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In an anisotropic ferromagnet the Curie temperature is a function of the direction of the magnetization.
The Curie temperature is high in easy directions, and can drop quite low in harder directions for an ani-
sotropy energy comparable to the exchange energy. Magnetization curves as a function of temperature
also depend upon the orientation. In sufficiently hard directions, the magnetization drops from a large value

precipitously to zero at the Curie temperature.

I. INTRODUCTION

N another paper,! there is discussed from a per-
turbation theory viewpoint the variation of the
magnitude of the magnetization as it is rotated with
respect to the crystal axes in an anisotropic material.
Briefly, it results that at constant temperature the
magnetization is larger in easier directions than in
hard, because the anisotropic forces tend to compress
the spin cone in easy directions, and spread it in hard
ones; in an easy direction the magnetization will drop
off from saturation more slowly (as a higher power of
the temperature) than in an isotropic material and in
a hard direction somewhat faster. However, when
perturbation theory is employed, the Curie temperature
is independent of the orientation of the magnetization.
In this paper we consider a case in which the ani-
sotropy energy can be comparable to the exchange.
Our model is a quantum-mechanical internal field
Hamiltonian with a one ion anisotropic term of uniaxial
symmetry, which we treat exactly.

To simplify evaluation of our final equation and to
avoid an additional parameter we do not keep an
external field term in the Hamiltonian, and this requires
some explanation. To rotate the magnetization away
from the easiest direction, an external field is required,
a very large one in highly anisotropic materials. This
field of course will markedly affect the magnitude of
the magnetization at high temperatures, and will
eliminate the Curie point entirely, if the magnetization
has any component along the field. In any case, because
of domain and saturation effects it is practical to use
strong aligning fields. One then makes measurements
at a number of field strengths, and extrapolates to zero
field.

II. CALCULATION

Consider the magnetization to lie in the ¢ direction
at an angle 6 with the z axis. The component of the

moment of an ion along the magnetization is gupS;.
The magnetization per unit volume is #gug(S;) and the
internal field is yM, if # is the number of ions per unit
volume and v the internal field constant. In a uniaxial
material the anisotropic term can be conveniently
expressed in the form

v=QAa/B)[S—3S(S+1)]. (1)

Aa/B is the microscopic anisotropy coefficient of the
term with P, symmetry; if it is positive the z axis will
be the hard direction. Let

a=p(gus)’ny, @

with 8=1/kT, and (gup)*ny the exchange energy. Then
the Hamiltonian per ion is

h=—(a/B)(St)Ss+ (Na/B) (S —3)+ (a/28)(S). (3)

The constant part of the anisotropic term serves to
give the Hamiltonian a vanishing trace. Because it is
temperature-dependent, the Hamiltonian must contain
the third term (a/28)(S¢)%. The origin of this term is
discussed in reference 1. This term is important in the
free energy ; however, insofar as we use the Hamiltonian
only to calculate thermal expectation values, this term
is a constant which factors out and cancels in the density
matrix. We consider a spin-one system, as this is the
lowest order spin algebra that can support P, symmetry.
The magnetization is determined implicitly by

tr(e=4S;)

(St)= m- 4)

Equation (3) for % is to be substituted into Eq. (4).
It is convenient to work in a basis in which .S, is
diagonal. The operator to be diagonalized is

s (S;) cosf— A (St) (cosQz—1 cosy,)/V2 0
——=|(S¢)(cosQ,+1 cosy,) /V2 2\ (Se)(cosQs—i cose,)/VZ | ()
’ 0 (Se) (cosQot1i cosy)/V2 —(S;) cosf—IA

* A preliminary report on this work was presented at the Sixth Annual Conference on M agnetism and M agnetic Materials, New York,

1960 [J. Appl. Phys. 32, 221S (1961)].

