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not fit here since even pure SrTi03 crystals exhibit
remanent polarization up to about 70'K, a temperature
slightly below the cubic-tetragonal transition point
( 80'K).

The dielectric properties of SrTi03 reported by other
authors" ""have the same trend as ours, except for
those of Smolenskii, "who observed a dielectric constant
peak between 20' and 30'K on ceramic SrTi03. One
possible explanation for this convict seems to be that his
sample was not very pure. Figures 5 and 12 show that a

"A. Linz, Jr., Phys. Rev. 91, 753 (1953)."G. A. Smolenskii, Izvest. Akad. Nauk S.S.S.R., Ser. Fiz. 20,
149 (1956).

small addition of Ca'+ (for example) can change the
dielectric properties of SrTi03 drastically.
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A study of the spin absorption lines of all orders was made. Rules for obtaining the absorption operator
of any line were found. With magnetic dipole-dipole and exchange interactions taken into account, and with
the assumption that the Zeeman energy is dominant, the zeroth and the second moments of the following
four lines were evaluated for powders: (1) Grst Larmor line, parallel Geld, (2) second Larmor line, parallel
Geld, (3) second Larmor line, perpendicular Geld, (4) low-frequency line, perpendicular Geld. The contribu-
tion of exchange to the second moment was found to be the same for the four cases treated, while the total
intensity has the ratio 1:1:1:3/2.Agreement with existing experimental data is good.

I. INTRODUCTION

HE 6rst Larmor line of a solid in a strong, con-
stant, and perpendicular magnetic 6eld, with the

magnetic dipole-dipole and exchange interactions taken
into account, was first studied by Van Vleck, ' who
calculated its shape function up to the fourth moment.
Later, Wright' extended the moment method and ap-
plied it especially to low frequency lines. In recent years
other satellite lines have also become of experimental
interest. ' Furthermore, in general, the Hamiltonian of
a single molecule is not necessarily the Zeeman energy,
and the method Wright developed cannot be applied
directly. It is the purpose of this paper to cope with
this situation. Rules will be given for obtaining mo-
ments of all lines, thus avoiding the elaborate deriva-
tion necessary in the previous method. The rules are

* The work reported here was submitted to the California
Institute of Technology in partial fulfillment of the requirements
for the doctoral degree.' J. H. Van Vleck, Phys. Rev. 74, 1168 (1948).

2 A. Wright, Phys. Rev. 76, 1826 (1949).' A. G. Anderson, Phys. Rev. 115, 863 (1959).

applicable to Hamiltonians of all kinds, provided that
the perturbing part of the Hamiltonian is small enough
for the perturbation method to be valid.

II. ABSORPTION OPERATOR

Let us assume that the Hamiltonian of a system is
described by

K Kp+K )

where K' is the perturbing potential small compared
with Xp.

Let us represent X' as an integral over its spectrum,

3C'= K' (pp) dpo,

where
L3Cp, 3e' (to))=tater'(co) .

Vnder an extremely small perturbing potential OR(t),
OK(t)«BC', the probability of transition from one state
to another, both eigenstates of K when t= 0, is propor-
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absorption operator of the line. Expression (8) is now reduced to, aside from a factor of 2r,

LX'(M. i),3n (Me)j
Q Di|, (Me)~(Me MO)+p g ~(Mai+Me MO)

A

LX'(M.2),LX'(M.,),oil, (M,)33+E EZ 8(Mai+Ma2+Me Mp)
e (AMa2) (AMa2+AMai)

Lx'(M-.) Lx'(M"-i), " Lx'(M-i) 3R(Me) j jj
~ ~ ~ ~ ~ ~ ~(Maa+' ' '+Mai+Me MO)+' ' '. (20)

(AM )(AM +AM i) . (AM + +AM i)

where

X Xp+X ~

3Cp= —HgP Q, 5„,

(21)

(22)

The terms neglected in (1S) give higher order cor-
rections to the absorption operator, line shifts, and
broadening of the absorption lines. We shall neglect
the higher order corrections to the absorption operator,
and take care of the broadening by the moment method
of Van Vleck. '

