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which is monoclinic, is ferromagnetic along the easy
twofold b axis, but paramagnetic behavior was observed
in all perpendicular directions.

Another crystal of large anisotropy is pyrrhotite,
Fe;Ss, first studied by Weiss? and later by Weiss and
Foex.? In this hexagonal crystal the ¢ axis is hard, but
there is also considerable anisotropy in the basal plane.
At room temperature the crystal is paramagnetic along

® P. Weiss, J. Phys. radium 4, 469 (1905).

10 P, Weiss and G. Foex, International Critical Tables (McGraw-
Hill Book Company, New York, 1939), Vol. 6, p. 366.
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the ¢ axis, and ferromagnetic in the basal plane. Low-
temperature studies are unfortunately not reported.
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The energy band structure of antimony is deduced from room
temperature galvanomagnetic measurements and their interpre-
tation in terms of a theoretical model. A systematic series of ex-
periments is performed on oriented single crystals to measure all
the 12 components of the isothermal resistivity tensor through
second order in the magnetic field. The calculated galvanomag-
netic effects assuming simple, independent three-valleyed bands
for both the valence and conduction bands and isotropic relaxation
times for both holes and electrons, are shown to fit the data by
only one set of values for the 9 adjustable parameters in the theory.
These parameters are: a set of three principal mobilities u; and
v;, for electrons and holes, respectively; angles of tilt ¢; and ¢
of one of the principal axes of the electron and hole energy ellip-

I. INTRODUCTION

HE general features of the electrical conduction
processes in Sb have been known for some time.!
They are attributed to a small though degenerate
carrier population consisting of an equal number of
both electrons and holes, with at least one of the over-
lapping bands multivalleyed. The energy surfaces of
each valley are generally represented by ellipsoids
tilted with respect to crystal axes.

The purpose of the present work has been to carry
out a complete set of low-field room temperature gal-
vanomagnetic (GM) measurements and to interpret
these in terms of a general multivalley model for the
bands. If the model is qualitatively correct, this pro-
cedure will determine the band structure. Partial inter-
pretations of this nature have been worked out before
on sets of data which were sufficient to specify only

* Supported by the Office of Naval Research. Part of a thesis
submitted by S. J. Freedman in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy at the Polytechnic
Institute of Brooklyn.

1P, W. Bridgman, Proc. Am. Acad. Arts Sci. 63, 351 (1929);
K. Rausch, Ann. Physik 1, 190 (1947); M. C. Steele, Phys. Rev.

99, 1751 (1951) ; G. Busch and O. Vogt, Helv. Phys. Acta 27, 241
(1954); C. T. Lane and W. A. Dodd, Phys. Rev. 60, 895 (1941).

soids out of the base plane; and the carrier density N, the same
for both carriers. The best fit is determined by exploring syste-
matically a large number of possible solutions with the aid of an
IBM 650 computer. If the “1”’ directions refer to binary symmetry
axes and the “3” directions to those making angles ¥ with the
trigonal symmetry axis, the parameters have the values
u1=0.15,X103, pe=4.0sX103, pu3=1.13X10%, »1=3.54X103,
ve=3.3pX 103, »3=0.133X10® (all in cm?/volt-sec); ¥1=30.7°,
Y2=63.2°; N=3.7,X10% carriers/cm3=1.0;X 1073 carriers/atom.
The results agree well with Shoenberg’s de Haas-van Alphen data
if the carriers responsible for the observed susceptibility oscilla-
tions are holes.

special multivalley structures. In this work the empha-
sis is on a systematic analysis of an overcomplete set of
data permitting determination of all the nine parame-
ters of a general multivalley model.

The presentation falls into three parts: (1) A series
of experiments to determine all room temperature GM
constants through second order in the magnetic field;
(2) The calculation of GM effects for a model contain-
ing 9 adjustable parameters; (3) The adjustment of
these parameters to obtain a best fit with experiment
which then serves to specify quantities related to the
band structure.

II. EXPERIMENTAL DESIGN

If the magnetic field dependence of the isothermal
resistivity tensor can be expressed as a rapidly con-
vergent series in powers of the field, a relatively small
number of low-field measurements suffices to obtain all
pertinent GM information for a finite parameter model.
The number of independent coefficients appearing in the
expansion depends on crystal symmetry, and the iden-
tification of these phenomenological constants in the
Sb point group 3, for transport processes characterized
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by a symmetric tensor,2 shows that up to H? twelve
constants are independent.

