DIELECTRIC STUDIES OF Ca,Ba,;_,TiO; AND Ca,Sr,_.TiO;

not fit here since even pure SrTiO; crystals exhibit
remanent polarization up to about 70°K, a temperature
slightly below the cubic-tetragonal transition point
(~80°K).

The dielectric properties of SrTiOj; reported by other
authors!6:12¢ have the same trend as ours, except for
those of Smolenskii,?® who observed a dielectric constant
peak between 20° and 30°K on ceramic SrTiO; One
possible explanation for this conflict seems to be that his
sample was not very pure. Figures 5 and 12 show that a

24 A. Linz, Jr., Phys. Rev. 91, 753 (1953).
% G. A. Smolenskii, Izvest. Akad. Nauk S.S.S.R., Ser. Fiz. 20,
149 (1956).
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small addition of Ca?* (for example) can change the
dielectric properties of SrTiOj; drastically.
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A study of the spin absorption lines of all orders was made. Rules for obtaining the absorption operator
of any line were found. With magnetic dipole-dipole and exchange interactions taken into account, and with
the assumption that the Zeeman energy is dominant, the zeroth and the second moments of the following
four lines were evaluated for powders: (1) first Larmor line, parallel field, (2) second Larmor line, parallel
field, (3) second Larmor line, perpendicular field, (4) low-frequency line, perpendicular field. The contribu-
tion of exchange to the second moment was found to be the same for the four cases treated, while the total
intensity has the ratio 1:1:1:3/2. Agreement with existing experimental data is good.

I. INTRODUCTION

HE first Larmor line of a solid in a strong, con-
stant, and perpendicular magnetic field, with the
magnetic dipole-dipole and exchange interactions taken
into account, was first studied by Van Vleck,! who
calculated its shape function up to the fourth moment.
Later, Wright? extended the moment method and ap-
plied it especially to low frequency lines. In recent years
other satellite lines have also become of experimental
interest.? Furthermore, in general, the Hamiltonian of
a single molecule is not necessarily the Zeeman energy,
and the method Wright developed cannot be applied
directly. It is the purpose of this paper to cope with
this situation. Rules will be given for obtaining mo-
ments of all lines, thus avoiding the elaborate deriva-
tion necessary in the previous method. The rules are

* The work reported here was submitted to the California
Institute of Technology in partial fulfillment of the requirements
for the doctoral degree.

17. H. Van Vleck, Phys. Rev. 74, 1168 (1948).

2 A. Wright, Phys. Rev. 76, 1826 (1949).

3 A. G. Anderson, Phys. Rev. 115, 863 (1959).

applicable to Hamiltonians of all kinds, provided that
the perturbing part of the Hamiltonian is small enough
for the perturbation method to be valid.

II. ABSORPTION OPERATOR

Let us assume that the Hamiltonian of a system is
described by
¢Y)

where 3¢’ is the perturbing potential small compared
with 3Co.
Let us represent 3¢’ as an integral over its spectrum,

3e="50o4-3¢/,

3= [ 3 (w)dw, 2)

where h
[3€0,3¢" () ] =3¢’ (). ©)
Under an extremely small perturbing potential 9(Z),
M (£)<<3¢’, the probability of transition from one state
to another, both eigenstates of 3¢ when =0, is propor-
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tional to the square of the matrix element
T
/ (exp(—i3CT /| exp[ —3C(T—1) /BN (1) exp(—i3Ct/h) |Ym)dl
0

=<¢n ¢m>. )

Physically, expression (4) says that the wave function, initially in state ¥, propagates to time ¢ with the pro-
pagation factor exp(—4JCt/7) ; there it is scattered by the potential 917(¢), and then propagates to time T with the
propagation factor exp[ —:3¢(T—¢)/#%]. The matrix element is then taken between this wave function and the
wave function initially in state y.,, which is exp(—3CT/%#)¥» at time T'; and, since the system may be scattered at
any time £ in the time interval (0,7"), a time integral is taken from zero to T