1 E. R. Callen and H. B. Callen, J. Phys. Chem. Solids 16, 310 (1960).
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The eigenvalues are the roots of the cubic

(0)

23— c1x—+co=0,
in which the quadratic term vanishes because

The coefficients are

co=1A(3 cos?0—1){S¢)2— (2/27)N3,

a=(Se)* 3% 8
As the operator of Eq. (5) is hermitean, the eigenvalues

are real, the discriminant of the cubic is negative, and
the roots are given by

C1 i d) 21k
xk=2(—) cos(~+——), k=0,1,2. 9)
3 3 3
where
—60/2
cosp= -, (10)
(c1/3)}

To evaluate the numerator of Eq. (4), rather than
rotate S; to the diagonal basis, it is simpler to rewrite

Eq. (4) in the form
axk /Z
eaIk ea.’b’k-
(St k

Spy=2
k
It will be seen that if A=0, this expression reduces to
the familiar spin 1 Brillouin function. Equation (11),
together with the expressions for the roots, specifies
the magnetization ((S¢)) as a function of the tempera-
ture (1/a), for all values of the ratio of anisotropy to
exchange energy (\) and the orientation of the mag-
netization (cosb).

(11)

A. Magnetization Along the z Axis

It is helpful to consider first a special case in which
Eq. (11) simplifies. When cos#=1, the roots of the
cubic are

—HSn, 3\, and —P=(Sp.  (12)
Equation (11) then becomes
€K 55) — g=o(51)
(Soy= (13)

PLC +ea)\+e—a( Sg—)'

It is convenient to consider the right side, 7, of Eq.
(13), as a function of (Sy). The solution of Eq. (13) is
that value of {S;) for which r=(S). (St)=0is a solution

for all A and a.
e 5¢)

limr= {Se)s=0. (14)

a—0  pa(St) _*_ea)\,
Here, for A<1, there is a self consistent solution
(Sp)=1, but for A>1 the only solution is (S;)=0. Thus
for A>1, the only solution of Eq. (13) at all tempera-
tures, is {(Sy)=0. And for A<1, (S;) starts out as 1 at
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a= o and drops off to zero at some finite a.. Expand »
for small (Sy):

: [<S>+az(1 — Yoo |9
e T3 1+%e)‘“) ; ]

Equation (15) suggests several regions of behavior of
Eq. (13).

i. 2<0.

At large a the function 7((Sy)) starts at small (S¢)
with slope @, and with positive third derivative. As a
decreases, the crossing moves downward. At =3, the
initial slope of 7 is still greater than 1, and the third
derivative becomes negative. The Curie point is reached
when the initial slope of 7 is one, with negative third
derivative:

Go=141ere, (16)

At A=0 we regain the limiting condition of the Brillouin
function,

a,=3.
In Fig. (1) we plot Eq. (16), which is more conven-
iently written as

A= (In2)(e.—1)/a., (1n

for all values of @, though we shall see shortly that
this equation loses validity for A>0.4621.

ii. 0<\<0.4621

At large @ there are two crossings of the 45° line by
7, the upper one being significant. With decreasing a
there is only one crossing, the slope rises to some
maximum value and then decreases, and the third
derivative changes sign as @ drops below 3. The Curie
point is determined by the smaller solution of condition
(16). At the upper end of the range, when A=0.4621,
a,=3. The third derivative is zero at the lower tangency.

111, 0.4621<\<0.40631

For A>0.4621 the third derivative remains positive
for all ¢ down to the Curie temperature. At large @
there are two crossings of the 45° line. After a goes
through the upper solution of Eq. (17), there is only
one solution of Eq. (13). Then 7 rises above unit slope
to a maximum slope, and with further decreasing a,
7 drops again to the lower solution of Eq. (17), but still
with positive third derivative. There are again two
solutions of (13), the larger being significant. It is
helpful to look for small {S;) solutions of Eq. (13) by
substituting Eq. (15) for the right side of (13). In
addition to the (S¢)=0 solution, one finds

1+iere—a

] 1
-%a3[%—(1+%w)—1]} (18)

so=|
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F16. 1. a., which is inversely proportional to the Curie tem-
perature, vs A, along the z axis. The solid line, which is the correct
solution, is determined by the “initial tangency condition” up to
a.=3. The dashed line is the continuation of Eq. (16) above a,=3.