In this section we will describe the experimental
arrangements of crystal orientations, currents, and
fields actually used to obtain values for the room tem-
perature, low-field GM constants.

The isothermal resistivity tensor in a magnetic field
H is defined by

Ei=pi;(H)J;. ¢Y)

In a system of coordinates such that the crystallo-
graphic threefold axis (3) lies along 2, and one of the
crystallographic reflection planes contains the ¥(2)
axis, the components of p;; for antimony, up to H? are

pu=pu’+AnH P+ ApH?+ A13H P — 24 2HH 3,
p22= p110+A 12H12+A 11H22+A 13H32+ 24 24H2H3,
p33=p3s"+ A H P+ A H P+ A3H 2,

p23= Ros1H1— A42H12+A 1wH 424 44H2H3,
ps1=RosiHo+2A444H 3H 1 — 2A 5ol H,

p12= R123H3_ 24 24H3H1_ (A 11— A 12)H1H2-

2)

The remaining three components follow from the
Onsager relations p;;(H)=p;;(—H). These constants
include the usual Hall and magnetoresistance (MR)
effects. It is important to note, however, that the defi-
nition adopted in Eq. (1) for the coefficients of terms
linear in H, yields constants Ry which are the nega-
tives of the conventionally defined Hall constants.

To obtain measured values for these 12 phenomeno-
logically independent constants it is necessary to per-
form experiments using a number of crystals with
various orientations of H and J with respect to crystal
axes. While the number of nonvanishing coefficients is
relatively small, they make contributions to the meas-
ured voltages in a variety of experimental situations.
This overlap makes it possible to connect measurements
on different crystals and thus assures a consistent set
of values for all constants.

C
|
i J ¢z
Fm—— —— H
< .
|
Probe Positions For
Experiment 1 J
i . o
] = x

Probe Positions For
Experiment 2

Fic. 1. Specification of the orientations of current and magnetic
field with respect to sample in experiments 1, 2, and 3. Probe
positions for experiment 3 are the same for 1 and 2 except that
only two probes on one face are used. The angle ¢ is fixed; ¢ is
varied at will.

2H. J. Juretschke, Acta Cryst. 8, 716 (1955).
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We list below the orientations and probe arrange-
ments actually used, along with the phenomenological
expressions for the electric field in each case. It is im-
portant to note that the expressions refer to polar axes
fixed in the crystal with certain conventions for meas-
uring angles. Since Sb is centro-symmetrical, the senses
chosen for the polar z (threefold) and x (binary) axes
can make no difference in the results. A consistent
choice of x can be made by observing the secondary
cleavage planes of Sb.

It is assumed that the samples are rectangular single-
crystal rods of uniform cross section. The experimental
arrangements below are grouped according to the
direction of the current J.

A. J=(J cosb, J sinb,0)

(¢) H1J. The sides of the crystal are chosen parallel
and normal to the z axis. Three distinct experiments are
performed on one crystal. The orientation of probes,
currents, and fields for these three cases are given in
Fig. 1.

Experiment 1 consists of a “Hall” measurement of
the electric field in the z direction, £,

1. E,=JHR3; sing+JH?A4 45 sin36 sin%p.

Experiment 2 consists of a ‘“Hall” measurement of the
electric field in the zXJ direction, E.xs

2. E.x;=—JHRs3 cosp+JH?24 54 sin3f sing cose.

Experiment 3 consists of a resistivity and “trans-
verse”’ measurement of the electric field along J, E;

3. EJ=p11J+JH2(A 12 sin2¢+A 13 COSZ(;b
—2A4 24 cos30 sing cose).

By a suitable choice of 6, all terms will eventually
contribute.

(b) H||J. An additional constant is obtained from the
longitudinal voltage measured in experiment 4:

4. EJ=p11]+JH2A 11.

If the crystal for this measurement differs from that
used in (@), a connecting measurement is made by
turning the sample 90° about the z axis, bringing it into
a position corresponding to that of experiment (e)3. In
this position,

5. Ey=puJ+JH?*41,.

B. J=(0,0,J)

There is no special orientation of the lateral faces in
this case.