Now, we know that

/ exp (23CL/h)IMN (L) exp(—i3Ct/h)dt

exp(#3Ct/%) = exp[i(3Co+3C")t /A ]

it inNg pt u
={1+—/ SC’(ll)dil—f—(-)/dtI/ 30 ()30 (t)dts+ - - -
%o K/ Jo 0

—|—<é>n/ dt1/ ldtg- . n_ISC(tn)- 30 (12)3C (t)din+- - - | exp(43Cot/F), (5)

where
3¢’ () =exp(3Cot/1)3C" exp(—1i3Cot/1), (6)
and
exp(—13Ci/h) = exp[ —1(3Co+3C")t/%]
1: 13 ’L 2 t t1
=CXp(—’IﬂC0t/h){ 1'—’"/ JC,(ll)dtl‘F(_*) / dfl/ JC'(tl)O’C'(tg)dtg+ .
i nl Jo 0
1: n At t1 tn—1
+(—%) /dtlf by 30/ (£)3C! (£) - - -3¢ (t,)dtn.  (7)
We have, from (5) and (7) ’ ' -

T
/ exp (13Ct/h) M (1) exp(—1i3Ct/%)dt

T , T t o\ 2 T t t1
- / m’(t)dt—{—(;z) / dt [JC’(tl),m’(t)]dtl-{—(;) / dt / dhy / [50’ (12),[5¢" (12),90 (&) ]t - - -

+<£) /0 y /0 an /0 Cdt /0 tm[zc'(xn),- L5 () (D) A+, (8)

M (£) = exp (43Cot/B)IM(2) exp(—iFCot/h). 9)

where
Let us decompose 9 (Z) into its Fourier components:
(l) = / Mo exp(—iwul)dann, (10)
and then further decompose 9w into its spectrum:

STZ«.,():/OO S‘ng(w)dw, (11)

where
[«C‘Co,m:uo (w)]——-hwimwo (w) (12)
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Then
exp (13Cot/ 7)Mo (w) exp(—13Cot/h) = €' IMwo(w).
We then have
n’ (t) =/ / mwo(w)ei(”_“"’) tdwdwy. (13)

Similarly, from (2), (3), and (6), we have
3 (1) = / 3¢/ (w)ei@tde. (14)

The nth term at the right side of (8) is therefore equal to
i n A0 0 0
(i) / / = / (3¢’ (wn),[3¢ (wn—1),* * - [3C" (w1),Mwo(w) ] + * J1dws+ - - dwidwodew
—o0J —o0 —o0 . , -
[/ dl/ dh' . / exp[iwnln+~ N -+iw1t1—|-i(w—w0)t]dtn . (15)
0 0 0

The dominant term of (15) is equal to, as T — oo,

wdwo* + *dwy

([ [t ety Dt e

dwdwo + +dw,.  (16)

e[ [ [ BB ) 0] Tttt S
—o0dJ —0 —o0 (ﬁwn) (ﬁwn'i_ﬁwn—l) e (hwn+hwn—l+ e +hw2+ﬁwl)

The physical meaning of (16) is clear: 3¢’ (w;) changes the system to a state the energy of which is higher by an
amount of %w; than that of the initial state; therefore, the successive applications of 3¢’ (w,), 3¢/ (wn—1)- - -3¢’ (w2),
3¢’ (w1), Mwo(w) change the system to a state with an energy higher by an amount of % (watwn1+ - * + Fwetw1tw)
than that of the initial state, and the law of the conservation of energy demands that this should be equal to the
energy absorbed from 9 (#) which is %we. There are many alternative ways to apply a given group of 3¢’ (w;)’s and
NMuo(w), and (16) indicates that all should be taken into account, with the weighting factor

[(ﬁwn) (ﬁwn+hwn——l) te (hwn+hwn—1+ v +ﬁwl)]—17
for each.
In most cases, the spectrum of 3¢ is discrete; i.e.,

=% [ eslomoda=1 ¢ w0, (17)
Let us assume that the external field also has a discrete spectrum and further has a definite frequency; i.e.,
()= i 3 o) = 5 [ 9o (18)
B B J

With the omission of the factor , expression (16) is then reduced to the form

(3¢ (wan),[ 3 (Wan—1)," * - [3€’ (wa1), M (wp) ]+  + 116 (wan++ - + ++eway+wp—wo)
(Fiwan) (ivan~+Fiwan_1) « - - (fiosantHioan1+ - - - +icsar) '

ZmZ% (19)

an al

With proper choice of the a;’s, expression (19) will account for the absorption of the line we are interested in,
and henceforth expression (19), with the delta function omitted and with the correct e;’s chosen, will be called the
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absorption operator of the line. Expression (8) is now reduced to, aside from a factor of =,