For A<0.4621 both numerator and denominator are
negative, and there are small, real (S;) solutions.
However, for A>0.4621, the denominator (the third
derivative) remains positive as ¢ decreases, and (S;)
drops discontinuously to zero from some value at which
the small (S;) expansion is invalid. For ¢ slightly
greater than the lower solution of Eq. (17), 7 rises with
slope less than unity and crosses the 45° line twice.
The limiting @, is that one for which  rises to just touch
the 45° line. There does not appear to be a simple
explicit expression for @, in this range, but ¢ is plotted
vs A in Fig. 1.

. 0.4631<N<1

7 starts with small positive slope and third derivative,
at large a. There are two crossings, approaching (S¢)=1
as ¢ — «. As a decreases, 7 rises in initial slope, but
never reaches slope one. The upper crossing moves
down to a finite value at which the r curve just touches
the 45° line. This determines a.. As X approaches one,
a becomes infinite, and the Curie temperature goes to
0°K.

9. 1<

When the anisotropy energy exceeds the exchange
energy the only solution of Eq. (13) is (S¢)=0, as
previously discussed.

B. Discussion of the cosd=1 Case

In Fig. 1 we show the solution of Eq. (16) over the
entire range of positive a. This curve gives the correct
Curie point @, up to a.=3. Above this value we also
plot the correct solution for @, vs A. For large negative
A, a. approaches 1, that is, 27", approaches the exchange
energy. As A rises to zero, the anisotropy energy becomes
less helpful in holding the spins together, and the Curie
temperature drops to k27 .=%-exchange energy at A=0.
Positive N corresponds to harder directions. Here the
anisotropy tends to spread the spins apart, and the

—_—

F16. 2. Magnetization as a function of temperature in the
2z direction, for various values of A.

spontaneous ordering disappears at a lower thermal
energy. As the hard anisotropy approaches the exchange
energy (A — 1), the Curie temperature drops to 0°K.
In Fig. 2 we plot magnetization curves for a number
of values of A\. For any particular exchange energy,
rising 1/a corresponds to increasing temperature. For
A less than 0.4621 the magnetization drops smoothly
to zero, but in the region in which \ is greater than
0.4621, the magnetization drops abruptly to zero.

C. Curie Temperature

The analysis of the relatively simple case in which
the magnetization is along the z axis shows that the
Curie temperature is determined by the usual lowest
order condition (tangency at the origin) only for A less
than a particular value. In this range of A for which this
tangency condition is valid it is possible to derive an
expression for the dependence of the Curie temperature
on orientation which reduces to Eq. (16) for cosf=1.

Let
p=9S)*/N, (19)
and
Py=3 cos?—1, (20)
and expand cos¢ in Eq. (10). This leads to
(1+P2)* (3+P2)
sepiPp| =]

and

§+P:) (1+Py)?
cos(¢/3)%1-£(1+P2)+p2[( ) ) ] (22)
18 36 35
In Eq. (9) we find

2

2\ P P
xog——[1+—<1—%P2>+-(—1+%P2-P22)]. (23)
3 9 35

From Eq. (9),

w1=—$20—V3(—}c1)! sin(¢/3), (24)
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and
ra= — 30 V3(— 34 sin(e/3),

So that we must find the approximate expansion for
sin(¢/3) from Eq. (21) this is

sin(¢/3)=23 (14-Py)pt.