(¢) H1J. A measurement of the longitudinal voltage
E; gives the new constants ps3 and A3 :

6. Er=pssJ+JTH?A31.

A measurement to connect these data consistently
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Fi1G. 2. Specification of the orien-
tations of current and magnetic
field with respect to crystal axes
in experiments 10 and 11. The
angles § and ¢ are both fixed.

with those obtained in Sec. A is obtained from
7. EJX11=JHR231—]H2A42 cos 36.

Both constants appearing in this expression are also
measured in A.

(d) H||J. The longitudinal voltage of experiment 8
gives the new constant A s;.

8. E,]=p33J+]H2A 33.

A connecting measurement (experiment 9) with the
crystal used for (d)8 placed in the position correspond-
ing to (¢)6 gives overlap on p3; and A43;.

c. H|J

The experiments outlined so far measure all constants
except A4 In order that 444 contribute at all to a longi-
tudinal or transverse MR measurement, the crystal
must be so oriented that J is parallel to H and makes
an arbitrary angle with crystal axes. The convention
for specifying orientations is given in Fig. 2.

The longitudinal voltage of experiment 10 contains
Ay, and once this measurement is taken, A4 can be
calculated from the previous results.

10 EJ= ](pu Sin2¢+p33 C052¢)+JH2[A 11 sin4¢
“|‘ (A 13+A 31+4A 44) sin2¢ COS2¢+A 33 COS4¢].

A connecting measurement is taken by making H
normal to J:

11. E;=J (p11 sin?p+ p33 cos’ep)
+JH?(A 12 sin¢+ A 31 coso).

The eleven measurements just described enable one
to measure all the low-field GM constants in a consistent
manner on several crystals. The expressions given apply
on the assumption that the probes used are placed
exactly along primary current flow lines. In practice
there is always a small misalignment of the probes.
Such misalignment produces spurious voltages and
these contributions must be eliminated from the data
before the GM constants can be obtained. Since it is
possible to predict phenomenologically the A and angu-
lar dependence of these misalignment terms, they can
be eliminated in all cases where necessary.

III. EXPERIMENTAL DETAILS

The samples used were rectangular parallelepipeds
cut from large single crystals grown by the Bridgman
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method. Spectroscopic analysis of samples cut from the
center of the crystals shows the purity to be about
99.9949%,.

Sb exhibits a number of prominent cleavages which
can routinely be used to determine crystal orientation
once the relation of cleavage planes to crystal axes has
been determined. Back-reflection Laue photographs
showed that the most prominent cleavages are per-
pendicular to ¢, the threefold axis. The traces of the
secondary cleavages show threefold symmetry on the ¢
faces and were shown by an oscillation photograph to
be the directions of the binary axes by observing mirror
symmetry perpendicular to the oscillation axis when
this axis coincided with the secondary cleavage trace.

The samples were shaped by first cleaving along the
¢ faces to obtain two parallel surfaces, and subsequently
cutting with a diamond wheel while the crystal was
under compression along the ¢ axis. Care was taken to
avoid undue strain, and samples so prepared gave con-
sistent electrical properties. Heavy primary contacts
were soldered to the ends of the crystal rods far enough
apart to avoid any shorting effects.?

The secondary probes were made by welding No. 40
enameled copper wires onto the sample. Contact was
made in a circular area of about 0.066-cm diameter.
The distance between probes, usually about 0.5 cm, was
measured with a microscope having a calibrated
eyepiece.

The dc measurements were performed under iso-
thermal conditions which were achieved by circulating
a nonconducting fluid around the sample.

IV. EXPERIMENTAL RESULTS

Figure 3 is a plot of typical results obtained for the
two “Hall” measurements in experiments 1 and 2 de-
scribed in Sec. II. The transverse voltages are shown
plotted against ¢, the angle between ¢ and H, for three
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Fi1c. 3. Typical “Hall” data for experiments 1 and 2.
H is given in kilogauss.