3¢ (war), M (w
>ﬂ: m(wﬂ)‘s(‘ﬂﬂ—wo)"}‘% % E—*(»—)J—ﬁg

Way

8 (war+wp—wy)

(3¢’ (waz),[3€" (war) M () ]]

LD IDIDY

8 (warFwas+wsg—wo)

ar a2 g

(ﬁwag) (ﬁwag +hwa 1)

(3¢ (wan),[3C" (wan-1), - - - [ 3" (war) M(eg) ] - - - 1]

SRITED 25 2 35>

al a2 an 8

The terms neglected in (15) give higher order cor-
rections to the absorption operator, line shifts, and
broadening of the absorption lines. We shall neglect
the higher order corrections to the absorption operator,
and take care of the broadening by the moment method
of Van Vleck.!

As an illustration of the use of (19), let us consider
a spin system in a strong, constant magnetic field, with
magnetic dipole-dipole and exchange interactions be-
tween the spins. This is the case investigated by Van
Vleck! and Wright.?

The Hamiltonian of this spin system is given as

30 =03Ce4-3¢, (21)
where
3Co=—HgB > : S, (22)
and
56/ =50 (0) +5¢ (— 268 HA—)
+-3¢' (2gBHE)+-3¢" (— gBHR™) +5C' (¢8HE™)
=3¢y +3C_'+3C 30,/ +3¢/,
3/ (—2gBHR)=3_y'= 3. Di;S1S4;,
i (23)
3¢’ (2gBHR™)=3Cy'= 3 Dy*S_iS_,
4,77
W (—gBHE)=3'= 2. EiiS1iSe,
1,77

3¢ (gﬁHh_l) —EZCl’ = Z Ei]‘*S_Z'SZj,

1,77

I(0)=30=Y CiS.iS:+ 2 AijSyiS_j.
i,77% 4,77

One readily may prove that [3Co,3C' () |=7%w3C’ (w),
and the definition here is therefore in agreement with
(3). A physical way to see this is to notice that S,, Sy,
and S_ change the z component of the spin by the
amount of 0,41, —1, respectively. Therefore, 3¢y,
JC_o’, 3¢, 3C_y’, 3¢, change the z component of the spin
of the system by the amount of 0, 42, —2, +1, —1,
respectively ; hence the energy changes are 0, —2gBH,
2g8H, — gBH " gBH Trespectively.

8 (wan~+ + - Fwartwg—wo)+---.  (20)

(hwan) (ﬁWan+hwan_1) e (ﬁwan+ L +hwa1)

The coefficients 4, B, C, D, and E are defined as
Ayi=3[Ai+3287:Bvi? —1)]1=3 (A;+3Byy),
Bij= g8 (v — 1),

Cij=3[Aii— g6 (3vi—1)]=4(4sj— Byj),
Dij= =36 (i — Bif*— 210iiBis)/8,
Eij=—3g"8rii *vii(ei—1Bu),

(24)

where a;j, Bij, and v,; are the direction cosines of r;;
(see Fig. 1) and A; is the exchange constant defined
by Van Vleck.! The reader should notice that the
Hamiltonian used here is the same as that used by
Van Vleck and Wright, with a slightly different nota-
tion. The truncated Hamiltonian defined by Van Vleck
is the part of the complete Hamiltonian which com-
mutes with 3¢y, and is therefore the sum of 3Cy and 3¢y,
so we have

3@0():3(30‘}‘5(30,. (25)

The absorption lines centering at g8H#%™, 2g8H% 2,
and 3gBH#%' will henceforth be called the first, the
second, and the third Larmor line, respectively. We
will find the absorption operators for these lines when
M (¢) is an oscillating magnetic field both in the « direc-
tion (perpendicular field) and in the z direction (parallel
field).

For perpendicular oscillating field,

m)= —iwothSz___% —iwotg55++%e—iwo:gﬁs__

It is easy to identify 2g8S; and $gBS_ as M (—gRHA™)
and M (gBHA™), respectively.