From these equations we get

—X\ 14 P\? ?
e A
3 3 9

(25)

(26)

P2
+§<—1+%P2—P22>], @7

—-A 14+PN\?  p
xgg——[1—( ) PHH—(1—4P))
3 3 9

2
+%(— 14+5P,— Pzz):l. (28)

It is our intention to expand up to the lowest order
terms in p and to substitute into Eq. (11), in the more
convenient form

axy 1 axk ark
Zk: e —Zk: (—55 PR . (29)
This will lead to an equation of the form
A(Na,Py)p*+B(\a,Ps)p+C(\a,P2)=0  (30)

in analogy with (15). But now the equation is too
complicated to allow of the easy analysis of section A,
so we content ourselves with the determination only
of the Curie point a.(A,P2) without investigation of the
region of validity of Eq. (30). Hence in our expansions

gl-—

3 1 1 1 1 1
T2 L5 1.0 5 o -8 -1

-<—'(3 Cos*0-1)

F16. 3. Curie temperature as a function of direction in the
“initial tangency” region, for various A.
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in Eq. (29) we need only find the constant term
C()\,(I,Pz).
To this approximation, from (24), (25), (27), and
(28),
Zk eazkge2)\a/3+ze—ka/3, (31)
and

34

- —(1—3Py),
(Se) 0(Se) A9

s O]

1 asz 3|: (I—I—PQ)% _qz_ i 1P):|
(S S A ;)TN

1 Gxo

Expanding the exponentials up to terms of order 1 in
9, and multiplying by (32), gives

1 0xy N /3|: 4 ( . ):|
— e he?hald —(1—3 P,
T (Sy) 8(Sp) an

R L) B

Substituting (31) and (33) into (29) yields

1+P, 1 2 2
(————)ac— I:————(l —3P;) :Ie“c: 14+—1—3Py).
3\ 3\

3 2
(34)

This equation determines . as a function of A, the ratio
of anisotropy to exchange, and P, the direction of the
magnetization. When the magnetization is along the z
axis, P,=2, and Eq. (34) reduces to Eq. (16). The
upper bound on A for which this “initial tangency”
condition (34) indeed determines the Curie point has
not been investigated. But in Fig. 3 we plot 1/a, as a
function of Py(cosf) for a number of values of A\ within
the range of validity of Eq. (16). It is seen that for
positive A, when the 2 axis is the hard direction, the
Curie temperature is lower than in an isotropic material
(A=0). As the magnetization is rotated toward the easy
direction, 7', rises, for any particular exchange inter-
action, reaching the isotropic value near P,=0, for
small A, and rising to a maximum in the easy direction.

D. Range of Validity

We have envisioned a series of measurements in
which an external aligning magnetic field is reduced in
magnitude, and the resultant moment extrapolated to
zero field. But if the anisotropy energy is larger than
the exchange, in relatively hard directions, the presence
of the external field will have a critical effect on the
magnetization, and its omission leads to troubles with
the second law of thermodynamics. In this section we
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wish to consider the limits on A, for any particular
orientation, within which the magnetization behaves
properly at zero temperature. For A outside this range,
our treatment would lead to a reduced magnetization
less than one, and a nonzero entropy at zero degrees.
The inclusion of the external field is then essential.

In Eq. (11), if xo specifies the largest root, which
must be greater than zero by Eq. (7), it will be seen

that as T— 0,
axo

(Sr) — (35)

720 ()

From Eq. (6), differentiating with respect to (S¢) and
collecting terms,

61’96—60’

¥ = ,

3xt—cy

(36)

where the prime designates differentiation with respect
to (S¢). Then from Eq. (35), to have {(S¢)ro0— 1, we
require that

(37

in the limit. Solving for xo, and substituting the ap-
propriate values of the coefficients from Eq. (8),

1HEAPHEN— N3

Xo= .
14-APy+22

It will be seen that when P,=2, this reduces to the root

x=1—3\, of Eq. (12). We must now ensure that this

root of unit derivative is indeed the largest root. For

example, in the case P,=2, with one root equal to

1—3), the cubic can be factored, and the next largest
root is found to be equal to ZA. Setting

1—3\>3,
we find our solution to be acceptable only if

A<,

3x02— 1= Cllxo— C(),

(38)

(39)

(40)

which is the limit previously discussed.
In general, utilizing the relations

2ok k= 0,
Xo¥1+ X Xet Xoxo= — C1,
Hk Xr= — Co,

we solve for the next largest root, x;, which is the
larger solution of

(41)

x12—|-xox1— Co/xo = 0, (42)
and of
22 +xow1 a2 —c1=0.
Setting
x1 < %0, (43)
the limiting conditions become
%02 (co/2)} tsp)=1, (442)
%02 (c1/3)} ¢spy=1, (44b)

1377

with «, given by Eq. (38) and ¢o and ¢; by (8). The more
restrictive of conditions (44) must be satisfied. It is
cumbersome to solve these for A as a function of
Py(cosh).