As an illustration of the use of (19), let us consider
a spin system in a strong, constant magnetic held, with
magnetic dipole-dipole and exchange interactions be-
tween the spins. This is the case investigated by Van
Vleck' and Wright. '

The Hamiltonian of this spin system is given as

The coefficients A, 8, C, D, and E are dered as

A,,=-,'LA;;+-', g P r,,
—(3~,, —1)$=-', (A,,+-,'Il„),

.—g2p2r .—2(3~ .2 1)

C"= 2
LA —g'p'r; 2(3y, '—1)j=-'(A; —8,")

D"=—3g'P'r" '(n '—P '—22n "P")(8

E = "ogp—or-2~2"(-n 2p —)"
(24)

where n@, P;;, and y;; are the direction cosines of r;;
(see Fig. 1) and A22 is the exchange constant defined

by Van Vleck. ' The reader should notice that the
Hamiltonian used here is the same as that used by
Van Vleck and Wright, with a slightly diferent nota-
tion. The truncated Hamiltonian defined by Van Vleck
is the part of the complete Hamiltonian which com-
mutes with 3'.0, and is therefore the sum of 3'.0 and 3'.0',

so we have
X'=3C'(0)+X'(—2gpHA ') 3Coo= Xo+Xo'. (25)

+X'(2gPHA ')+X'( gPHA ')+—3C'(gPHA ')

—=Xp'+X 2'+X2'+X i'+3Ci',

X'( 2gPHA-') =X—,'= P D,,S,S„,

X'(2gpHA ') —=3C2'= Q D;,*S,S;,

3C'(—gpHA ')=—3C i' ——Q E;,5+;5„

X'(gPHA ')=—3Ci'= Q E,,*S,S„

K'(0) —=3Cp' ——Q C,;5„.5.;+Q A JS+;5,.

The absorption lines centering at gPHA ', 2gPHA ',
and 3gpHA ' will henceforth be called the first, the
second, and the third Larmor line, respectively. We
will 6nd the absorption operators for these lines when
3K(t) is an oscillating magnetic Geld both in the 2: direc-
tion (perpendicular field) and in the s direction (parallel
field).

For perpendicular oscillating 6eld,

BR(t)=e '""gPS,=2e '""gPS++ 'e '""gPS— (26).
It is easy to identify 2gpS+ and —,'gpS as 3R(—gpHA ')
and 9R(gPHA '), respectively.

For the erst Larmor line in a perpendicular field,
Mo=gPHA ', and the lowest nonvanishing term in (20),

One readily may prove that LXO,X'(M)j=AMBC'(M),
and the definition here is therefore in agreement with
(3). A physical way to see this is to notice that S„S+,
and 5 change the s component of the spin by the
amount of 0, +1, —1, respectively. Therefore, Xp',
K O', K2', X. ~', BC~' change the s component of the spin
of the system by the amount of 0, +2, —2, +1, —1,
respectively; hence the energy changes are 0, 2gPH, —
2gPH', —gPH, "gPH, rrespectively.

FzG. 1. Coordinate
geometry used.
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which is called the absorption operator 0, is

0=DR(gPH) = ,'gPS— . (27)

[Xg',alt(gPH)] [Xg',-', gPS ]0= (28)

For the third Larmor line in a perpendicular field,
the lowest nonvanishing term in (20) is

For the second Larmor line in a perpendicular 6eld,
the lowest nonvanishing term in (20) is

For the second Larmor line in a parallel field,

[X2',gps, ] X2'
0=

2gPH H

For the third Larmor line in a parallel 6eld,

[X~',[X2',gps*]] LX2', [X~',gps*]10= +
(gPH)(3gPH) (2gPH)(3gPH)

gP[X &',Xg']

2 (gPH)'

(34)

(35)

[X,',[X,',—,'gps ]] [X2',[X2',—,'gps+]]0= +
(2gPH)(4gPH)

[x,', [xo'Agps ]]
(29)

(2gPH) (2gPII)

[X&',—',gPS+] [X g', —',gPS ]0= +
gpH gpH—

(30)

For the low-frequency line in a perpendicular fieM,
the lowest nonvanishing term in (20) is

