (20)

TAm. E IV. J's (in au) for "clothed" potentials with Co++ 3d
wave functions at r,b=4.75 au and 2.25 au and Co 3d wave
functions at r,b=4 75 au. LSee Eqs. (18}a. nd (19}.g

Co at
rag= 4.75 aU

—0.00050—0.00151
-0.00011

Co++ at
r f, ——4.75 au

—0.001073
—0.000295
-0.000007

Co++ at
r~fb= 2.25 aU

—0.00774
—0.0915g—0.01716

when defined for an individual one-electron wave
function )p, (r), and when p~, in Vt„ the multi-electron
potential operator given in Eq. (17), includes all the
other electrons on center A. If the P, 's (which include
the )p~ 's and @'s) were obtained by the solution of such
equations defined for the 3d' configuration then the
sum of all terms of Eq. (19) (i.e., the quantity labeled

0) equals zero. As was seen for the case discussed in

Sec. II, this makes the computation much easier and
reduces the possible sources of numerical error.

Unfortunately, the Hartree-Fock equations solved

by the conventional method do rot take on the form of
Eq. (20). One restriction associated with the con-
ventional method is that there be a single radial
function per shell (we have in fact made use of this
restriction by having "paired" orbitals which make no

contribution to the spin symmetry of the system). For
an open shell ion, the solution of equations of the form
of Eq. (20) will in general yield different radial functions
for different orbitals. In order to meet this restriction,
what is generally solved for is an average" equation,
per shell, of the equations which can be individually
derived. The cancellation of terms in Eq. (19) becomes
considerably complicated by this, a matter discussed
at greater length in the Appendix. In practice we will

ignore the fact that the 3d orbitals are the solution of
averaged Hartree-Fock equations. %e expect that the
errors associated with doing this are small (see the

Appendix); they are, in fact, smaller than the numerical
errors which would accumulate if these terms were
included. When effecting the cancellations in Eq. (19)
it should be noted that when the 3d' Co++ orbitals are
used we must account for the fact that Eq. (19) wa, s

written for the 3d' configuration. Terms involving the
two extra electrons are not involved in the cancellation
and their contribution to J must be evaluated. As we

shall see, these terms are of substantial magnitude.

Numerical values of J, for the "clothed" atom~,

appear in Table IV. Again we see that J is large and

negative although smaller in magnitude than the two-

electron results quoted earlier in Table III. The results
of Table II hold here as well for pairs of orbitals of

unlike m~. Two approximations were made in the calcu-
lations. First, as indicated above, the 0 contribution

LEq. (19)j was set equal to zero (with the exception of

the terms associated. with the two extra 3d orbitals
when the Co++ 3d functions were used). Secondly, the
"clothing" was limited to the 3s, 3p, and 3d electrons,
i.e. , the ten 1s, 2s and 2p orbitals were neglected and

Z was replaced by Z—10 in Eq. (18).Serious numerical
errors were encountered when the necessary integrals
involving the 1s, 2s, and 2p orbitals were obtained.
Being the most localized, they contribute the least to
the effect of the "clothed" potentials and in view of this

they were neglected. Accurate inclusion of these terms

"D. R. Hartree, The Calcutution of Atomic Structures (John
VViley 8z Sons, Inc. , New York, 1957}.



(and the parallel adjustment of the Z used) would
produce very small quantitative changes in the J's
reported in Table IV. Their inclusion wouId not, eQect
the qualitative behavior of the results appearing there.
Because of the accumulated numerical errors associated
with the terms Lof Eq. (18)g included in the J's, the
results of Table IV should be viewed only qualitatively
anyway. The numerical uncertainty of these results is
greater than that of the preceding sections. Evaluation
of the second and third terms of Eq. (18) is the primary
source of the errors. These terms involve a differencing
of terms of almost equal magnitude which is most
serious for term three. These terms are made up of two-
center "Coulomb" integrals, " the type of integral
which has given us the greatest difhculty with numerical
accuracy.