In the case of Py(cosf)=2, both conditions reduce to
Eq. (40). In the case Py(cos)=0, condition (44a)
becomes

1+ H502>0,

which is satisfied for all A\, while condition (44b)
becomes
A<0.797

In the case Ps(cosf)= —1, inequality (44b) becomes
—9<A.

Thus, if we restrict A to be less than 0.797 and greater
than —1, we are able to consider experiments in which
the magnetization is rotated in direction, at any tem-
perature, without fear of violation of the requirements
of thermodynamics, and without explicit inclusion of
the external field.

E. Magnetization in an Arbitrary Direction

When the magnetization is in other than the z
direction, the operators in the Hamiltonian no longer
commute, the cubic does not factor, and the solution
of Eq. (11) is something of a chore though the quali-
tative nature of the solutions turns out to be much the
same. With the aid of the NOL 704 computer, we have
obtained solutions for several values of A, varying both
a and the angle 6. In Fig. 4 we plot a few representative
curves of the magnetization, (S¢), as a function of
orientation, for particular choices of reduced tempera-
ture and anisotropy ratio A. Both the continuous and
discontinuous curves occur. The most dramatic results
are to be found at low @ values, at temperatures close
below the Curie temperature in the easy direction. For
example, in the case of A=0.5, a=1.75, when the mag-
netization lies in the basal plane, (S;) is about 0.7. As
the magnetization is rotated toward the z axis its

1.0 _a=4 1 =0.2 a=4 =0 4

a=l75 =0

T

o]
.9
.8
7
6
S
4
3
2
I
(_)

| o i 2
(3cos*@9=])——n

F16. 4. Magnetization as a function of direction for various
temperatures and .
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magnitude drops, going to zero when (3 cosf—1) is
equal to 0.72. For comparison, the values of (S;) for
no anisotropy, for the two particular temperatures
selected, are shown on the figure.

III. DISCUSSION

We have diagonalized exactly the Hamiltonian of a
spin 1 ferromagnet with uniaxial anisotropy, in the
internal field approximation. The results, first of all,
confirm an earlier perturbation calculation’ on the
orientation dependence of the magnetization. The
magnetization drops off with increasing temperature
more slowly (as a higher power of T') than the isotropic
magnetization, in easier directions, and more rapidly
(lower power of T") in harder directions. This is consistent
with observations which have been made in easy di-
rections on several metals. For example, Behrendt,
Levgold, and Spedding? have found the saturation
moment of dysprosium to follow a 7 rather than a
T% law, in the easy direction, which is in the basal
plane. Niira® has carried out an anisotropic spin-wave
calculation, for this case, which agrees with experiment.
Recently Argyle and Pugh* have measured the tem-
perature dependence of the magnetization of nickel,
and find a 1.6 power law to be approximately correct.
It would be worthwhile to measure the temperature
dependence of the magnetization in the hard direction
of a sufficiently anisotropic material, to see if it indeed
drops off as a lower power of the temperature than the
three halves. It is interesting that in dysprosium
Behrendt, Levgold, and Spedding find that, with the
magnetic field parallel to the ¢ axis, the magnetic
moment is a linear function of the field, as is true of the
moment in the basal plane above the Néel temperature.
The paramagnetic Curie temperature obtained for the
field in the hard direction is 121°K, while that in the
basal plane is 169°K. The complicated spin arrange-
ments now being uncovered in the rare earths dis-
qualify most of them for a direct application of the
present analysis.