3 J. Volger, Phys. Rev. 79, 1023 (1950).
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Fic. 4. Typical “magnetoresistivity” data for experiment 3 after
averaging the data at ¢ and ¢+ to eliminate misalignment.

values of H. The contributions of terms quadratic in H
are apparent from the asymmetry about the zero volt
line, while the contribution of cubic terms, not included
in the expressions given in Sec. II, causes a shift in the
extrema with H. Figure 4 shows typical results obtained
for experiment 3 after the misalignment terms were
eliminated by averaging the measurements at ¢ and
¢—+m. The lack of symmetry about the dashed vertical
line at 7/2 is indicative of the presence of a contribution
from A,4. Figure 5 shows the H dependence at constant
¢ of the averaged MR data of the previous figure. Here
H?/D, where D is the magnetoresistance, is plotted
against H? yielding a straight line, the intercept of
which is the inverse of the second-order constant A;;,
and the slope of which measures the contribution of the
fourth-order constants. For the highest fields used, the
effect of sixth-order constants is noticeable. No attempt

INTERGEPTS
-1
o- A3
o—{Ll a + LA . +(309a . g=24°
T Atz At 24 =2
1 1 -
4.5 A~{7 ALt A, ‘(.309)1\24} )
e
" p-
4,0
Z
j=]
S 3.5
o
3.0
&
=
< s
A 2.0
~
~
© LS
1.0 -

0 20 40 60 80 100 120 140 160 180 200 220

H2 in KILOGAUSSZ

F16."5XTypical “magnetoresistivity’ curves showing the mag-
netic field dependence at constant ¢ of the data shown in Fig. 4.
The inverses of the intercepts are measures of the second-order
MR constants.
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was made to analyze higher order terms since a syste-
matic analysis would require large magnetic fields and
a considerably greater number of crystal orientations.

Table I lists the final values obtained for all constants
through second order. The numbers marked by an
asterisk were obtained from Hall-type measurements
while the unmarked ones are the results of MR-type
measurements. For the particular choice of polar x axis
used, both Ag4 and A4, are negative. The large value of
p33 obtained for sample No. 33 is attributed to a crack
in the crystal.

For the purpose of comparing experimental values
with the calculations of the GM effects, discussed in
Sec. V, it is desirable to evaluate the inverse constants
characterizing the magnetic field induced changes in
the conductivity tensor. The results of the inversion
are given in Table II, along with the limits of error for
each constant.

An examination of Table IT will show that the con-
ductivities o4, and the inverse Hall constants — P;j,
are almost isotropic, while there is a marked anisotropy
in the magnetoconductivity (MC) constants. All con-
stants compatible with crystal symmetry are nonvanish-
ing, implying that the symmetry of conduction proc-
esses is not considerably higher than the structural
symmetry.

V. GM EFFECTS IN THE NINE-
PARAMETER MODEL

In this section we summarize the derivation of the
form of the GM effects for the simplest model likely to
lead to an explanation of the observed marked
anisotropy.

If we assume that the bands are simple and that
scattering can be described by a single relaxation time
for the degenerate carriers, all observed anisotropies
must be ascribed to the surfaces of constant energy
composed of various oriented ellipsoids. Since all the
MC constants are nonvanishing, the symmetry of the
Fermi surface cannot be higher than 3. We can obtain
a structure having symmetry 3m with a minimum
number of extrema by placing one extremum in each
of the three equivalent mirror planes of the point group
and tilting the principal axes of the energy ellipsoids
out of the base plane by a rotation about the binary
axis. In this regard it is important to note that the point
group 3m will generate six extrema from a general point
in the base plane lying in a mirror plane inside the zone.
It is only when the extrema occur at the origin or at the
center of the zone faces that three extrema obtain. For
the case of independent extrema, i.e., no intervalley
scattering, measurements of the GM effects do not
enable one to decide among these cases. A six-ellipsoid
model would change the results described in this section
only by halving the number of carriers belonging to each
extremum. The three-ellipsoid structure will be assumed
for both electrons and holes. It contains, as a special
case, the structure generally assumed for Bi, i.e., ellip-
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TasLE 1. Experimental values at 20°C for the components of the resistivity tensor in Sb. The asterisk
indicates constants obtained from a “Hall” measurement.

Resistivity : py;
(10~¢ ohm-cm)

Hall constant: —R;jx
(1077 ohm-cm/kgauss)

Magnetoresistivity constant: 4;
(10~ ohm-cm/kgauss?)

Crystal P11 P33 _é.gl —Rss1  —Russ An A Ais Az Ass Au —A4 —Aa $A+ida
P33
10 429 228 2.50* 202 64 1ae 33,
13 43.1 2.15* 2.52* 19.6 0.4 1.3* 3'15*
24 43.1 7.6 7.0
50 42 71 5.9
51 13.6
32 36.3 13.6
33 440 13.7 5.2
41 40 —2.75 15.8

soids of revolution for the valence band and a multi-
valleyed tilted scheme for the electrons.* Moreover, it
is in qualitative agreement with Shoenberg’s® inter-
pretation of the de Haas-van Alphen effect in antimony.