For the first Larmor line in a perpendicular field,
wo~ gBH#% L, and the lowest nonvanishing term in (20),

(26)

F16. 1. Coordinate
geometry used.
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which is called the absorption operator O, is
O=9M(gBH)=3gBS—. (27)

For the second Larmor line in a perpendicular field,
the lowest nonvanishing term in (20) is

o L Mg H)] _ (3¢ 1g8S-]
g8H gBH

For the third Larmor line in a perpendicular field,
the lowest nonvanishing term in (20) is

O=[301’,[301',%g/35—]]L[%z’,[ﬂcz',%gﬂ&]]
(¢8H) (2gBH) (2¢BH) (4gBH)
., [5es' (564’3857
(2¢8H) (2g8H)

For the low-frequency line in a perpendicular field,
the lowest nonvanishing term in (20) is

0 [3¢),3¢8S+] L[Sc—ll,%g35~]
= I .

(28)

(29)

(30)
g8H —gB8H
Next, let us consider the parallel field case, i.e.,
M (1) = 'gBS.. (31)
It is easy to see that
26S .= (0). (32)
For the first Larmor line in a parallel field,
0= [5¢1,gBS:] % 33)

gBH H

@)

_ (=1)™ Tr([3Co0,[FCa0, * - - [3C00,0]+ - - TJ[FCo0,[FC00," * [3C00,0* ] - - 1T)
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For the second Larmor line in a parallel field,
0 [3c.,g8S.] ¢
26H  H

(34)

For the third Larmor line in a parallel field,
Oz[i‘cx',[ffcz', 6Sz]]+[302'7[3€1’, BS.]1]
(eBH)(3g8H)  (2g8H)(3gBH)
_gﬁ[ﬁC{,SCZ']
2geHR
For the low-frequency line in a parallel field,
_ [oed,[3e,g8S.1] | [3e-,[5¢:',¢BS.]]
(fiwy) (hon+liw_y)  (Biwr) (hor+Hw_1)
+[302,,[3C—2', 8S.]] +|:3C—2'y[3(’«2', 8S.1]
(fiws) (hwat-tiw_s)  (hw—_s) (w_s+Fiws)
—gBLey 3¢ 2gBLIey,3¢"]
T e (o) () ()
_ eBLsey’ 5] g8[ey,50"]
o eEy  2(gpHP

As is well known, and included here only for the
sake of completeness, the zeroth moment of a line is

(35)

(36)

00

f(V)dezz;; IOu'[z:% 0;i05* 37

0

where O* is the Hermitian conjugate of O.
In general, the 2nth moment of the absorption line is

(38)

72n Tr(00+)

where there are # 3Coo’s in the above multiple commutation bracket.

Let us summarize the foregoing by formulating the rules for obtaining the absorption operator as follows:

(1) Choose the fewest number possible of 3¢’ (w.)’s, the successive applications of which together with the chosen
M (wp) will give an energy change equal to the energy of absorption of the line of interest. (If there are several
ways of achieving this, all of them have to be taken into account.)

(2) The absorption operator is the sum of all the multiple commutators of the 5¢(w,)’s with 9 (ws), divided by
the weighting factor (fwan)(fwantfiwan—1)- -+ (hwaptAwan_14 -+ - +Fwar) :

[3C (wan),[3C(wan—1), - - [3C(wa1),M(wg) ]+ - + 1]

O:

an a1 B (fwap)(Bwanthwani): - (hwan=+ -+ + +Hiwai) ’

Wapt -+ * Fwartwg=wo

(39)

(3) The moments of a line can then be obtained by employing (38).
In the following four sections, moments of four absorption lines will be computed for a powder.
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III. SECOND LARMOR LINE, PERPENDICULAR FIELD

The zeroth and the second moments of this line are given as
/ J()dv="Tr([5e,,g8S-1[gBS+,5¢"])/4g"6*H?, (40)
0

)= Tr ([3Co0,[3C1,gBS—-T1[3Co0,[H—1',g8S5+]]) 1)
72 Tr([5e/,g8S_[g8S 3D

Now,
[3/,S_J=—2 E*S_S_; (42)
3,77
[3Coo,[3C),S_T]=4 3> (CiiEjm*—AiiEin™)SeoS—iS—n+4 D, CiiEii*S2S-S_j—4 2, AHEi*S::S_7*
1,7,m# 1,77 9,77#
+2% CyE#S_:S_j—2HgB 3" Ei*S_iS_;, (43)
i1 b,
and