In the face of the numerical uncertainty associated
with the J's of Table IV, it does not seem appropriate
to supply a detailed listing of the various terms Lof
Eqs. (18) and (19)j contributing to them. Inspection
of one case may, however, be instructive. I et us con-
sider J„for Co++ at 4.75 au. For this case the five terms
of Eq. (18) make contributions of +0.000362,
—0.000628 (of which the "clothing" contributes
—0.000214), +0.000137 (of which the "clothing"
contributes +0.000004), —0.000062 and +0.000000 au,
respectively; the fact that our orbitals are eigen-
functions for the 3d' provides an 0 contribution of
—0.000882 au. We see that the 0 contribution is
substantial; it drives the negative J's determined for
Co++ orbitals more negative than those evaluated for
neutral Co. This e6ect is similar to that seen in the
preceding section. One should also note the small
magnitude (zero to the number of digits quoted) of the
last term of Eq. (18).This term is the one term which
we have considered which is proportional to the
fourth, " rather than the second, order in S ~. It is
substantially smaller for J and J». Its small size is
important to the discussion which follows, and so has
been included here.

If now we compute an average J, as we did earlier
for the two-electron problem (Sec. II D), we find some
different (and surprising) answers (if one considers
only Table IV). Assuming that each 3d orbital has an
equal probability of being occupied by a hole, J, for
Co++ 3d orbitals at r ~=4.75 is —0.000059 au whereas
for Co 3d orbitals, at the same r, b, it is +0.00000~ au
(which is at the limit of accuracy of our calculations).
Thus, while an examination of the J„term only (or
of the other diagonal terms as well) would lead to the
conclusion that t was negative (and substantial), the
off-diagonal positive terms have a large enough mag-
nitude to greatly reduce the diagonal estimate and in
fact to change the sign of J for the Co case. These
results point out the importance of the off-diagonal
terms aced the sensitivity of the result to the assumption

"It is made up of two-center "exchange" integrals which are
of the order S' multiplied with a coefficient S b'.

concerning the pr'obability of. orbital occupancy. It
should be noted that the assumption of equal proba-
bility of hole occupancy by e3,ch of the orbitals is about
the most, restrictive one that can be made. Therefore
for any other assumption which correlates the holes on
the two centers the value of J will be more negative
than the J,„values quoted above. However, in view of
the simplicity of the model, the tenuousness of the
arguments, and the fact that so far we have only
treated half of the question of clothing we shall not
dwell on this matter any longer.

B. Effect of Core Electron Overlap

We have seen the effect of "clothing" the free atom
potentials with the "core" electrons on the calculation
of J. Having allowed these electrons to play a role in
the interaction we must now recognize that some of
these paired electrons, the P,'s, have the same radial
extent as the exchanging 3d's (i.e., the P's) and there-
fore one can expect other overlaps of the same order
of magnitude as S ~ and in turn additional contributions
to J.To obtain these contributions one can set up wave
functions for the triplet an.d singlet states (of the 54
electron problem) and calculate one-half the singlet-
triplet energy difference.

If we let

I=det{a(1)n(1)b(2)P(2)gr(3)n(3$ i(4)P(4)

II=det(b (1)a (1)a (2)P (2)Pr (3)n (3)fr (4)P (4)

then with
rp= I+II and '/= I—II,

&r,r+&r, rr &r, r —&r, rr
J=-', ('8—'E) =—

2 Sr,r+Sr, rr Sr,r —Sr,rr

SX,XIIX,XX SI,XI+X,X

(21)
Sr,r' —Sr,rr'

Here Hr, » is the matrix element of energy between
determinants I and II and Sr,xx is the corresponding
overlap determinant. The terms in Eq. (21), which
can be grouped in ascending powers of overlap integrals
present all the elements of the well-known "overlap
catastrophe" for a solid, only on a more modest scale.
If we account for the fact that the integrals which are
multiplied by products of overlap integrals are them-
selves proportional to the (zero, first and second powers
of) overlaps, then one observes that the individual
contributions to Eq. (21) are of the order of (ascending)
even powers of overlaps. With the sole exception of the
last term in Eq. (18) (which is of the fourth order) all
the terms considered so far have been second-order
terms. If the overlap of the one-electron functions is
suKciently small (as it is for our case of two Co atoms
at the observed internuclear distance of 4.75 au) there
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is no overlap problem and we can limit our attention
to those additional terms which are of the second order
in the overlaps. Sz, z is of the order j. whereas Sz, zz is of
the order S,b'. Kith these approximations these terms
are easy to find. One of these is:

z z
Ai ———25„+"5;,b g (1) ——.' V22 ———

&a rla rib

r12

+a similar term for center B. (22)