For the low-frequency line in a parallel fieM,

[X,',[X,',gPS,]] [X,',[X,',gPS,]]0= +
(~~1) (~~1+~~—1) (~~1)(~~1+~~—1)

[x,',[x,',gps, ]] [x,',[x,',gpS,]]+ +
(5~2) (~~2+5~—2) (~~—2) (~~—2+~2)

(36)—gp[xg', X g'] 2gp[X2', X 2']

(Ao) g) (fi(u, ) (ba)g) (A(o g)

gP[xg,x g] gP[xg,x g]
Next, let us consider the parallel field case, i.e.,

5R(t) = e '""gpS,.

It is easy to see that

gps, =m(0).

For the first Larmor line in a parallel field,

(31)

(32)

(gPH)' 2(gPH)'

f(v)dv =Q ~
0,, )

'= Q 0;,0;;+
s ~ 7

=Tr(00+).

(37)

As is well known, and included here only for the
sake of completeness, the zeroth moment of a line is

[Xy',gps,] Xy'
0= (33) where 0+ is the Hermitian conjugate of 0.

In general, the 2nth moment of the absorption line is

(—1)"Tr([xoo, [XOO, ' ' '[XOO,O]' ']][Xoo,[XOO, ' ' '[XOO,O+]' ' ]])
p2 8

O'" Tr(00+)
(38)

where there are e 3'.00's in the above multiple commutation bracket.
Let us summarize the foregoing by formulating the rules for obtaining the absorption operator as follows:
(1) Choose the fewest number possible of X'(o& )'s, the successive applications of which together with the chosen

OR(cop) will give an energy change equal to the energy of absorption of the line of interest. (If there are several
ways of achieving this, all of them have to be taken into account. )

(2) The absorption operator is the sum of all the multiple commutators of the X(~ ) s with BR(cop), divided by
the weighting factor (kcoa„) (&~a +ha&a y)

' ' ' (AG&a +AG)a y+ ' ' '+AG)aj):

[X(~--),[X(~-=~), "[X(~-~),~(~~)]."]]0=/
aa al P (ACOaa) (AMaa+k(daa g) ' ' ' (AG)aa+ ' ' '+flMa1)

{39)

~aa+' ' '+~al+~P=~a

(3) The moments of a line can then be obtained by employing (38).
In the following four sections, moments of four absorption lines will be computed for a powder.
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III. SECOND LARMOR LINE, PERPENDICULAR FIELD

The zeroth and the second moments of this line are given as

f( )dv=Tr([X ',gPS ][g-PS+,& '])-/4g'P'H' (4o)

Now,

PCr', S ]=—Q E,,*S;S;,

&v') =
Tr([ass, [X.,',gPS ]]PCM,[H i',gPS+]])

h' Tr(PCr', gPS ][gPS~,~ i'])
(41)

[~„,[~„$]]=4 P (C,,Z,„*—A, ,Z,.*)$„$;S +4g C;,~.,*S.a;S;—4Z AvK;*$.,$-

+2 g Q;;@;S;$'; 2HgP g E—,, $,$,, (43)

and

Tr(PC o, PC S—]][Xs [BC—i S+D
=32H'g'P'S'(S+1)' Q ~

E;;~'/9+32$s($+1)'[2$($+1)/3 —s]

&((Q (C,,s+2A, s)
~
E;, ~')/15+64$'(S+1)' 2 ~

C„&, *—A.A-*Is/»
5s 7st+

+645'(S+1)'
(C,,Z,.* A,;Z,.*)(C;„E—,. A..&,,). (44)—

27

The details of the calculation are omitted and only the result is given here4:

[12$(Sy1)—9] (1 8 cos'8, 15 cos48,
(Avs) =- g r,;—"+$(S+1) P r,, 'r;„s~ —+

35 k2 7 14

8 8 cos'8, 6 cos'8, cos'tI,
+ P r;, 'r 'r ' ——+2cos'8„+—

7 7
(g 4p 4h'2 r ')

+([1.2($+1)—0.9]P A,Pr;; '+$(S+1) Q A,,A, r, 'r, , '( s+cos'8;)+4S($+—1) Q A;Pr, '/3
i jmg

—$(S+1) g A,gr, 'r, '(2 cos'8 ——', )—S(S+1) P A; A;,», 'r, , '(2 cos'8, —s)
Lr7 fan+

+2S($+1) Q A;,A; r, '/3)/(h'Q r;, ') (45)— .