Tr ([C‘Coo,[C‘C1’,S_]][3C00,[5C_1’,S+]:])
=32Hg32S2(S+1)* X | Eij|2/94-3252(S+1)Y[25(S+1)/3—3
4,77
X(Z (Cip+24:2)| Eyj|)/154+645(S+1)* L |Cislin™*— AiiEam*|?/27
e iy7,ms
+6453(S+1)?
~——-——27 (C i jEjm* —A4; jEim*) (CimEjm -4 z’mEif) . (44)
%,7,m#%

The details of the calculation are omitted and only the result is given here!:

> 7SS

,jm=,

(@) == T i S(S )

([125(S+1)—9] I:
35 4,57

1 8cos?; 15 cos;
G )
7 14

8 8 cos?0; 6 cos?f; cos?d;
+ X rij‘srim“‘rjm‘3(—;+2 o8+ ; )]] / (g6 2 ri®)

@5 m#= 4,77

H[1.2(S+1)—091F Aifrii+SS+1) ¥ AuAtionri(—3+c0s0)+4S(S+1) T Aifrni /3

@,57% ,7,m7* i,m,

—=S(SH1) T A rim (2 c05%0n—2)—S(S+1) T Awmdifrimrii (2 cos®0;—3)

1,7, m# 2,7,m7=

+25(SH1) T Aiidinrni/3}/ (B Z ri%).  (45)

1,7,m>*~

The first bracket of the right-hand side of (45) is the dipole-dipole interaction contribution and the second bracket
is the exchange contribution, and (A»?) is the second moment about the mean frequency.

With the usual assumption that the exchange constant 4 ;; is zero except when 7 and j are neighbors, and is equal
to 4 in that case, we obtain for a simple cubic lattice

(Ar%)={1.08—0.03851(S+1)"'4-[1.07—0.13571(S+1)"1]4%dB g} Ave?, (46)

/ F()dv=0.5652(S+1)2Ng8td—SH?, (47)
0

4H. Cheng, IBM Research Rept. RJ-189, San Jose, California, 1961 (unpublished). See also H. Cheng, thesis, California
Institute of Technology, Pasadena, 1962, for the most complete treatment.
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and for a body-centered cubic lattice,

(A?)={1.13—0.0351(S+1)~1+[1.14—0.0851(S+1)"1]42d6~*¢ 4} An?, (48)
/ F(»)dv=0.8252(S+1)°NgB*d—SH=. (49)
0

The term d is the distance to the nearest neighbors and Av¢? is the second moment of the first Larmor line for
perpendicular field,

Av@=3g"8%2S(S+1) 2, 7:7%/5. (50)
For a simple cubic lattice,
Av=5.04g43%72S (S+1)d ¢, (51)
and for a body-centered-cubic lattice
Av@="1.37d"6*h2S (S+1)d . (52)

It is interesting to note that the cross terms between the dipole-dipole energy and the exchange energy, or the
terms linear in 4, drop out after averaging over the whole solid angle.
Incidentally, the mean value of »,

o= [ o | / )i

=Tr([:SC00,[5(11’,5_:]][S+,£}C_1’])/h TY(ESCII,S_][S+,5C_1,]>,

is calculated to be 2g8HE™, and the absorption is truly of the second Larmor line.

IV. FIRST LARMOR LINE, PARALLEL FIELD

The zeroth and the second moments of this line are given as

/ oof (v)dv="Tr (3:/'5¢ ")/ H?, (53)

and
<V2> =Tr ([380(),581’][3(3_ 1,,3000])/;2«2 Tr (3(31/3(:_1,) . (54)

After averaging with respect to the whole solid angle, we get

9
(Av?)= [0.65 (S +1)——7—] 2 ri 2HS(SH1) 2 (G—cosi+F cos0:)riT0 im0
e i,7,m
1 2 cos?d; 2 3 cos’d; cos™;
+SES+1) X (~ €08%0,,+ - )fﬁ_ﬁnm“sffm'?'}(mg“‘ﬁ‘ 12 1) T (A, (55)
4,7,m=\2 7 7 14 4,77

Here (Av4?) is the contribution of the exchange energy to the second moment of the second Larmor line for
perpendicular field. This means that the contributions of exchange to the second moments for these two cases

are equal.
For a simple cubic lattice,
(Ar?)={0.90—0.025"1(S+1)"1+[1.07—0.1351(S+1)"1]42d%64g 4} Ave?, (56)
/ f(»)dv=0.565%(S+1)*Ng'3*d—H2. (57)
0
and for a bec lattice
(Ar?)={0.77—0.015"1(S+1)"1+[1.14—0.08571(S+1)1]42%d%6 g4} Ave?, (58)

/ F(»)dv=0.8252(S+1)2Ngig*d—S H=. (59)
0
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Incidentally, (v) is evaluated to be gpHA™. Notice that the total intensity (57) and (59) are equal to those of the

second Larmor line in a perpendicular field.