The model contains nine adjustable parameters: a
set of three principal electron mobilities u;, a set of
three principal hole mobilities »;, one angle of tilt for
each mobility ellipsoid type, and the carrier density NV,
the number of electrons and holes being equal for the
pure material.

With the above assumptions, the contribution to the
conductivity of all extrema is additive.® For each ellip-
soid, in its own principal axis system, Ohm’s law takes

the form

where o;;=enu;, env; for electrons and holes, respec-
tively. Equation (1) can be solved explicitly for the
current density in a given set of fields E and H, and,
once this is known for each ellipsoid, the observable
current-voltage relation is obtained by reexpressing it
in the crystal axis system and summing over the con-
tributions of all ellipsoids. This procedure has been
carried out in a number of ways,” with the following
results:

ou=3eN[ (»1+a’ve+B:vs)+ (matarPus+Bus) ],
a33=eN[ (BePvetas®vs)+ (Bruat arus) ],
— Pos= (eN/20){[vavs+v1(Bo*vatas’vs) ]
— Luous+p1(Buet-a®us) 1},
— Pyas= (eN/0){[v1(a?vat-Bevs)]
—[m (0112ﬂ2+512ﬂ3)]} .

4B. Abeles and S. Meiboom, Phys. Rev. 101, 544 (1956);
G. E. Smith, sbid. 115, 1561 (1959).

8D. Shoenberg, Proc. Roy. Soc. (London) A245, 1 (1952);
Physica 19, 791 (1953).

% Actually as shown by C. Herring and E. Vogt [Phys. Rev.
101, 944 (1956) 7, this follows also for anisotropic relaxation times,
as long as these are diagonal together with the energy surfaces.

7 J. R. Drabble and R. Wolfe, Proc. Phys. Soc. (London) B69,
1101 (1956); J. R. Drabble, R. D. Groves, and R. Wolfe, ibid.
B71, 430 (1958); T. Okada, J. Phys. Soc. Japan 12, 1327 (1957);
S. J. Freedman, Ph.D. thesis, Polytechnic Institute of Brooklyn
(unpublished).

4)

The results for the MC constants are rather compli-
cated and are best presented in the form of Table III.
Each constant Bj; is formed by summing the products
of the column heading with the corresponding entry in
each row once for the electrons and once for the holes.

It is important to note the following definitions with
respect to the above formulas:

B1=siny;
Ba=sinys

Note that N(=3#x) is the total volume density of con-
tributing carriers. ¥ is the angle of tilt between the
crystal threefold axis z, and the principal axis 3 of the
ellipsoid. ¢ is considered positive in the direction zXx.
The algebraic sign in the inverse Hall constants has been
exhibited explicitly so that all mobilities are considered
positive. An examination of the results demonstrates
the importance of determining the signs of By and By,
since these are the only constants to change sign under
the operations:

1= Cosy1, for electrons,

©®)

az= Cosys, for holes.

62 — Qg

B1— azy,

ag — 62:

ay—> 61’

Vi—> V3, V3> V1

(6)

M1 Mg, M3 M1;

and are thus able to distinguish between models dif-
fering by this assignment. In contrast to the choice of

TasiLE II. The magnetoconductivity constants.

Limits of

Constants ~ Value computed from MR constants error
o1 2.32X10* ohm™! cm™ +29%,
033 2.75X 104 :{:2%
— P23 1.36X 102 ohm™ cm™! kilogauss™ +39%,
— Pag1 1.44%102 +49,
Bu 4.0 ohm™ cm™! kilogauss™ +6%

Bss 3.9 +20%
—Bas 1.9 +6%,
—Bas 0.87 +8%
B 11.5 +49,
By 4.2 +49,
By 11.2 +3%,

—Buys 2.2 +209%,
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TastE III. The calculated second-order magnetoconductivity constants. Each constant B;; is formed by summing the products
of the column heading with the corresponding entry in each row once for the electrons and once for the holes.

eNuus/c? eNuus/c? eNptu/c eNutus/c? eNpdun/c eNpstus/c? eNppous/c?
8Bu1 I'x o? 3232 o? 3a?B? B2 —2— 60232
8B12 332 3a2 o?3? 3a2 32 362 2—2a%3%
2Bi3 o? B2 ot B4 20282
—4Bgy —af of o8 —af? aBd—adB
—4By —afp? af a8 —af 01133 "CZ?'B
—2Bu B2 oB? at4-p
2B B4 B3 ot o? 20232
Bas o282 o268 —2626

sign of B4 and Bas, Bus is negative definite. That this
is confirmed experimentally is encouraging.