The first bracket of the right-hand side of (45) is the dipole-dipole interaction contribution and the second bracket
is the exchange contribution, and (Av') is the second moment about the mean frequency.

With the usual assumption that the exchange constant A;; is zero except when i and j are neighbors, and is equal
to A in that case, we obtain for a simple cubic lattice

(Dv )= (1.08—0.038S (S+1) +[1.07 —0.13S (S+1) ']A d P g }Dv (46)

f(v) dv =0 56S'(S+1)'Eg'p'd .'H=' (47)

H. Cheng, IBM Research Rept. RJ—289, San Jose, California, 1961 (unpublished). See also H. Cheng, thesis, California
Institute of Technology, Pasadena, 1962, for the most complete treatment.
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and for a body-centered cubic lattice,

(Av~)= {1.13—0.03$ '(S+1) ~+[1.14—0.08$ ~($+1) ')A2d6P 4g 4}dv 2 (48)

f(v)dv=0 82$.'(5+1)'kg'P'd 'Ii ' (49)

Avo' ——3g'P'h —'S(S+1)g, r, '/5. "

~vo2 =5.04g4P4h-'$($+ 1)d-6

Av02= 7.37d4p'h 'S(S+1)d '.

For a simple cubic lattice,

and for a body-centered-cubic lattice
(52)

It is interesting to note that the cross terms between the dipole-dipole energy and the exchange energy, or the
terms linear in A, drop out after averaging over the whole solid angle.

Incidentally, the mean value of v,

The term d is the distance to the nearest neighbors and hvo' is the second moment of the first Larmor line for
perpendicular field,

( )= vf(v)dv

=Tr([Xoo,[X~',5 ]][5+,X. ~'])/h Tr([X~',5 ][5+,X ~']),

is calculated to be 2gPHh ', and the absorption is truly of the second Larmor line.

IV. FIRST LARMOR LINE, PARALLEL FIELD

The zeroth and the second moments of this line are given as

and

f(v)dv= Tr(Xg'X ~')/H',

(v )=Tr([XOOXq'][X q', Xoo])/fP Tr(Xq'X q').

(53)

(54)

After averaging with respect to the whole solid angle„we get

9 -
(Av')= 0.6S(S+1)——g r" "+S(S+1)P (-,' —cos'0;+-', cos40)r; 'r;„'

70 ', 7~ i, 7',mA

(1 2 cos'tt; 2 3 cos'0; cos'e, i+5($+1) Q l

—cos'8„+ ——— lr, 'r; 'r; ' (h'g 'p"p r;, ') '+(hv~') (55)

Here (Avz') is the contribution of the exchange energy to the second moment of the second Larmor line for
perpendicular 6eld. This means that the contributions of exchange to the second moments for these two cases
are equal.

For a simple cubic lattice,

(Av')= {0.90—0.02S '(5+1) '+[1.07—0.13S '(5+1) ']A'd'P 'g '}cavo' (56)

f(v)dv=0 56$'(5+1)'Ãg'P. 'd 'H ' (57)

and for a bcc lattice

(Av')= {077—0.01$ '(5+1) '+[1.14—0.08$ '(S+1) ')A'd'P 4g 4}hvo' (58)

f(v)dv=0. 82$'(5+1)'1Vg4P4d 'H '. (39)
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Incidentally, (v) is evaluated to be gvIIh . Notice that the total intensity (57) and (59) are equal to those of the
second Larmor line in a perpendicular field.