The P' is over all the 2P's of both centers excePt for )P'

and P" indicates that this sum should be limit;ed to one
orbital of each pair of paired )P's for the center in
question. Note that one can carry over the discussion
of the one-center eigenvalue equation of the previous
subsection fcf. Eq. (20)j and a similar cancellation of
terms can be affected here. In this case, however, the
cancellation follows from the orthogonality of P's and
)P's associated with the same nucleus. In general the
same features apply here as discussed above for the
cancellation of terms in Eq. (19) and the same care
must be observed.

Other contributions to J of the second order in
overlaps are

+a, similar sum for center 8, (23)

Err= —2X"S .r r.(1)2(2) —r2', (1)r(2))
&a r12

+a, similar sum for center 8, (24)

Arv =+2 p" Q" p1. 2b5ab+'52, .b52'b;],

X a1 jb2 —i, j. b2, 25
r12

and finally

Av ——+2 g"Q"5'.,b52. , b

su& (a

second feature of the 6 terms is that the symmetry
requirements for nonzero 5's reduces the individual
integrals which must be considered to a manageable
number. Finally with exception of Ar and hiv (which
happen to make the smallest nonzero contributions to
J), the necessary two-electron integrals are either
easily obtainable one-center integrals or are those which
have already been obtained in the process of evaluating
Eq (1g).

In Table V we give the results of our calculations for
the correction terms to J due to the overlap of the "core"
electrons for the Co++ and Co 3d orbitals at r b=4.75
au. The first column gives the previous J values (see
Table II for the off-diagonal terms and Table IV for
the diagonal terms), the next five are the various A

terms of Eqs. (22) through (25), and the last is the final
J which is the sum of all the previous terms. Only 6z
provides any difficulty with accuracy (although
which is made up of two-center Coulomb integrals, '"
would if it were not so small). The "averaged" Hartree-
Fock correction to 0 z has been neglected, as has been
done previously, whereas the 3d' —+ 3d' correction for
the Co++ orbitals was included. We see that individual
6 contributions can be appreciable. Again the separate
diagonal J's are negative, much smaller than was found
for the two-electron case, but of the same magnitude
as the observed values. The core overlaps have not
made drastic changes in the J's (due to the differing
signs of the 5 terms) but the relative values of the terms
has been shifted about. This is particularly true of the
nondiagonal terms which, for the first time in our dis-

cussion, are now no longer just the simple electrostatic
exchange integrals of Eq. (15). Again if we invoke an
occupancy argument, assigning equal probability for a
hole to have any specific m& value on any center, we
find J, 's of —0.00006 au for the Co 3d orbital and
—0.000076 au for the Co++ function. We see that here
too the nondiagonal terms play an important role and
will also be important in any more exact treatment
(such as discussed in the next section). Occupancy
arguments will again affect the J., 's, making them more
rIegatine than the values just quoted. These results
bring our conclusion (but not our values) into agree-
ment with that of Stuart and Marshall" (but for
different reasons). J is small and of the wrong sign to
account for -the observed ferroma, gnetism of the tran-
sition metals.

X i~ l Q 2 8 1 ja
1 $2

+a similar sum for center B. (2t))

Up to this point in our treatment J for a pair of p's
differing in m& was simply given by J» of Eq. (15) (due
to 5,b being zero by symmetry). However, A&i through
hg make nonzero contributions to J for this case and
our calculations show that their individual contributions
can be larger in magnitude than the J» of Eq. (15). A

IV. DISCUSSION OF DIRECT EXCHANGE
AND A MORE EXACT MODEL

We have been studying the predictions of a model of
exchange interaction which has, as we have noted,
serious deficiencies. In this section we will consider
some aspects of what would be involved in a more
rigorous treatment which uses the two-atom localized
orbital picture as its basis. It is beyond the scope of
the present paper, however, to either report such an
investigation or to give a detailed description of how it
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TAnrz V. n s )see Eqs. i22) through i2S)g and the resultant J's (in su) for Co and Co++ 3d orbitals at r s=4 7S. au.
The J's to which the 6 s are added are also included.