Since 12 constants are calculated from a 9-parameter
theory, the model predicts necessary relations among
the constants. We have found two such for the general
case of equal number of holes and electrons and arbi-
trary ellipsoid shape and orientation:

2B33= (3311—312—2344), (7)
and
4P231[011(—2344)—033313]
=P123[40'11331—033(3312—311—2344):]- (8)

Both these relations are satisfied within experimental
accuracy. The remaining relation was not found but is
known to be of order higher than sixth in the mobilities.

The experimental data can also be tested against
special model configurations. It is possible to rule out
the case that holes alone contribute effectively to the
GM effects, for in this case the following relation must

obtain:
Bj1/Biz=03P 231/011P123- (9)

Experimentally, the left- and right-hand sides of (9)
are 2.67 and 1.25, respectively. The constants involved
are among the most accurately known. For (9) to be
satisfied, the experimental values must lie far outside
the limits of error. We thus conclude that both carriers
make a significant contribution to the GM effects.

Another special case can be ruled out immediately:
that the angles of tilt for the surfaces belonging to both
bands vanish. The resulting scheme has symmetry 6.
For this case the constants Bjs, B4, and B vanish
identically. We therefore conclude that at least one set
of ellipsoids is tilted.

VI. COMPUTATIONS. SPECIFICATION
OF BAND STRUCTURE

In this section we will describe a method for searching
rationally for the 9 parameters, if such exist, which when
inserted into the expressions for the GM effects obtained
in Sec. V, give agreement with the measured MC
constants.

It was not found possible to solve directly for the
parameters, partly due to the nature of the equations,
and partly due to problems in distributing experi-

mental errors. The Eqgs. (4) and Table IIT were there-
fore recast into a form which would allow a systematic
search for the best set of parameters.

Let us define measures of the electron and hole mo-
bilities as follows:

pitpetus= fS; vitretvs= (1 - f)S,

where (10)

S= (2611+U33)/8N.
Let us further introduce the dimensionless parameters

21=u1/fS; y1=us/fS; z21=us/fS; 11)
xe=v1/(1=1)S; y2=vs/ (1= £)S; 22=0s/ (1= f)S.

With the above definitions, the physically meaningful
range for the s, s, and #’s lies between 0 and 1, since
all mobilities must be positive and no single one alone
is responsible for the total conductivity. It is also con-
venient to introduce reduced conductivities and inverse
Hall constants.

E1(1) = y1+a?vi+-6:221;
mi(1) =x21+ B2+ a’s1) ;

E3(1) =821+ ar’;
7l'3(1) =M (a12x1+ﬂ1221) 5
(12)
with analogous expressions for quantities carrying the
subscript 2. Note that =;+Z;=1. It is now possible to
write the following relations between experimentally
observed ratios of numbers, and the unknowns N, f,
and the reduced expressions of Eq. (12).
FE(()+ (= NE(2)=201/ 201+ 0355) =51,
53(1)+ (1“f)53(2)=0'33/(20'11+¢733)=53,
f271'1(1) - (1“‘f)21r1 (2) = 6NC>< 2P231/ (2011+033)2,
Frrs(1)— (1= f)*m3(2)=eNcX Pras/ (2011+033)%,
Fors(DEL(Q)+ (1= f)*mrs(2)E(2)
= (eN¢)22B13/ (20114 033)3,
S (DEs(D)+ (1 f)*r1(2)Es(2)
= (eN¢)*2B31/ 2011+ 033)%,
Fors(DEs ()4 (1— f)Prs(2)E5(2)
= (eNc)*(—2Bu)/ (2011+033)%,
Frri)E (D)4 A= fPr(1)E1(2)
= (8N€)2 (3812—' Bu— 2344)/ (2011+033)3.