V. SECOND LARMOR LINE, PARALLEL FIELD

The zeroth and the second moments are given as

f(v)dv=
Tr ([gpS„X2')pC 2',gpS„.))=H 'Tr(3C2'3C 2'),

4g2p2H2
(60)

Tr(@coo,x2') [x 2',xoo))
V2

O' Tr(K,'K 2')

Averaging over the whole solid angle, we get

23 11 cos'0, 15 cos'8, )(Av')=5(5+1)g'P4I Q r;, 'r, ' —— +
I ', j,m~ 28 14 28

(61)

i 1,tnt

(1+9cos'8, cos'tj, —10 cos'8;+8 cos'8„)
+[12—95 '(5+1) ') Q r" "/35

7

X(h~ g r' ) +(Av& ) (62)

A,gain the exchange second moment is the same as
that in the previous cases.

The total intensity, J'0"f(v)dv, is also equal to that
in the previous cases, and the dipolar second moment,
for simple cubic lattice, is and

f(v)dv=0. 84S (5+1) 1Vg P d H (67)

For a simple cubic lattice, it is evaluated that

and for a bcc lattice, it is

(hv') = {1.38—0.045 '(S+1) '
(gv&) {047+[1 07 0 135—&(5+1)—|)

+[1.07—0.13S—'(5+1) ')A'd'g 'P '}cavo', (63) X+2d6g—
4p —4}pv02 (68)

and for bcc lattice, is

(Av') = {1.39—0.03S '(5+1)—'
+[1.14—0.085 '(5+1) ')A'd'g 4p 4}hvo' (64) f( )d vv1.235'(5+1)'jVg'P'd 'H ' (69)

VI. MOMENTS OF THE LOW FREQUENCY LINE
IN A PERPENDICULAR FIELD

The absorption operator for this line is

and

(6v') = {0.64+[1.14—0.08S—'(S+1)—')
XA'd'g 4P 4}hv ' (70)

pe, ',—,'gpS, ) pc, ', 2gpS )0=
gPH gPH

= (—P J",;5„5.;+-,' g F;;S,S+;)/H,

(65)
ACKNOWJ EDGMENT
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where Fij Eij+Ejj*
After the averaging process, the second moment for

this line is obtained as

(Av')=[3S(5+1)g'P' P r,~ 'r;; '
i'm/

X(1+8cos'tt; —9 cos'8;)/14)(h' g r;, ') '

APPENDIX

The following calculated results were used extensively
in the paper. Expressions (8)—(25) give the mean values
after averaging over the direction of the crystal axes
with respect to the magnetic field, and therefore are
useful for powders. The coordinates used are defined
in Fig. 1.

Again (hv~') is equal to that of the previous three
cases. (A2)Tr(5+5-) = 35(5+1),

+(gv„'). (66) Tr(5+5+) =Tr(S 5 .)=Tr(SsSM )
=Tr(5,5+5~)=0, (A1)
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Tr(S+SM,)= —Tr(SM+S.)= —,'S(S+1),
Tr(S+'S ') =2S(S+1)L4S(S+1)—3j/15,
Tr(S+SM+S )=4S(S+1)L2S(S+1)+1j/15,
Tr(S,'S+S )=S(S+1)L2S(S+1)+1j/15,
Tr (S,SM,S~)=2S(S+1)LS(S+1)—2j/15,

( 1
pimpjm/av 3 COSem&

(v' v'nj ). =o,

(y,„'yj„').,= (1+2 cos'8„)/15,

(y;m y;jyjm)av = (cos8+2 cos8i cos8„)/15,
~ ~2 . .2 . 2NJim Pij Pjm /av
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Four series over a simple cubic lattice were co
to within one percent of accuracy:
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The following four sums involving the exchange con-
stant were evaluated. With the usual assumption that
2;j is zero unless i and j are nearest neighbors, all the
four sums were obtained exactly.
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With the same accuracies discussed previously, the
following series for a bcc lattice were also computed:
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The following sum was also computed. Owing to the
slowness of convergence the accuracy is not good, but
again its contribution to the total sum is small and the
over-all accuracy is not greatly affected,
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where E is the total number of lattice points in the
lattice and d the lattice constant.

The following four series were obtained by summing
all the terms from the lattice points within distance 2d
from the origin. The error is admittedly large, and is
estimated to be around 25'Pq. However, in the calcula-
tion of this paper, the contribution from terms involv-

ing these sums tends to cancel, and as a result, the
over-all accuracy is not greatly affected.
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