J of Table
II or IV

—0.001073
0.000037
0.000004—0.000295
0.000007—0.000007

0
0.000003
0.000001

0.000053
0
0

0.000001
0
0
0
0
0

Co++ at
0.000045
0.000034
0.000027
0.000001
0.000020

0
0

0.000009
0.000003

r g=4.75 au
—0.000120—0.000042

0.000003—0.000005—0.000007

—0.000004—0.000001

0.000002
0
0
0
0
0
0
0
0

0—0.000018—0.000036
0
0
0
0
0
0

7=sum of
preceding

terms

—0.001093
0.000011—0.000002

—0.000298
0.000020—0.000007

0
0.000008
0.000003

—0.00050
0.00056
0.00016—0.00151
0.00017

—0.00011
0

0.00013
0.00003

0.00013
0
0

0.00004
0
0
0
0
0

0.00049
0.00032
0.00020
0.00003
0.00038

0
0.00002
0.00018
0.00006

Co at r„f,=4.75 au
—0.00131—0.00061
—0.00005—0.00012
—0.00002

0
0—0.00012

—0.00003

0.00002
0.00001

0
0.00002

0
0
0
0
0

0—0.00016—0.00031
0
0
0
0
;)
0

—0.00117
0.00012

0
—0.00154

0.00053—0.00011
0.00002
0.00019
0.00006

should be carried out. The approach utilizes conhgu-
ration mixing, some aspects of which have also been
used in Van Vleck's "minimum polarity" model' of
exchange. Before discussing what the approach would
involve and what some of its limitations might be, let
us consider several investigations which shed light on
some phases of how the problem couM be handled and
in what way the results should be viewed.

The hydrogen chain problem, which is amenable to
solution, has been the subject of considerable investi-
gation. " Ma, ttheiss'" has recently reported a detailed
configuration interaction study for the six atom case
where, using H 1s orbitals, all configurations were
considered and all multi-center integrals" were evalu-
ated and used. Conhguration interaction calculations
were done for wave functions of common symmetry
aed thee the resulting energy spectrum was 6tted to
see how well it matched a vector coupling equation
[Eq. (7)7. The chain was studied as a function of inter-
nuclear separation and at the stable internuclear
distance of 2 au (i.e., where the ground-state total
energy is a minimum) it was observed that neither a
single con6guration atomic (localized) orbital nor a
single configuration molecular (itinerant) orbital de-
scription satisfactorily yields the energy spectrum, i.e.,
configuration interaction or perturb a,tion theory is
necessary. In addition, using perturbation theory,
Mattheiss obtained an analytic expression for an
effective nearest-neighbor exchange integral J. While

"I.. I'. Mattheiss, Pl&is. kev. 123, 1209, 1219 (1961) and
references therein,

'4 The three- and four-center integrals, which are normally just
estimated, were calculated using programs of M. P. Harnett
(unpublished).

there are many interesting features" of Mattheiss's
results, the technique of inspecting the spectrum after
configuration interaction, the perturbation theory
analysis and the observation that a single configuration
description is inadequate are of greatest interest to us
here. The model of the preceding sections is, after all, a
single configuration description.

The hydrogen s orbital, one-electron (or pair of
electrons) per atom case just discussed differs in many
ways from the problem of interest here. Diatomic
molecula, r calculations such as that of Nesbet" for N2
are more akin to the case at hand. Xesbet's investi-
gation is of particular interest because he related the
various types of configurations, which appeared in the
calculation, to several mechanisms of superexchange
theory. In addition he showed which configurations
would contribute to a JS; S, term and which would

yield terms of a higher order in 5. This relied on an
observation'7 of a property of spin projected functions.
rn Ns the unfilled shells are the atomic 2p and for some
internuclear distances of interest Nesbet observed that
the lowest energy single configuration was one in which
some of the 2p orbitals were treated as atomic orbitals
and some as molecular orbitals. This observation is of
interest because the recent work of Anderson, "
Clogston, '" and Kolff4' on magnetic moments in alloys
have emphasized the localized behavior of the orbitals

"See reference 30 and J. C. Slater, Quarterly Progress Report,
Solid State and Molecular Theory Group, Massachusetts Institute
of Technology, October 15, 1960, (unpublished), p. 4."R.K. Nesbet, Phys. Rev. 122, 1497 (1961)."P. O. I.owdin, Phys. Rev. 97, 1509 (1955)."P.%. Anderson, Phys. Rev. 124, 41 (1961).