(13)
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These eight equations are not independent. Because of
Eq. (8), the last four equations contain one relation,
and because Si+S;3;=1, the first two contain another.
Thus, we have six equations for the eight independent
unknowns N, f, and, say Ei(1), Ei(2), m(1), m(2),
w3(1), w3(2). They fall conveniently into two groups,
such that for given values of V and f we can consider
Eq. (13) to define fully the reduced quantities of
Eq. (12).

The application of the method is somewhat compli-
cated because the relation of (8) is not satisfied exactly
by the experimental data. However, by a least-squares
distribution of errors, automatically stationary in f and
N, it is possible to derive a consistent set of parameters
for the right-hand side of Eq. (13), and therefore solve
for the =’s and «’s for given f and .

Once the E’s and #’s are known, all parameters intro-
duced in (12) are determined:

yi*=3Ei[ 1% (1—4dm/EP)H],
a=3(1—y)
X {1—[1—4(m1—y:Es)/ (1= 92,
at=3(1—y")
X+ —=4(m—yEs)/ 1=y 11},
(@)= (Bs—x1)/ (31— x1").

The indices # and / refer to solutions based on the
upper or lower sign of the radical for y. The choice of
sign before the radical of z;* and x;* corresponds to a
particular choice of reference coordinates. With such
choice we may require only that By and By, have the
proper relative signs.

The systematic fitting of the data then involves the
following steps:

(14)

(1) Determination of the range of f and NV leading
to solutions of all the parameters in Eq. (14) lying
between zero and unity. These are the conditions for
positive mobilities and real angles of tilt.

(2) For a given f and N in this range, all MC con-
stants can be computed and compared to experimental
values; only those sets are retained for which By and
By, have the same sign, as found experimentally.

(3) Each acceptable solution is compared quantita-
tively to the experimental values by a least squares
measure of over-all fit, and all solutions are classified
accordingly.

The problem was run on an IBM 650 computer. For
fixed input data (the experimental constants), the
program sought solutions by varying f and N through
ranges established by extensive hand and machine
computations. The input was varied so that all combina-
tions of the o’s and P’s within experimental error were
explored.

The search led to many real solutions. However, only
one type of solution, characterized by parameters in a
definite neighborhood, gave good agreement between

AND BAND STRUCTURE OF Sb 1385

TaBLE IV. Best values for the parameters appearing in the
theory and comparison of experiment and theory using these
parameters. The computed and measured conductivities and in-
verse Hall constants agree within 19,.

Carrier density N =3.74 X101 cm™3

Hole mobilities Angle of tilt Electron mobilities Angle of tilt
(108 cm?/volt-sec) for holes (108 cm?/volt-sec)  for electrons

v1 w2 v 23 31 p2 u3 Y1

3.56 3.30 0.13s 63.2° 0.154 4.05 1.1s 30.7°

Constant 8Bu1 8Bi: 2Bis —4Bas —4Biz —2Bsu 2B Bas
Theory 378 955 827 T.1s 3.45 5.01 216 3.5
Experiment 32 92 8.5 7.6 3.5 4.4 224 39

experiment and all the computed constants. The values
of the parameters for this solution are listed in Table IV
and lead to the computed values of the MC constants
as shown. The surprising, and gratifying, aspect of this
result is, first of all, that the good solution is fairly
unique, and furthermore, that it is reasonable. The
density of carriers is in the anticipated range, the mo-
bilities of electrons and holes are of similar and large
magnitude and show pronounced anisotropy. Both sets
of ellipsoids are tilted, and both contribute appreciably
to observed effects, with the holes somewhat pre-
dominant. The assignment of angles of tilt was made
according to the following prescriptions: In the experi-
mental work, the polar direction of the threefold (z) axis
was chosen so that xXz points down the slope of the
secondary cleavage. With the convention adopted above
for the positive direction of tilt, these definitions com-
pletely define the orientation of the mobility ellipsoids.

Because of the closeness of the value obtained for the
tilt of the electron mobility ellipsoids and the angle of
one face of a Jones zone for Sb,® it is reasonable to
assume tentatively that the electron overlap occurs on
the (221)-type faces while holes are left on the (110)
faces.

VII. DISCUSSION

The parameters listed in Table IV are the result of a
systematic search for all possible physically acceptable
fits of the model to the experimental data, and selecting
the best set among these. We now discuss their nu-
merical significance, the model upon which they are
based, and the conclusions to which they lead.