V. SECOND LARMOR LINE, PARALLEL FIELD

The zeroth and the second moments are given as

o Tr([gBS.,3¢  |[3C_o,g8S.])
/f(v)dv= r([g 1[5¢2',g6S.]

4g262H2

2

_ Tr ([5(100,3(12’][3@_2’,5@00])

ye)=

h2 TI‘ (3@2’3(3“2,)

Averaging over the whole solid angle, we get

Ar)=S(S+1)gip*{ 2 7™ im_ﬁ(_‘_
»

i,4,m: 28 14 28

3(1—|—9 cos?0; cos20,— 10 cos?0;+8 cos,,)

23 11 cos?; 15 cos“Gi)
1

+ X 1 i

i, §,m 7

Again the exchange second moment is the same as
that in the previous cases.

The total intensity, /" o*f(v)d», is also equal to that
in the previous cases, and the dipolar second moment,
for simple cubic lattice, is

(Ar?)={1.38—0.045*(S+1)!

+[1.07—0.135-1(S+1)"1]4%d% 8} Ave?, (63)
and for bcc lattice, is
(A?)={1.39—0.0351(S+1)*
+[1.14—0.0851(S+1)"1]4%d% 8} Ave®.  (64)

VI. MOMENTS OF THE LOW FREQUENCY LINE
IN A PERPENDICULAR FIELD

The absorption operator for this line is

O—[ffcl’,%gﬁSd [5¢',3¢85_]

gsH gBH (65)
= (— Z FijSziszi+% Z Fz'J'S—‘i)S'—H')/HJ
1,77 77

where Fiszij+Eij*.
After the averaging process, the second moment for
this line is obtained as

<AV2> = [35(S+1)g4ﬂ4 ) Z rim_ﬁnj—ﬁ

i,7,m#*

X (148 cos?0;—9 cos6;)/14 (B2 Y 7,781

1,77
+(Av.a?).

Again (Av4?%) is equal to that of the previous three
cases.

(66)

=H2Tr (5(:2,5(3_.2,), (60)
(61)
+[12—9S1(S+1)1]Y 7,712/35
4,55
X (732 ri ) H(Ava?).  (62)
Wi
For a simple cubic lattice, it is evaluated that
/ () dy=0.8482(S+1)2Ng'@'d—SH2,  (67)
0
and
(A?)={0.474+[1.07—0.135"1(S+1)"]
X A6} Ave?,  (68)
and for a bcc lattice, it is
/ F()dv=1.2352(S+1)2Ng'g*d—SH~2,  (69)
0
and
(Ar?)={0.64+[1.14—0.085~1(S+1)"]
X A%dSg8~*}Av?.  (70)
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APPENDIX

The following calculated results were used extensively
in the paper. Expressions (8)—(25) give the mean values
after averaging over the direction of the crystal axes
with respect to the magnetic field, and therefore are
useful for powders. The coordinates used are defined
in Fig. 1.

Tr(SS+)=Tr(S-S-)="Tr(Sz5_5_)
=Tr(S.5+:51)=0, (Al)