"A. M. Clogston (to be published)."P.A. WolQ (to be published).
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contributing to the moment. The one-electron energies
of these orbitals overlap the conduction bands for which
the itinerant orbital description is most appropriate.
These observations suggest that the most successful
single configuration or limited multiconhguration de-
scription of a pair of iron series ions is one in which
some of the 3d orbitals are molecular orbitals and some
are atomic orbitals. Xesbet discusses an approach
similar to this for the metal; we will consider a much
more limited investigation.

We are interested in the magnetic interaction of an
iron series ion with its neighbors in the crystal. We
would like to treat a case such as the interaction of that
ion with the cluster of its nearest neighbors. Unfor-
tunately such an investigation is formidable and we
will instead limit ourselves to the interaction between
a pair of neighbors.

Above, we have surveyed several investigations which
help illustrate how one might treat the problem. Let
us now briefly consider what would be involved in
such an investigation. This will be followed by a dis-
cussion of two shortcomings associated with such a
treatment.

For our example let us consider the problem for a
pair of Ni atoms. If one considers all functions belonging
to a particular set of configurations the resulting con-
figuration interaction calculation is on a smaller scale,
hence simpler, than investigations with similar sets for
Fe or Co. This does not necessarily mean that in
practice the Xi2 case converges more rapidly to a
"final" result.

As already observed, energy band results tell us that
configurations involving 4s as well as 3d orbitals should
be included in the investigation. In addition there is
also "4p" behavior in both the "3d" and "4s" bands
and therefore configurations involving 4p orbitals
cannot be ignored. Kqs. (22) to (26), above, suggest that
the presence of 4s and 4p orbital behavior in the many-
electron function will play an important role in the
spin dependent terms of the energy. Perhaps the 4p
character can be introduced with some "hybridized"
orbitals" in such a way as to minimize the complications
(i.e., the number of additional configurations) asso-
ciated with the 4p orbitals.

I et us consider the scale of the configuration inter-
action problem where neutral, singly, and doubly
ionized (one ion positively and at the same time, the
other negatively) ion configurations are included. If
one restricts oneself to configurations involving just
3d and 4s orbitals one has a problem involving over
eleven thousand different molecular functions. If one
adds atomic conlgurations of the form 3d" '4p' to
those already considered, the number of molecular
functions increases by a factor of one hundred. Other
types of "4p configurations" would further increase
the scale of the problem.

4'As suggested by J. C. Slater |'private communication).

The problem is not as formidable as the numbers
above suggest. First, we could be selective in the "4p
configurations" and secondly the problem factorizes
since the many-electron Hamiltonian has zero-valued
matrix elements between molecular functions of
differing spacial and/or spin symmetry. Secondly, a
number of the molecular symmetries will be associated
with states of high energy and so can be ignored.
Finally, judicious use of molecular many-electron
functions constructed from sets of atomic and molecu-
lar orbitals could reduce the number of important
configurations.

The scale of such a computation depends on the
specific choice of many-electron functions which are
included. A "reasonably" defined scope of the problem
is likely to involve one with at least a few secular
equations which are 50&(50 to 100)(100 in dimensions
(as against the 8&&8 treated by Nesbet). Such case-.
can be solved with current computational techniques.
More serious is the question of accurately evaluating
the matrix elements in the matrices to be diagonalized.
The problems of numerical accuracy encountered by
us in the present paper (such as matrix elements of the
"clothed" potentials) are less serious than what would
be involved here. Terms such as Eqs. (22) to (26) and
others of similar form would have to be included.
Reduction in the scope of the investigation and the
use of perturbation theory for all but the most im-

portant conhgurations~ would reduce the number of
matrix elements to be evaluated but it will not resolve
the problem of numerical accuracy. Greater accuracy
than what we have obtained is necessary for such an
investigation. Another, more easily resolved, difhculty
is that of obtaining the properly symmetrized functions
for which the matrix elements are to be evaluated. For
an investigation of this scale it might be desirable to
do the group theory on a digital computer as Mattheiss"
did for his problem. Observations of the type made by
Nesbet4' would be more difficult because of the more
complicated (due to several partially filled shells)
spatial symmetry problem.