Charap’ has also considered the effect of magnetic
anisotropy on the magnetization. As the isotropic
states he uses spin waves, and the perturbation, which
is taken as pseudodipolar coupling, is carried to second
order, to arrive at an anisotropic magnetization with
cubic symmetry, which is the case Charap treats. The
result here is exactly the opposite of our own; the
magnetization is reduced in easy directions and en-
hanced in hard ones. This interesting result comes
about by the nature of second order perturbation
theory, Charap points out.

However, Charap’s treatment is restricted to the

2 D. R. Behrendt, S. Levgold, and F. H. Spedding, Phys. Rev.
109, 1544 (1958).

3 K. Niira, Phys. Rev. 117, 129 (1960).

4B. E. Argyle and E. W. Pugh, Bull. Am. Phys. Soc. 6, 125
(March 20, 1961).

§S. H. Charap, Phys. Rev. 119, 1538 (1960).
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low-temperature range, in which spin-wave theory is
valid, while our molecular field treatment is reasonably
good in the neighborhood of the Curie temperature,
with which this paper is primarily concerned.

While the present expanded version of this research
was in progress there appeared a related analysis of an
antiferromagnet with uniaxial anisotropy. The author,
Cooper,® investigates the temperature dependence of
the sublattice magnetization in the easy direction only,
and finds, in agreement with the present work, that the
reduced sublattice magnetization is shifted noticeably
upward from the Brillouin function. Where the present
work is restricted to the internal field approximation,
Cooper also considers the effect of spin correlations.

For very anisotropic materials the shapes of the
magnetization vs temperature curves depart markedly
from the Brillouin function, even dropping discon-
tinuously to zero from quite large values of the reduced
moment. Dwight and Menyuk’ have measured the
magnetic properties of a single crystal of MnsO4 as a
function of temperature. They find the ¢ axis to be the
hard direction, with an anisotropy field of about 10°
oersteds, and with large anisotropy, about 10* oersteds
in the basal plane. The Curie temperature is about
42°K. Analysis of their data leads Dwight and Menyuk
to the conclusion that canted spin arrangements exist
in this material. Thus some of the spins find themselves
in hard directions which may be why the authors find
magnetization curves more “square” than a Brillouin
function, though again our analysis of a simple ferro-
magnet can at best be only qualitatively applied to a
complex spin arrangement.

For fixed temperature, as the magnetization is rotated
away from the easy direction, the magnetization drops
off in magnitude. In a perturbation calculation the
Curie temperature is, however, independent of the
magnetization direction. The question of the angular
dependence of the Curie temperature was raised by
Carr, when the results of the perturbation calculation
were first made known. Exact calculation now cor-
roborates this expectation; the anisotropy energy,
holding the spins together in the easy direction and
spreading them in a hard one, raises the Curie tempera-
ture in the former case and lowers it in the latter. This
is at least suggestive of the results of Behrendt, Levgold,
and Spedding discussed above. To achieve the unusually
large values of A of interest here, the materials must
have very low exchange energy, hence a low Curie
point, and a large anisotropy, hence usually lower than
cubic symmetry.

One such interesting material is ludlamite, which
Bozorth and Kramer? find to have a Curie temperature
of 20°K and a uniaxial anisotropy field greater than
12 500 oersteds, so that A is in excess of 0.1. Ludlamite,

6 B. R. Cooper, Phys. Rev. 120, 1171 (1960).

7K. Dwight and N. Menyuk, Phys. Rev. 119, 1470 (1960).

8R. M. Bozorth and Vivien Kramer, Colloque International
de Magnetisme, 1959 (unpublished), p. 329.
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which is monoclinic, is ferromagnetic along the easy
twofold b axis, but paramagnetic behavior was observed
in all perpendicular directions.

Another crystal of large anisotropy is pyrrhotite,
Fe;Ss, first studied by Weiss? and later by Weiss and
Foex.? In this hexagonal crystal the ¢ axis is hard, but
there is also considerable anisotropy in the basal plane.
At room temperature the crystal is paramagnetic along

® P. Weiss, J. Phys. radium 4, 469 (1905).