Tr(SS-)=35(S+1), (A2)
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Tr(S4S5-S:) = —Tr(S-5+5:) =35 (S+1), (A3)
Tr(S:25-2)=2S5(S+1)[4S(S+1)—3]/15, (A4)
Tr(SpS-S5+5-)=4S(S+1)[25(S+1)+17/15, (A5)
Tr(SAS,.S_)=S(S+1)[2S5(S+1)+17/15, (A6)
Tr(S.5-5:5+)=25(S+1)[S(S+1)—27/15, (A7)
(Y imY imYav=§ COSOm, (A8)
<'Yim')’iﬂ’jm>av =0, (Ag)
(Yim®y im®Yov= (112 c0s0,,)/15, (A10)
(YimyiYim)av=(c0s0;+2 cosb; cosby,)/15, (A11)
(’Yz‘mz’)’ij2')’jm2>av
= (2 cos?;+2 cos?0;+2 cos?0,,—1)/35, (A12)
(Yim®¥ jm)av= COSOm/3, (A13)
(Yim®Y iV im)av=(2 €080; COS0~+COSOpm
42 cosf; cosb;)/35, (Al4)
Yimd¥ im®Yav= (2 cO8*0m~+3 cosOm)/35, (A15)
(Yim*y i Yav= (144 c0s%6,,)/35, (A16)
(Yam Y iV jm)av= (c0s0;=+4 cosf; cosby)/35, (A17)
(Yam vy imdYav= (12 c0s?0;+12 c0s?0,,-10 cos?6;
— 748 cos?0; cos6,)/315, (A18)
Yim* Y i Yev= (8 cO80m—+24 cos?0,+3)/315, (A19)
((@iiBim—Biitim) av= 13 sin6;. (A20)
(yim? (etiiBim—Bijctim)*)av= (sin’;)/15, (A21)
(im? (timBim— Bimtjm) )= (s10%0) /15, (A22)
(Vim* (@iiBim— Biitim) )av= (sin%;)/35, (A23)
(yim®yi* (iiBim— Bijctim) Jav
=[ (142 cos?;) sin®9;]/105, (A24)
(yim®yii(@iiBim—B ii0tim)*av
=[ (142 cos®;) sin®;]/105. (A25)

Four series over a simple cubic lattice were computed
to within one percent of accuracy:

Y 7, 5=8.4Nd-S, (A26)
iy
> i t=62Nd®, (a27)
i
X 7o b cos®;=17.32Nd™",  (A28)
i,7,m#*
S 77 cos0;=12.16Nd 2, (A29)
1,7,m

where NV is the total number of lattice points in the
lattice and d the lattice constant.

The following four series were obtained by summing
all the terms from the lattice points within distance 2d
from the origin. The error is admittedly large, and is
estimated to be around 25%,. However, in the calcula-
tion of this paper, the contribution from terms involv-
ing these sums tends to cancel, and as a result, the
over-all accuracy is not greatly affected.

1367
I 1 e oS = 14TANG Y, (A30)
(I T i i COSi= 10.37Nd, (A31)
) 72:,”# 57 im 37 jm 8 COS20; cOs20;=3.17TNd~2, (A32)
]};n# i i i3 =29.9Nd 12, (A33)

The following four sums involving the exchange con-
stant were evaluated. With the usual assumption that
A;jis zero unless 7 and 7 are nearest neighbors, all the
four sums were obtained exactly.

T At =3.004°Nd, (A34)
; ?%# Aind ijrmi3=9.2342Nd 3, (A35)
i izm;é A A ijrmi™ c080;=4.9942Nd=,  (A36)
Z Aiprs=444N A2, (A37)

The following sum was also computed. Owing to the
slowness of convergence the accuracy is not good, but
again its contribution to the total sum is small and the
over-all accuracy is not greatly affected,

S A i 3(3 cos0,,— 1) =22.8N A%d.

4,§,m7

(A38)

With the same accuracies discussed previously, the
following series for a bec lattice were also computed:

T rat=1229Nd, (A39)

ifr# 7 2=9.11Nd™2, (A40)
) ?/_;# 757 im0 cOSY;=41.2Nd 12, (A41)
. ]Z;n# #i 8 COS0;=22.3Nd 2, (A42)
: ;M 757 im 2 jm > €0S%0=36.5TNd ™1, (A43)
; ;n;é 5 im T i c08%0;=27.46Nd 12, (A44)
i J_Zm# 57 o i €08%0; c08%0;=9.78Nd 22, (A45)
) ?;n;é i i i3 ="T9.2TNd 12, (A46)
P2y A A it mi 6 =11.52N A%, (A47)
i :’1:,?5 Aind ijrni=22.08N A%, (A48)
: ?L;n# A imA ij7mi 8 c0s0;=9.865N A%d~?, (A49)
1_ j,Zm# A iPro=90.32N A%, (A50)

S At (3 cos,— 1) =35.8N A0, (A1)
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