Assuming that such a Ni~ configuration interaction
investigation was carried out and that the resulting
energy spectrum is scrutinized, there remains the
question of what bearing the results have on the mag-
netic properties of the metal. First, do the symmetries
built into the molecular calculation distort the relevance
to the metal and secondly, how would the presence (if
included) of the other neighboring ions in the metal
perturb the results? Paired electrons associated with
these neighbors would make nonzero contributions to
total energies in a manner similar to the effects dis-
cussed in Sec. III. Except for new "clothed" Coulomb
potential terms, the contributions would be proportional
to the fourth and higher orders (note that our investi-

~Nesbet, reference 36, believes that perturbation theory can,
in practice, be relied on for this. See his Table IV for a comparison
of con6guration interaction and perturbation theory results.
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gation was limited to second-order terms) in overlap
integrals. While these individual contributions are
small, there are many of them and they greatly increase
the possibility of the "overlap catastrophe. " This is a
problem which Carr4' has investigated. Experiments
using inert gas crystals44 as hosts for near neighbor
pairs of iron series ions would help resolve the impor-
tance of the symmetry and additional neighbor effects.
Experimental data of this sort would provide an in-
valuable link between such a theoretical investigation
and the observed magnetic properties of the metals-
and in fact would indicate whether a two-interacting-
atom description is relevant to the metal's ferromagnetic
behavior.

V. SUMMARY AND CONCLUSION

We have been investigating the role of direct exchange
as a mechanism responsible for ferromagnetism by
carrying out accurate calculations with the Heisenberg
model, but extended and refined in several ways. In
this way we have been able to check the predictions of
the theory with experiment. We have determined the
sign and magnitude of the direct exchange integral,

as a function of internuclear separation (about
which there has been considerable speculation and
controversy) for several cases for which, as Lowdin has
shown, J is rigorously defined.

We first considered a pair of atoms with a single
electron per atom, corresponding to the case of two
hydrogenic atoms. J was calculated for the unrealistic
but historically interesting case of hydrogen 3d func-
tions and the computationally more difficult case of
the exchange between 3d orbitals for the iron series
elements. Calculations for all pairs of 3d orbitals showed
that J is sensitive to the angular dependence of the
wave functions —and to the precise radial shape as
well. It was seen that J, is not necessarily the dominant
term and that other J's can in fact be larger. In our
observations for the hydrogen orbitals )for which Eq.
(14) holds exactlyj we have seen that the behavior of
the "diagonal" J's (i.e., between lik.e 3d functions on
each center) as a function of internuclear separation
does not consistently follow any one of the forms
suggested by past authors (an observation which relates
to an historic and fascinating controversy'). The fact
that the iron series 3d functions are not eigenfunctions
of the hydrogenic Hamiltonian was found to markedly
affect the results. The "correction" terms dominate,
changing J's which might otherwise be positive (the
Stuart and Marshall result) to large negative values
(i.e., opposed to ferromagnetism).

We then discussed the more realistic case of a single
hole in otherwise closed shells; our example was Co in
the 3d' configuration. Here the effect on J of "clothing"
the atoms with the remaining electrons (both in the

4~ W. J. Carr, Jr., Phys. Rev. 92, 28 (1953).
4' Work along these lines is underway at the Lawrence Radiation

Laboratory at Livermore, California by E. Lee.

core and in the rest of the 3d shell) was considered,
first with regard to the effect of the core electrons on
the one-electron potentials and secondly with respect
to the effect of the overlap of the core electrons. From
an analysis of these terms it was suggested that the
paired "4s" conduction electrons of the metal can play
an important role in "direct exchange, " quite aside
from a Zener type of effect. We saw that the effect of
clothing was to reduce the magnitude of J (i.e., make
less negative) and that while the diagonal J's were
themselves fairly large the positive nondiagonal terms
greatly reduced the diagonal estimate and gave anal
J, s which were still negative but smaller in magnitude
(by one order) than the observed values. While the
core overlap terms, i.e., the 6's of Eq. (22) through
(26), do not appreciably affect the J, 's they are sizeable
and can greatly perturb the individual J's, thus making
the results even more sensitive to the occupancy argu-
ment used. Finally, a more exact model of two-atom
exchange was discussed as were some of the problems
inherent in carrying out such calculations.