10 P, Weiss and G. Foex, International Critical Tables (McGraw-
Hill Book Company, New York, 1939), Vol. 6, p. 366.
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the ¢ axis, and ferromagnetic in the basal plane. Low-
temperature studies are unfortunately not reported.
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The energy band structure of antimony is deduced from room
temperature galvanomagnetic measurements and their interpre-
tation in terms of a theoretical model. A systematic series of ex-
periments is performed on oriented single crystals to measure all
the 12 components of the isothermal resistivity tensor through
second order in the magnetic field. The calculated galvanomag-
netic effects assuming simple, independent three-valleyed bands
for both the valence and conduction bands and isotropic relaxation
times for both holes and electrons, are shown to fit the data by
only one set of values for the 9 adjustable parameters in the theory.
These parameters are: a set of three principal mobilities u; and
v;, for electrons and holes, respectively; angles of tilt ¢; and ¢
of one of the principal axes of the electron and hole energy ellip-

I. INTRODUCTION

HE general features of the electrical conduction
processes in Sb have been known for some time.!
They are attributed to a small though degenerate
carrier population consisting of an equal number of
both electrons and holes, with at least one of the over-
lapping bands multivalleyed. The energy surfaces of
each valley are generally represented by ellipsoids
tilted with respect to crystal axes.

The purpose of the present work has been to carry
out a complete set of low-field room temperature gal-
vanomagnetic (GM) measurements and to interpret
these in terms of a general multivalley model for the
bands. If the model is qualitatively correct, this pro-
cedure will determine the band structure. Partial inter-
pretations of this nature have been worked out before
on sets of data which were sufficient to specify only

* Supported by the Office of Naval Research. Part of a thesis
submitted by S. J. Freedman in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy at the Polytechnic
Institute of Brooklyn.

1P, W. Bridgman, Proc. Am. Acad. Arts Sci. 63, 351 (1929);
K. Rausch, Ann. Physik 1, 190 (1947); M. C. Steele, Phys. Rev.

99, 1751 (1951) ; G. Busch and O. Vogt, Helv. Phys. Acta 27, 241
(1954); C. T. Lane and W. A. Dodd, Phys. Rev. 60, 895 (1941).

soids out of the base plane; and the carrier density N, the same
for both carriers. The best fit is determined by exploring syste-
matically a large number of possible solutions with the aid of an
IBM 650 computer. If the “1”’ directions refer to binary symmetry
axes and the “3” directions to those making angles ¥ with the
trigonal symmetry axis, the parameters have the values
u1=0.15,X103, pe=4.0sX103, pu3=1.13X10%, »1=3.54X103,
ve=3.3pX 103, »3=0.133X10® (all in cm?/volt-sec); ¥1=30.7°,
Y2=63.2°; N=3.7,X10% carriers/cm3=1.0;X 1073 carriers/atom.
The results agree well with Shoenberg’s de Haas-van Alphen data
if the carriers responsible for the observed susceptibility oscilla-
tions are holes.

special multivalley structures. In this work the empha-
sis is on a systematic analysis of an overcomplete set of
data permitting determination of all the nine parame-
ters of a general multivalley model.

The presentation falls into three parts: (1) A series
of experiments to determine all room temperature GM
constants through second order in the magnetic field;
(2) The calculation of GM effects for a model contain-
ing 9 adjustable parameters; (3) The adjustment of
these parameters to obtain a best fit with experiment
which then serves to specify quantities related to the
band structure.

II. EXPERIMENTAL DESIGN

If the magnetic field dependence of the isothermal
resistivity tensor can be expressed as a rapidly con-
vergent series in powers of the field, a relatively small
number of low-field measurements suffices to obtain all
pertinent GM information for a finite parameter model.
The number of independent coefficients appearing in the
expansion depends on crystal symmetry, and the iden-
tification of these phenomenological constants in the
Sb point group 3, for transport processes characterized