Because of their interrelation in determining the
parameters, it is very difficult to estimate how sensitive
the results are to variation in the input data. Small
changes can always be produced in this manner, but the
experience of the program indicates that rather wide
changes in the input data still lead to a “best” parame-
ter set in the same neighborhood, defined by a given
ordering in magnitude of the various principal mobili-
ties and approximately constant angles of tilt. At least
to this extent, and very likely to a rather more definite

8 N. F. Mott and H. Jones, The Theory of the Properities of Metals
and Alloys (Dover Publications, Inc., New York, 1958), p. 167.



1386 S. J.

TaBLE V. Comparison of Shoenberg’s de Haas-van Alphen data
with the present results for holes. The isotropic hole relaxation
time is taken to be 7,=1.1X1071 sec.

Parameter Shoenberg Present results
N (1073 carriers/atom) 1.1 1.05
»1 (108 cm2/volt-sec) 4.0 3.5
vs (108 cm?/volt-sec) 3.0 3.30
v (103 cm?/volt-sec) 0.134 0.135
¥ 55.2° 63.5°

degree with respect to actual mobility anisotropies, the
results reflect a basic connection between the experi-
mental results and the model which is relatively in-
sensitive to variations in detail of the former. Because
the hole contributions to most measured constants pre-
dominate, most confidence should be placed in their
parameters.

Of course, the model itself includes a number of more
or less arbitrary assumptions. An essential part of the
calculation of the GM constants is based on an isotropic
relaxation time, so that the energy surfaces alone must
account for the anisotropy in transport properties. For
highly anisotropic energy surfaces, an argument due to
Herring?® suggests that this assumption is justified, since
intravalley scattering can explore only one direction in
reciprocal space regardless of the initial and final elec-
tronic states. The assumption of simple bands is an
arbitrary one, but, once made, leads automatically to a
multivalleyed model, as implied by nonvanishing Bs,
and By, and supported by the rather large value for a
shear coefficient of piezoresistivity®!! i (r1+274)
which would vanish if the energy surfaces are single
ellipsoids of revolution. A multivalley structure has also
been found necessary by Shoenberg® to explain the
de Haas-van Alphen data. It is, of course, possible that
all of these explanations really involve merely a multiple
ellipsoid representation of a more complex band struc-
ture. In that case, experiments involving different
averages should lead to different representations.

Shoenberg has been able to interpret the de Haas-
van Alphen effects in Sb by assuming a single set of
three energy surfaces tilted about the crystal binary
axis, with inverse effective masses, expressed in a prin-

 C. Herring, Bell System Tech. J. 34, 237 (1955).
10 M. Allen, Phys. Rev. 43, 569 (1933).
11 R. W. Keyes, Phys. Rev. 104, 665 (1956).
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cipal axis system, given by

'}’ﬂo/mH: 200, mU/’ngz: 068, mo/m33= 154, ¢= 34:.80,
(15)

and with a carrier density N=1.1X10"3 carrier/atom.

This density agrees fully with our results. If the re-
laxation time is isotropic, the inverse masses must be
compared to our mobilities. Good agreement with our
holes is, in fact, obtained if »» and »; are interchanged
and if ¥, is replaced by its complement. This transfor-
mation corresponds to keeping the conventions in our
theory fixed and letting x — —x, y — —y. We assume
that Shoenberg’s choice of either polar x or positive ¥
was opposite to that of our theory. Combining the trans-
formation 2— 3, 3— 2, ¢y — 7/2—y with an assumed
hole relaxation time 7,=1.1X10"" sec, Shoenberg’s
data can be cast into a form comparable to ours, as ex-
hibited in Table V. The agreement shown there is very
good and indicates strongly that both types of experi-
ment are consistent with the same model. It further
implies that the Sb band structure remains basically
fixed between liquid helium and room temperatures,
and it also supports the isotropic relaxation time as-
sumption. We conclude that the carriers responsible for
the observed magnetic susceptibility oscillations appear
to be holes.

Our results indicate that, under favorable conditions,
a complete set of conductivity data can be analyzed
systematically to lead to a fairly unique specification of
band structure. Of course, such procedure will not be
successful in all circumstances and even for antimony
the assumptions which went into the model probably
limit its applicability to the understanding of properties
not too sensitive to band structure details. Neverthe-
less, the completeness of the specification of the band
structure from relatively straightforward experiments
to which the method leads makes it a natural guide for
more detailed exploration.
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