From these results one may conclude that either the
direct exchange mechanism is not the dominant source
of the ferromagnetism of the transition metals or that
the direct exchange model is an inappropriate descrip-
tion of their magnetic behavior. Our particular prefer-
ence is for the latter point of view.
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APPENDIX

We consider here the form of the Hartree-Fock
equations that are actually solved and the implications
of this form on the evaluation of direct exchange terms.
Let, us rewrite Eq. (20) for Co 3d orbitals in the form:

(1—&rs)
E 4 *(rs) 4»(rs)d» +~ 4'(r&)

= e,y, (rr), (A1)

where P; is a 3d orbital. The sum ( j= 1 to n) is over all
occupied 3d orbitals and E. includes nuclear potential,
kinetic energy and two-electron Coulomb and exchange
terms involving the 1s, 2s, 2p, 3s, and 3p shells. For
the case of an unfilled 3d shell, the effect of the term in
square brackets is a function of the m& and m, values
associated with g, while E is not. In practice we solve
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Hartree-Fock radial equations and the radial form of
Eq. (A1) is:

Om((8, &)X { j Omi(8 g)X, singd0dgds U, (r)

where U, O~, and X are the radial, angular, and spin
parts of p; and the { ) term is that of Eq. (A1). As
already indicated, the operator in

l $ is dependent of
m~ and m, and as a result different U s would be
obtained for @,'s of differing tisi and ns, if such equations
were solved. Now we want a single U(r) per shell and
the normaP' way of obtaining this is to solve Eq. (A2)
averaged over occupied m~ and m., values, i.e.,

n

O~. (0 Q)X.{ j O~. (8 Q)X, sulgdg(fpds
S 1=1

)&Usg(r) = e, Usd(r). (A3)

HQ, = e.;Q, or e,.+,, (A4)

where H includes terms or the average of terms of the
type appearing in Eq. (20).

This considerably complicates effecting a cancel-
lation of terms after the manner used in Sec. II. As
already indicated, such a cancellation is extremely
desirable since it appreciably reduces the accumulation

Here we have a radial equation with an averaged
operator multiplying Us&(r). Unfortunately the parallel
situation does not occur for an equation written for the
g, 's, i.e. , one does not have an averaged operator
operating on p, . The averaging involves the angular
and spin behavior of the set of occupied P,'s. In other
words, the P, 's are not strict eigenfunctions of an
equation of the form

of numerical errors in the evaluation of J. The cancel-
lation is between the terms

(A5)

where II is defined for the nine 3d-electron Co atom.
If Eq. (A4) did hold one would merely have to evaluate

bQ'b l
H H. l

rt—i.& &.ss(e—
l
H H.

l
rt—i.& (A6)

The R terms of Eq. (A1) would drop out of each
integral and terms of the type appearing in { ) would
undergo substantial cancellation within each integral
separately. The second term can be easily evaluated
for the case at hand separately. One simply multiplies
equations similar to Eqs. (A2) (defined for H) and
(A3) (defined for H.) by Usq(r), integrates and takes
the difference. 4' Since Eq. (A4) does not hold, the first
term cannot be similarly handled and it is perhaps
easier to evaluate Eq. (AS), abandoning the cancel-
lations and accepting the accumulated errors.

Fortunately, U3d's which are eigenfunctions of Eq.
(A3) are approximate eigenfunctions of Eq. (A2). This
in turn implies that Eq. (A5) approximately equals zero
if U3d was obtained for the nine 3d-electron ion. In
turn it implies that if we are using the Co++ U3~ that
we need only consider those terms involving the two
3d electrons which contribute to the H of Eq. (A5)
(which we remind the reader, is defined for the neutral
atom) but do not appear for the Co++ ion. We have
done this in the work reported in Sec. III since the
errors introduced in an attempt to evaluate either 0
l see Eq. (19)j or Ai l Eq. (22)j with our integrals
appear to be more serious than those associated with
following such a policy. We expect that the errors will
affect the last digit of the J's so reported (see Tables
IV and V).

4'This is simply the difference between e, and ~;. These
quantities have been tabulated for the Co orbitals used here (see
R. E. Watson, Tech. Rept. No. 12, Solid State and MolecUlar
Theory Group, 1959 (unpublished)].


